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Abstract. In this expository paper we briefly recall the history of Fermat’s Last Theorem. Then
we explain G. Frey’s important idea to prove Fermat’s Last Theorem. This involves the arithmetic
of elliptic curves and modular forms. We mention Ribet’s 1986 result that the Taniyama-Weil
conjecture implies Fermat’s Last Theorem. We give some explicit examples of his theorem. Finally
we discuss Wiles’s approach to prove the Taniyama-Weil conjecture.

1. Introduction.

In this expository paper we discuss some of the mathematics involved in the re-
cent attempts to prove Fermat’s Last Theorem. These efforts are based on an
idea of Gerhard Frey (Essen, at the time in Saarbriicken) who in 1986 proposed a
method based on the arithmetic of elliptic curves over the rational number field Q.
Soon after Frey announced his idea, Jean-Pierre Serre (College de France, Paris)
formulated a precise conjecture which would imply Fermat’s Last Theorem. His
conjecture consisted of two parts: the long-standing and notorious Taniyama-Weil
conjecture relating elliptic curves over Q to modular forms of weight 2 and another
hypothesis which was believed to be more accessible and was called “c” at the time.
In short: “Taniyama-Weil plus € implies Fermat”.

Already in the same year Kenneth Ribet (Berkeley) proved “c”, generalizing a
result of Barry Mazur (Harvard). Even though the result was called “¢”, the proof
is not at all easy: it relies on a lot of delicate Grothendieck style algebraic geometry
and is based on some very clever new ideas. Ribet’s result reduced Fermat’s Last
Theorem to another unproved hypothesis: the Taniyama-Weil conjecture. It may
not seem so, but this was considered to be tremendous progress. A somewhat
arbitrary problem like Fermat’s Last Theorem had been reduced to a conjecture
which, for several reasons, was widely believed to be true. A proof of the Taniyama-
Weil conjecture would confirm part of the so-called “Langlands philosophy” which
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is directing much of current research in number theory. But ... in 1986 such a proof
seemed very far away.

Nevertheless, from 1986 on Andrew Wiles (Princeton) tried to prove enough of
the Taniyama-Weil conjecture to prove Fermat’s Last Theorem. On June 23, 1993,
Wiles announced at the Newton Institute in Cambridge (UK) that he had proved the
Taniyama-Weil conjecture for all semi-stable elliptic curves over Q (see section 3 for
semi-stable elliptic curves). His proof was very complicated; it relied upon difficult
results by R. Langlands [14], J. Tunnell [23], V. Kolyvagin [12], B. Mazur [16] and
M. Flach [7] to name a few. The result claimed by Wiles was strong enough to
imply Fermat’s Last Theorem.

Wiles’s manuscript was not made public. A number of referees began to check
the details of Wiles’s proof. Not surprisingly, some inaccuracies and minor problems
turned up, but all of these could be repaired easily. Unfortunately, somewhere near
the end of 1993 it was found that a certain argument was not complete. This time
it was not immediate how to fix it. In a widely circulated e-mail message Wiles
made this public in december 1993, adding that he was confident he could fill the
gap by extending his arguments.

At the moment (august 1994) it seems that the proof has not yet been made
to work, but that Wiles still has a proof of the Taniyama-Weil conjecture for a very
large class of semi-stable elliptic curves. Even though this result does not quite
implies Fermat’s Last Theorem, it is of tremendous importance for number theory.
Wiles’s result is the first step towards a proof of the Taniyama-Weil conjecture, a
conjecture which only eight years ago seemed hopelessly intractable.

In this paper we briefly explain the concepts that are involved in Wiles’s proof.
Unfortunately, for several reasons we cannot present Wiles’s work in any detail.
We merely sketch the lines of thought and apologize for the many inaccuracies
and incomplete statements that the reader will encounter. For a more detailed
discussion see the paper by Rubin and Silverberg [19]. After some historical remarks
in section 2, we quickly introduce in sections 3 and 4 some of the basic concepts
that occur in the proof. In section 5 we explain Frey’s idea and mention Ribet’s
1986 proof that the Taniyama-Weil conjecture implies Fermat’s Last Theorem. In
section 6 we say a few words about Wiles’s work.

2. History.

Pierre de Fermat was a French magistrate who lived in Toulouse from 1601 to 1665.
He was one of the leading mathematicians of his time. In those days most mathe-
maticians were interested in questions concerning analytic geometry, calculus and
probability theory. Fermat made substantial contributions to these fields. We
know about his work through his correspondence with mathematicians like Pascal,
Descartes and Huijgens.

Fermat was one of the few to be interested in questions concerning algebra
and arithmetic. These fields were well developed in the Arab world, but not so in
Europe. The only texts available were Greek and Latin translations of Arab texts,
often in editions containing comments by European scholars. One of the most
important available texts was a text on algebra and arithmetic by Diophantus of
Alexandria. Diophantus probably lived around 300 AD; by the time Fermat began
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to study his arithmetical works, nobody in Europe had an understanding of these
problems comparable to Diophantus’s insights more than 1000 years earlier.

Fermat studied Bachet’s edition of Diophantus text [5] which was published
in 1621. After the death of his father, Fermat’s son published in 1670 a new edition
of Bachet’s “Diophantus”, this time supplied with the comments his father had
written in the margins of his copy. Many of these comments are generalizations
of statements in Diopantus’s text, usually given without proof. It is here that we
find Fermat’s famous claim. Near a discussion by Diophantus on the form of the
solutions of the Pythagoras equation

X?24+Y%*=12%

in integers X,Y, Z € Z (for instance 3% + 42 = 52, 52 + 172 = 182, 652 + 722 = 972
... etc.), Fermat had commented that, on the other hand, it is not possible to write
a cube as a sum of two cubes or a fourth power as the sum of two fourth powers
and that in general, for any n larger than 2, the sum of two n-th powers of natural
numbers cannot itself be an n-th power of a natural number. Unfortunately, Fermat
writes, the margin of the book is too small to contain his “truly marvelous proof”.

Cubum autem in duos cubos, aut quadratoquadratum in duos quadrato-
quadratos et generaliter nullam in infinitum ultra quadratum potestatem in
duos eiusdem nomines fas est dividere cuius rei demonstrationem mirabilem
sane detexi. Hanc marginis exiguitas non caperet.

Sooner or later all Fermat’s statements were proved or disproved, except this one,
the last. It became known as “Fermat’s Last Theorem”. In our notation Fermat’s
statement boils down to the following.

Fermat’s Last Theorem. For every integer n > 2, the equation

has no solutions in integers X,Y, Z > 0.

In this section we discuss the early results concerning Fermat’s Last Theorem.
First we recall the exponent 2 case:

X2 4+v?% =272
In this case there are many solutions and they can be parametrized easily. This was
known since antiquity.

Theorem 2.1. Every solution X,Y, Z € Z~¢ with gcd(X,Y, Z) = 1 of the equation

X24+v2=22
is of the form
X =a®-1?,
Y = 2ab,
7 =a®+ 1,

(or with the roles of X and Y reversed) where a,b € Z~q satisfy a > b > 0 and
ged(a,b) = 1.



The proof is well known and rather easy [10]. As an example, we mention the
solution
65% + 727 = 97°.

It corresponds to a = 9 and b = 4 because X =65=92—-42Y =72=2-4-9 and
Z =97 =92+42,

The case of exponent 4 was dealt with by Fermat himself. The proof is a
beautiful example of Fermat’s method of “infinite descent”. This method is even
today one of the fundamental tools in the study of Diophantine equations. We
present the proof of a slightly stronger statement. It is based on the shape of the
solutions of the Pythagorean equation.

Theorem 2.2. The only integral solutions of the equation

X4 + Y4 — Z2
are the trivial ones, i.e., the ones with XY Z = 0.
Proof. Suppose X,Y, Z is a non-trivial solution of this equation and let’s suppose
this solution is minimal in the sense that |Z| > 0 is minimal. This is easily seen
to imply that ged(X,Y,Z) = 1. We may and do assume that X,Y,Z > 0. By
considering the equation modulo 4, one sees that precisely one of X and Y is odd.

Let’s say that X is odd. By Theorem 2.1 there are integers a > b > 0 with
ged(a,b) =1 and

X?2=a2-0
Y? = 2ab,
Z =a® + b

consider the first equation X2 + b?> = a2. Since ged(a,b, X) = 1, we can apply
Theorem 2.1 once more and we obtain

X=3-d,
b = 2cd,
a=c+d?,

for certain integers ¢ > d > 0 which satisfy ged(e,d) = 1. Substituting these
expressions for @ and b in the equation Y2 = 2ab above, we find

Y? = 2ab = 2(2¢cd)(¢® + d?),
2
(%) =c-d-(*+d%.

The numbers ¢, d and ¢? + d? have no common divisors and their product is a
square. The fundamental fact that every natural number can be factored into a
product of prime numbers in a unique way implies easily that there exist integers
U,V,W with

c="U?,
d=V?,
+d? =W

4



It is easy to see that gcd(U,V,W) = 1 and that
Ut +vi=w2

We have obtained a new solution of the equation! It is easily checked that W # 0
and that |[W| < W? = ¢ + d> = a < a® < |Z|. This contradicts the minimality
of |Z|. We conclude that there are no non-trivial solutions of the equation, as
required.

This clearly implies that the equation X* + Y* = Z* also admits only trivial
solutions X,Y,Z € Z. Fermat’s result has an important consequence: first we
remark that every integer n > 3 is either divisible by a prime p > 3 or it is divisible
by 4. If there were a solution

X"4+Y"=2"

with XY Z # 0 of Fermat’s equation, for some n divisible by 4, we would have

(e (' = ()
By Fermat’s result for exponent 4 this is impossible. Therefore the exponent n must
be divisible by a prime number p > 3. Then we have

(Xn/p)p + (yn/p)p = (Zn/p)p
and we see that for some prime number p > 3 the equation
XP+YP=2P

also would admit a solution X,Y, Z € Z with XY Z # 0.

Therefore we may restrict our attention to Fermat’s equation with prime expo-
nent. A proof of the impossibility of the equation with exponent p = 3 was found
by Euler (1707-1783) in 1753. In 1825 the young German mathematician Lejeune
Dirichlet (1805-1859) all but proved the impossibility for exponent 5. His proof
was completed by Adrien-Marie Legendre (1752-1833) who was 73 years old at the
time. Shortly afterwards the French mathematician Lamé took care of the case
with exponent p = 7. All these proof are rather involved applications of Fermat’s
method of infinite descent.

A big step forward was made by Ernst Eduard Kummer (1810-1893) around
1847. Kummer used the ring Z[(,] generated by a primitive p-th root of unity ¢,.
Using the elements of this ring Kummer studies Fermat’s equation. He writes it as

p—1
Z°P = XP 4 VP = H (X_|_CI';Y)7
=0

where XY and Z are positive integers. Kummer showed that the factors in the
product either do not have any divisors in common or they admit a common divisor
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of a very restricted type. Then he proceeds very much as in the proof of Theorem 2.2:
if the ring Z[(p] is a unique factorization domain or, more generally, if the ideal
class group of Z[(p] has cardinality prime to p, this implies that each of the factors
X+ C;;Y is, upto a unit of the ring Z[(,)], itself a p-th power in Z[(,]. By means of an
argument that is not important for the moment, Kummer deduced a contradiction
from this, proving Fermat’s Last Theorem for the exponents p for which the ideal
class group of Z[(,] has cardinality prime to p.

In his proof Kummer used his theory of “ideal numbers” from which our modern
ideal theory was to develop. He also obtained an explicit expression for the cardi-
nality of part of the ideal class group of Z[(,]. This enabled Kummer to obtain a
criterion, which can be formulated entirely in elementary terms. It is the most im-
portant contribution to the proof of Fermat’s Last Theorem until the developments
of 1986:

Theorem 2.3. Let p > 3 be a prime. If p does not divide the numerators of the
Bernoulli numbers By, By, ..., B,_3, then the equation

XP+YP=2P
admits only solutions X,Y,Z € Z with XY Z = 0.

Here the Bernoulli numbers are rational numbers defined by the Taylor series
expansion

Since X/(eX — 1) + X/2 = Zcoth(%) is an even function, we see that By = —1/2
and that the Bernoulli numbers By, are zero for odd k > 3. The first few are:

1 1 1 1
B2—6a B4—_Ea Bﬁ_ﬁa BS__%a
5 691 7 3617
Po=gg P2 PuTp PeT g

A computation of the first 100 or so Bernoulli numbers and an application of The-
orem 2.3 imply that Fermat’s Last Theorem is true for all primes p < 100 except
possibly p = 37,59 or 67. By refining his arguments slightly Kummer eventually
proved that Fermat’s Last Theorem is true for every single prime p < 100.

By using Theorem 2.3 and variations on it, Fermat’s Last Theorem had by
1992 been proved to be true for all primes p less than 4 million [2]. This involved
extensive computer calculations involving many smart computational tricks.

For a more thorough discussion of Fermat’s work see André Weil’s book [26].
For more literature on Fermat’s Last Theorem see the texts by Ribenboim [18],
Edwards [6] and Washington [24].



3. Elliptic curves.

Elliptic curves are at the heart of Gerhard Frey’s approach to Fermat’s Last The-
orem. They were intensively studied from a complex analytic point of view in the
last century. Elliptic curves owe their name to the so-called “elliptic integrals”
that one encounters when one computes the circumference of an ordinary ellipse.
It appeared that these integrals are best understood in terms of certain Riemann
surfaces of genus 1: elliptic curves. The complex analytic theory of the Weierstrafl
p-function gives a a very accessible approach to the theory of elliptic curves over C.

In this section we introduce elliptic curves from a rather naive algebraic point
of view. See Silverman’s book [21] for a more complete discussion. Elliptic curves
over Q are non-singular plane curves given by an equation of the form

Y2=X3+AX?2+BX +C

where A, B,C € Q. The discriminant of E is simply the discriminant of the cubic
polynomial. Since the curve is non-singular, the cubic polynomial does not have
multiple zeroes and the discriminant is not zero. Even though we have given the
curve as a subvariety of the affine plane, one should really work with the projective
curve FE given by the homogeneous equation

v’z = 2% + Ax’2 + Bx2? + C2° in P2

The points P = (z : y : z) € P2 of E with non-zero z-coordinate correspond to the
points (X,Y) = (z/z,y/z). There is only one point with z = 0; it is the point at
infinity (0:1:0) = oo.

The main fact about elliptic curves is, that they are group varieties: their
(complex) points admit a natural geometric group structure. The neutral element 0
of the group is the point at infinity. Three points on the curve have sum zero if
they lie on a straight line. To compute the sum of two points P and (), one draws
the line through P and @Q. Since the curve has degree 3, there is a third point of
intersection R. Next one draws the line trough R and oo; in other words, one draws
the vertical line through R. The third intersection point is the sum of P and Q. If
P = (@, one should replace the line through P and @) by the tangent line at P.

Fig.1. The group law on E.

It is clear that the group law is commutative and algebraic , i.e. the addition of
points can be expressed by means of polynomial functions in their coordinates. It

7



is a straightforward exercise to verify that the points of order 2 are precisely the
points of the form (e;,0), where X3+ AX? + BX +C = (X —e1)(X —e2)(X —e3).
This means that
E2]={Pe€e E(C): P+ P =0}
{OO, (6170)5 (6270)5 (6350)}

Here E(C) denotes the group of points of E with complex coordinates and for every
integer n > 0, we let

En)]={PeE(C):P+P+...+ P=0}.
—_—
n times
The groups E[n] are finite algebraic subgroups of E. For instance
E[3] = {P = (z,y) € E(C) : 3z* + 4A2® + 6Bz* + 120z + 4AC — B®> = 0} U {0}

as one easily finds by an explicit computation.

The polynomials that describe the groups E[n] become more complicated as
n grows, but the coefficients are always in Q. This implies that if P = (z,y) is in
Eln], so are all the algebraic conjugate points. In other words, the Galois group of
Q over Q acts on E[n]. It is an important fact that

En|=Z/nZ xZ/nZ

as abelian groups. The action of the Galois group gives therefore rise to a Galois
representation

pn - Gal(Q/Q) — GLo(Z/nZ) (= Aut(E[n))).

For a prime [ one can form the projective system
SBEm-L L Er L E

where the transition maps are given by mapping P to the [-fold sum P+ P+...+P.
The projective limit of this system is called the Tate module T E:

T,E = lim E[I"].
+—

Since E[I"] = Z/I"Z x Z/I"Z, the Tate module T; E is isomorphic to Z; x Z; where
Z; denotes the ring of l-adic integers. The group Gal(Q/Q) acts on T;E and this
gives rise to an l-adic Galois representation

P Gal(Q/Q) — GLa(2Z)).

In order to define the L-series of EE we need to consider the curve E modulo prime
numbers q. Without loss of generality we may assume that the coefficients A, B
and C of the equation

V2=X%4+AX?+BX +C
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are actually integers. When we view the equation of E modulo a prime number ¢ we
obtain a cubic curve over the finite field F;. This curve need not be non-singular.
Apart from the prime ¢ = 2, the curve E is singular modulo g precisely when the
cubic polynomial X3 + AX?2 4+ BX + C acquires a multiple zero modulo ¢g. This
happens only for the finitely many prime numbers ¢ that divide the discriminant
of E . These are the so-called bad primes. The remaining ones are called good and
when we view the equation of £ modulo a good prime ¢ we obtain a non-singular
curve, i.e. an elliptic curve over the finite field F,. For good primes g # [ we can
repeat the construction above and we find that Gal(F,/F,) acts on the l-adic Tate
module of the curve F mod ¢. This means that we have a representation

Gal(F,/F,) — GLy(Z)).

Let ¢, denote the Frobenius automorphism, i.e., the canonical topological generator
of the Galois group of F,; over F; which is defined by

pla) =af a€eF,.
The characteristic polynomial of ¢,, viewed as an [-adic 2 x 2 matrix is given by
T? - a,T+q
where a4 is determined by the relation
#EF,) =q+1—a,.

Here E(F,) denotes the set of points of the curve (E mod ¢) over F,. This implies
in particular that the characteristic polynomial of ¢, has its coefficients in Z and
does not depend on .

Definition. The L-series L(E, s) of the elliptic curve E is given by

= I =gy 1L 6

good T (Pq q bad

Here s € C has sufficiently large real part to ensure convergence of the product.
There is also a “proper” definition for the factors corresponding to the bad primes.
We just describe the result:

oo

A
E)[odl_aq s+q1 25H1_aqqfs n:1ns

For the good primes, the coefficients a, € Z are determined by the formula above.
For the bad primes there are two possibilities: If the unique singular point of £ mod
g is an ordinary double point, then a, = +1 or —1 according as the slopes of the
tangent lines are in F; or not. In this case the reduction of E is called semi-stable.
If the singularity is not an ordinary double point, then a, = 0. We have ignored
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the fact that one has a lot of choice in choosing an equation for E with coefficients
in Z. See [21] for the whole story.

At this point we also introduce the conductor N of E. Like the discriminant
it measures in some sense the bad reduction properties. The prime divisors of N
are precisely the bad primes. If ¢ is a bad prime larger than 3, then the recipee
for the exact power of ¢ that divides IV is very easy: it is ¢ when the reduction
is semi-stable and ¢* otherwise. For the primes ¢ = 2 and 3 the recipee is more
complicated [3].

Here’s an explicit example: consider the elliptic curve £

Y2 = X3 - X?-77X + 330.

The discriminant is equal to —2%3'°11. See [3] for the correct definitions for the
prime 2. The reductions of £ modulo 3 and 11 are semi-stable. The conductor turns
out to be N =132 =22-3-11. Modulo 3 the equation of the curve becomes Y? =
X%+ X2+ X = X(X — 1)?; the tangent lines at the singular point (1,0) are given
by Y = £(X — 1). Modulo 11 the equation becomes Y? = X3 — X2. The singular
point is (0,0) with tangent lines Y = £ X. Therefore the factors corresponding to
the bad primes 2, 3 and 11 are 1, (1 —37%)~! and (1 — 117%)~! respectively. To
determine the factors (1—a,q % +¢'~2*) ! of some small good primes, we compute
the coefficients a, using the relation #E(F,;) = ¢ + 1 — a,. For instance, the curve
has the following six points with coordinates in F7: {oo, (0,%£1), (1,+£1), (4,0)}.
Therefore a; =7+ 1 — 6 = 2. The first few a, are given in the table.

q #E(F,) Qq q #E(F,) Qq
2 - - 23 16 -8
3 - - 29 30 0
5 4 2 31 32 0
7 6 2 37 44 -6
11 - - 41 42 0
13 8 6 43 54 10
17 22 -4 47 48 0
19 22 -2 53 68 14

The L-series of E begins like this

L(Es) =1+t ottt 222
) T sy T T s Tgs T1s T 135 T 150 170 195

One should view the L-series of an elliptic curve as an analogue of the Riemann
(-function

e8]

1 1

C(S):ZE: H = s € C, Res > 1.
n=1 q prime

Indeed, if we replace the Tate module T} E by the ring of l-adic integers Z; itself
provided with the trivial Galois action, then the analogue of our definition gives
us the Riemann (-function. This time the /-adic module has rank 1 rather than 2.
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One expects many of the properties of the Riemann (-function also to hold for these
L-series. For instance, the Riemann (-function can be extended meromorphically
to all of C and satisfies a functional equation:

Z(s)=2Z(1-5s)

where Z(s) = T'(s/2)m*/2((s) is a slight modification of the Riemann (-function.
Here T'(s) denotes the usual I-function: I'(s) = [;~ e~*t*% (for s € C, Res > —1).
For the functions L(E, s) one expects the following:

Conjecture. Let E be an elliptic curve over Q, then L(E,s) admits an analytic
continuation to C and

A(E,s) = +N'7°A(E,2 — s5) s€C,

where A(E,s) = T'(s)(2r) *L(E, s) is a slight modification of the L-series on E.
Here N denotes the conductor of E. There is also a precise conjecture for the sign,
but we will not go into this.

This conjecture is more or less equivalent to the Taniyama-Weil conjecture and
is one of the main motivations behind it [1, 25]. In the next section we will discuss
the Taniyama-Weil conjecture in terms of modular forms. It is possible to verify
the functional equation for every explicitly given curve and this has been done in
numerous cases. For completeness sake we remark that there is also an analogue
of the Riemann Hypothesis for the functione L(E, s): one expects that the “non-
trivial” zeroes of L(E, s) all have real part equal to 1. This has been verified for a
few zeroes of a handful of elliptic curves.

4. Modular forms.

The group SL2(Z) acts on the upper halfplane H = {z € C : Imz > 0} via fractional
linear transformations:

a B _az+f a B
(7 5>(z)_7z+5 z € H, (7 6>€SL2(Z).

For every positive integer N > 1 we let
a p _
To(N) ={ v 8 € SLy(Z) : v =0 (mod N)}.

The quotient space H/T'o(V) is a Riemann surface. It is naturally compactified by
adding finitely many “cusps”. These are the I'g(IV)-equivalence classes of QU {oo}.
The compactified Riemann surface has a model over Q and is denoted by Xo(NV):
the modular curve of level N.

We will consider modular forms of level N and weight 2 only. These are related
to differentials of the curve Xo(NV).

Definition. Let N > 1 be an integer. A modular form of level N (and weight 2)
is a holomorphic function f on H for which the differential form f(z)dz is To(N)-

invariant:
f(M2)d(Mz) = f(2)dz, for M € T'o(N)
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and which is holomorphic at the cusps.

Since the matrix (j) is contained in To(N), we have that f(z + 1) = f(2).
Therefore f admits a Fourier expansion which looks like

o0

0= ae™™ aeC

n=0

because f is holomorphic at the cusps. A cusp form is a modular form which
vanishes at the cusps. This implies that the first coefficient ag of its Fourier ex-
pansion vanishes. The cusp forms of level N form a finite dimensional vector space
S2(To(NV)). One has that Sz (T'o(M)) C S2(T'o(N)) whenever M divides N.

On the vector space of cusp forms acts the so-called Hecke algebra which is
generated by the Hecke operators. We do not give the definitions here.

Definition. Let N > 1 be an integer. A newform of level N (and weight 2) is a
modular form of level N and weight 2 which is not a modular form of any lower
level and which is a normalized eigenform for the action of the Hecke algebra, i.e.
f=Y,51 an€®™"* with a; = 1.

One defines the L-series L(f, s) associated to a newform f =" ., anq" by
> a
L = E - C,R 0.
(f,s) 2 s € C, Res >>

In contrast to the situation for elliptic curves, one knows that the L-function asso-
ciated to a modular forms satisfies a functional equation.

Theorem 4.1. Let f be a newform of level N, then
A(f,s):ﬂ:Nl_sA(f,Z—S) SEC,

where A(f, s) =T'(s)(2w) *L(f, s) is a slight modification of the L-series of f. There
is also a precise formula for the sign, but we will not go into this.

In all cases where one can prove that the L-function associated to an elliptic
curve E over Q satisfies the expected functional equation, this is shown by proving
that the corresponding Fourier series is a newform of weight two. One expects that
this is always so:

Taniyama-Weil Conjecture. Every elliptic curve E over Q is modular, i.e., if its

L-series is given by
oo

L(E,S) = Z Z_Za

n=1

then the associated Fourier series Y, an€?™™" is a newform of weight 2 and level N,
where N is equal to the conductor of E.

The Taniyama-Weil conjecture has been verified in numerous explicit cases [1],[3].
It is equivalent to the statement that there exists a non-constant morphism ¢ :
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Xo(N) — E. The conjecture clearly implies that the L-series of an elliptic curve
over Q satisfies the expected functional equation. The Taniyama-Weil is actually
more or less equivalent to this statement [25].

Finally we mention the important fact that it is possible to associate a 2-
dimensional Galois representation to a newform.

Theorem 4.2. Let f = Y a,e®™"* be a newform of weight 2 and level N. For
every prime | there is a Galois representation

Gal(Q/Q) — GLx(R)

such that for almost every prime q the characteristic polynomial of the Frobenius
automorphism ¢, is equal to
T? — a,T +q.

Here R denotes the ring generated by the Fourier coefficients over Z;.
For the proof for arbitrary weights see [4].

5. The Taniyama-Weil conjecture implies Fermat’s Last Theorem.

In 1986 the German mathematician Gerhard Frey proposed a new approach to prove
Fermat’s Last Theorem [9]. His method was related to methods of Hellegouarch [11]
published around 1970. To a solution

al + b =cP

in coprime integers a, b, ¢ of Fermat’s equation of prime exponent p > 3 Frey asso-
ciated an elliptic curve:
Y2 = X(X —af)(X —P).

Frey’s elliptic curve is defined over Q. Frey observed that this curve has rather
strange properties. This made him believe that perhaps one could show that a
curve with such properties cannot exist and that therefore solutions to Fermat’s
equations cannot exist either.

The zeroes of the polynomial X (X — a?)(X — c¢P) are evidently equal to 0, a?
and ¢?. They coincide modulo a prime number [ if and only if [ divides both a
and c¢. But by Fermat’s equation, [ then also divides b, which contradicts the fact
that a, b and ¢ were supposed to be coprime integers. Therefore this cannot happen
and we conclude that the curve is semi-stable: ignoring a small complication when
l = 2, the only bad primes are the divisors of a,b or ¢. Modulo these Frey’s curve
acquires an ordinary double point.

Upto a power of 2, the discriminant of Frey’s curve is equal to

(aPc?(aP — ¢P))? = (abe)?P.

This is a p-th power and that is a crucial observation. It implies that the structure
of the subgroup of p-torsion points on Frey’s curve is very restricted. This is easily
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seen using Tate’s rigid analytic p-adic model of the semi-stable elliptic curve. One
way to express this fact is to say that the subgroup scheme E[p] of points of order p
is finite and flat over Z of type (p,p). One can, at present, not prove very much
about such finite flat group schemes. One expects [20] that they are isomorphic to
products of the group schemes Z/pZ and pp.

In this particular case one should have that

Elp] = Z/pZ x pyp

for every prime p. In other words, E[p] is a direct sum of two summands, one with
trivial action by the Galois group of Q over Q and the other isomorphic to the group
scheme of the p-th roots of unity. This is known to be true only when p < 17. This
is a consequence of J.-M. Fontaine’s 1983 results [8] on finite flat group schemes
over Z.

However, if the conjecture about these finite flat group schemes is correct in
general, then it follows at once that Frey’s elliptic curve must have a point of
order p with coordinates in Q: the points in the summand of E[p] with trivial Galois
action are such points. It is a consequence of the results in Barry Mazur’s famous
“Eisenstein ideal” paper [15] that this is impossible for p > 3. This contradiction
shows that Frey’s curve cannot exist and hence that there are no non-trivial solutions
to Fermat’s equation a? + bP = ¢P for p > 3.

Mazur’s 1976 paper [15] has been very important for the development of arith-
metic during the past years. In it Mazur applies delicate arithmetic algebraic ge-
ometry to the study of modular curves. The main result of the paper is the solution
of an infinite family of Diophantine equations. Mazur’s method is still Fermat’s
method of infinite descent, expressed in the language of flat cohomology.

Frey hoped that one could still prove that his elliptic curves could not exist
without using the unproved conjectures concerning finite flat group schemes. Later
in 1986, J.-P. Serre formulated a precise conjecture on elliptic curves over Q which
would imply Fermat’s Last Theorem. This conjecture was proved by Ribet, but only
under the assumption of yet another conjecture: the Weil-Taniyama conjecture,
which was mentioned in the previous section. Ribet proved the following [18].

Theorem 5.1. Let N be a positive integer and let | be a prime dividing N. Sup-
pose f = > a,e*™™* is a newform of weight 2 for ['o(N) and suppose that the
associated action of the Galois group on the p-torsion points of the representation of
Theorem 4.2 is “finite” and irreducible. Then there is a newform g = 3" b,e?™"*
of weight 2 for the group I'o(IN/l) such that

aq = b, (mod p), for almost all primes q
for some prime ideal over p of some number field.
The condition that the action on the p-torsion points is finite means that the
Galois representation “comes from” a finite flat group scheme over Z. In partic-

ularly, the primes ¢ # p are unramified. The proof of Theorem 4.1 involves a lot
of subtle algebraic geometry of modular curves and Shimura curves. We won’t say
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a word about it. We give instead an explicit example, taken from the tables of
modular elliptic curves [3].
Let E be the elliptic curve

Y2 = X3 — X2 +25158X — 775719.

The bad primes are 2, 3, 7 and 11. The discriminant is equal to —243575117. The
curve E is semi-stable modulo the primes 3, 7 and 11. The conductor of E is
924 =4.3-7-11. It is the curve 924A1 in J. Cremona’s table of modular elliptic
curves [3]. In the table the first few values of the coefficients a, of the newform
associated to E are given. It can be shown that the Galois action on E[3] and E[7]
are irreducible. Since the exponents of the primes 3 and 7 in the factorization of
the discriminant are both equal to 5, we conclude that E[5] is “finite” at both 3
and 7.

Consider the prime 7. By Ribet’s theorem there should exist a newform of level
132 = 4-3-11 whose Fourier coefficients b, are, up to a finite number of exceptions,
congruent to ag modulo 5. Indeed there is such a form: the newform associated to
the elliptic curve 132B1:

Y2 =X3 - X2 -77X + 330.

The first few values of the b, are listed in the table.

The discriminant of “132B1” is equal to —243!°11. This confirms that the 5-
torsion points are “finite”. Applying Ribet’s theorem one more time, we find that
there exists a newform of level 44 whose Fourier coefficients ¢, are congruent to a,
modulo 5. Indeed, the newform associated to the elliptic curve 44A1

Y2=X3+X?+3X-1

has this property.

g| 23] 5| 7|11| 13| 17| 19| 23|29|31| 37|41| 43|47| 53| 59
924Al|ag|—|+|-3|+| +| 1|—4| 3| 2| 5| 0| 9| 0| 10| 5|—-6| 13
132B1| by |—|+| 2| 2| +| 6|—4|—2|-8| 0| 0|—6| O| 10| O| 14|—12
44Bl|cy|—| 1|-3| 2| +|—4| 6| 8|-3| 0| 5|-1| 0|—-10] 0|6 3

One could say that Ribet’s result allows us to “lower” the level of the representation
on the points of order 5: the representation was associated to a curve of conduc-
tor 44 - 3 - 11, but its “proper level” turned out to be 44. Here’s how this theorem
together with the Taniyama-Weil conjecture implies Fermat’s Last Theorem:

Let E be the Frey curve Y2 = X (X — aP)(X — cP) associated to a hypothetical
non-trivial solution of Fermat’s equation a? + b» = ¢?. We may and do assume
that p > 5. By the Taniyama-Weil conjecture, the curve FE is modular. Let f =
>, an€®™"* denote the associated newform of weight 2. Since E is semi-stable, f

has level
N=T]]¢
llabe
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Since the discriminant of the Frey curve is a p-th power, the subgroup scheme E[p]
is finite and flat and the action of the Galois group on the points of order p is
finite. Since p > 5 the results of Mazur’s “Eisenstein ideal” paper [15] imply that
the Galois action is also irreducible. Therefore the conditons of Ribet’s theorem
are satisfied. So there exists a newform g = )", b,q" of weight 2 and level N/I for
which the b,, are congruent to a,, modulo some prime p over p. This implies that the
action of the Galois group associated to g is again finite, flat and irreducible. Now
we proceed by induction: we“eliminate” all odd primes from the level and we end
up with a newform of weight 2 for the group I'g(2). But such a form does not exist,
since the curve X(2) is rational and the vector space of cusp forms of weight 2 has
dimension 0. This contradiction shows that the solution a,b,c with a? + bP = ¢P
does not exist.

6. Wiles’s approach.

Since Frey’s elliptic curves are semi-stable, it is actually not necessary to prove the
full Taniyama-Weil conjecture in order to prove Fermat’s Last Theorem. It suffices
to prove the conjecture for semi-stable curves.

Wiles’s’s idea is to “lift” Galois representations. More precisely

Conjecture 6.1. Suppose E is a semi-stable elliptic curve over Q with L-series
> nann~°. Let | be an odd prime satisfying the following conditions.
(i) The group Gal(Q/Q) acts irreducibly on E[l].
(ii) There is an eigenform f = Y b,e®™"* and a prime iedeal | over | such that
for all but finitely many primes ¢

aq = by (mod ).

Then E is modular, i.e. the Fourier series Y., ane*™™* is a modular form of
weight 2 for some T'y(N).

In other words, if the Fourier series Y a,e?™"* associated to E is congruent to a
modular form modulo [, then it actually is a modular form. It suffices to assume
the truth of this conjecture for the primes [ = 3 and 5 to prove the Taniyama-Weil
conjecture for semi-stable elliptic curves over Q. Very roughly one proceeds as
follows.

Let E be a semi-stable elliptic curve over Q. Consider the prime I = 3 and
the action of Gal(Q/Q) on E[3]. By considering the action of PGLy(F3) on the
four points of P1(F3), we see that PGLy(F3) = S4. The group Sy is a subgroup
of PGL2(C). The extension of S4 by {1} contained in GL2(C) is isomorphic to
GL»(F3). So, the action of Gal(Q/Q) on E[3] gives rise to a representation

Gal(Q/Q) — GLs(C)
whose image is contained in a subgroup isomorphic to GLs(F3) and whose image
in PGLy(C) is contained in a subgroup isomorphic to Sy. It follows from the work

of R. Langlands [14] and J. Tunnell [23] that such a representation is modular. In
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their work it is essential that Sy is a solvable group. One cannot hope to obtain a
similar result using any prime [ > 3.

With some extra work [19] one can find an eigenform f = Y a,e?™"* of
weight 2 for some T'g(N) such that the corresponding representation is isomorphic
to p3s modulo 3.

If the action of the Galois group Gal(Q/Q) on E[3] is irreducioble, then the
conditions of Conjecture 6.1 are satisfied and we conclude that E is modular. If the
action is not irreducible, Wiles considers E[5]. If E[5] would also admit a reducible
Galois action, then E would have a subgroup of order 15 which is respected by
Gal(Q/Q). This would give rise to a rational point on the modular curve Xg(15),
which parametrizes elliptic curves together with a subgroup of order 15. The genus
of this curve is 1 and its rational points consist of four cusps and of four points
that correspond to certain non-semi-stable curves (the curves of conductor 50 to be
precise; they are modular).

Therefore the Galois action on E[5] is irreducible. Using the Hilbert irreducibil-
ity theorem and the fact that the genus of the modular curve X (5) is zero, Wiles
constructs another semi-stable elliptic curve E' over Q which satisfies

E'[3] is irreducible;
E'[5] =2 E[5] as Galois modules.

Since E'[3] is irreducible, E' is modular by Conjecture 6.1. Let Y, b,e?™™* be the
associated newform of weight 2. Then

aq = by (mod 5) for almost all primes q.

But now the conditions of Conjecture 6.1 are satisfied for E with [ = 5 rather than
Il = 3! We conclude that the representation on the Tate module T5E is modular
and hence that E is modular.

It is amusing to see how the various torsion points of the Frey curve have
entered into the proof: the curve itself has been constructed by specifying its 2-
torsion points, Ribet’s proof exploits the structure of the subgroup scheme of p-
torsion points and Wiles exploits the 3-torsion and 5-torsion points.

To prove the conjecture Wiles studies all the “liftings” of the (irreducible)
representation

p: Gal(Q/Q) — GLy(F)) (= Aut(E[l])).

Here a lifting of p; is a representation pr : Gal(Q/Q) — GL2(R), where R is
a complete local Noetherian Z;-algebra with maximal ideal m and residue class
field Fy, such that pgr “modulo” mis p;.

By assumption two such lifting exist: one is simply the representation on the
Tate module T} E of E:

Ploo : Gal(Q/Q) — GLy(Z)) (= Aut(T}E)).
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and the other one is the Galois representation associated to the eigenform f =
>on bne?™"z  Both representation are rather special: there are all kinds of restric-
tions on the decomposition and ramification groups etc.

Mazur [16] showed that there exists a universal lifting (subject to the restric-
tions on the ramification ...) puniy : Gal(Q/Q) — GLa(Ruyniv). Here Ryni, is a
local Noetherian Z;-algebra. In other words, for every lifting pgr there is a unique
homomorphsim f : Ry,iv — R such that f - puniv = pr-

On the other hand, there exists such a representation which is universal for the
modular liftings of p;. This ring T is related to the Hecke algebra. By the universal
property there is a homomorphism

Runiv — T

which is surjective. We must show that this map is an isomorphism. This implies
that every lifting of p; is modular, in particular, p; ,, is modular as required.

The ring T is a Gorenstein ring and this property enables Wiles to reduce this
problem to the “tangent spaces” of Spec(Ryniv) and Spec(T) at the “point” whose
existence is guaranteed by the results of Langlands and Tunnell. It suffices to show
that the tangent spaces are equal and this boils down to proving a formula for the
cardinality of a certain “Selmer” group. This cardinality should essentially be equal
to a special value of the L-series associated to the symmetric square representation
of the elliptic curve E. One step in the direction of such a formula had been taken
by Matthias Flach [7] in 1992. He had proved that the conjectural value at least
annihilated the Selmer group.

Formulas expressing cardinalities of arithmetically interesting groups in terms
of special values of L-series are quite common in number theory. Recently the
Russian mathematician V. Kolyvagin [12] developed his powerful “Euler systems” to
prove such equalities. Kolyvagin was partially inspired by the work of F. Thaine [22],
who proved in 1988, a certain annihilation result for class groups of cyclotomic fields,
a result somewhat similar to Flach’s. A few years later Kolyvagin extended Thaine’s
result and obtained formulas for the cardinalities of the class groups ussing his Euler
systems. In a similar way Wiles has applied Kolyvagin’s method of Euler systems
to extend Flach’s result to obtain a formula for the cardinality of the Selmer group.

The Euler system is based on Flach’s construction. The precise details have
not been published.
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