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Greenberg’s conjecture for real quadratic number fields.

by Pietro Mercuri, Maurizio Paoluzi and René Schoof.

1. Introduction.

Let F be a totally real number field and let p be a prime. Let

F = F0 ⊂ F1 ⊂ F2 ⊂ . . .

denote the cyclotomic Zp-extension of F . By An we denote the p-part of the ideal class
group of the ring of integers of Fn. In his 1971 thesis Ralph Greenberg conjectured that
#An remains bounded as n → ∞. See [4] and [5, Conj (3.4)]. This is the “λ = 0”-
conjecture of Iwasawa theory. In this note we report on a computation involving the 30394
real quadratic fields Q(

√
f) of discriminant f < 100, 000. As a consequence we obtain the

following result.

Theorem 1.1. Greenberg’s conjecture is true for the prime p = 3 and the real quadratic
fields of discriminant f < 100, 000.

For each of the real quadratic fields with discriminant f in the range of our compuation
we have computed a certain Galois module C(f), the finiteness of which is equivalent to
Greenberg’s conjecture. In this introduction we describe the module C(f). In the rest of
note we explain the computation and its results.

Let F = Q(
√
f) be a real quadratic field of discriminant f . The Galois module C(f)

is defined in terms of cyclotomic units. For k ≥ 1 let ζk denote a primitive k-th root of
unity. For F = Q(

√
f) and n ≥ 0 the n-th layer in the cyclotomic Z3-extension of F is

Fn = Q(
√
f, ζ3n+1 + ζ−13n+1).

The field Fn is a subfield of the cyclotomic field Q(ζ3n+1f ) and has degree 3n over Q(
√
f).

Its ring of integers On contains cyclotomic units. See [9, 10]. The 3-part of the quotient
of the unit group O∗n by its subgroup of cyclotomic units is a finite group denoted by Bn.
It is known that the groups An and Bn have the same cardinality. Therefore Greenberg’s
conjecture is true for the field F if and only if #Bn remains bounded as n→∞.

When the discriminant f is not congruent to 1 (mod 3), we let Cn denote the dual of
the group Bn for n = 0, 1, 2, . . .. When f ≡ 1 (mod 3), we let Cn denote the dual of the
group B̃n. Here B̃n sits in the exact sequence

0 −→ B̃n −→ Bn
φn−→Z3/ log3 η0Z3.
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Here for ε ∈ O∗n we put φn(ε) = 1
3n log3(Nn(ε)), where Nn : F ∗n → Q(

√
f)∗ is the norm

map. Since the 3-adic logarithm of a generator η0 of the group of cyclotomic units in
Q(
√
f) is not zero, the rightmost group is a finite cyclic group. It follows that [Bn : B̃n]

and hence the quotient #Bn/#Cn is bounded independently of n. Therefore Greenberg’s
conjecture is true if and only if #Cn remains bounded as n→∞.

For n ≥ m the natural maps Bm → Bn are injective and the natural maps Cn → Cm
are surjective. Let C(f) denote the projective limit of the Cn. Then C(f) is a Galois
module and hence in the usual way a module over the Iwasawa algebra Λ = Z3[[T ]]. It
follows from properties of cyclotomic units that it has rank 1. See [6, 7, 8]. In other words,
we have

C(f) = lim
←
Cn ∼= Λ/J, for some ideal J ⊂ Λ.

The vanishing of the Iwasawa µ-invariant of Q(
√
f) means that J contains a monic poly-

nomial and hence that C(f) is a finitely generated Z3-module [2]. Greenberg’s conjecture
affirms that C(f) is actually finite.

We have computed the Galois module C(f) and in the range of our computations we
found the following. It is equivalent to Theorem 1.1.

Theorem 1.2. For p = 3 and for all discriminants f < 100, 000 the module C(f) is finite.

In most cases we have C(f) = 0. Indeed, for only 3359 out of the 30394 real quadratic
fields considered, C(f) is not zero or, equivalently, J is a proper Λ-ideal. This is about
11% of all cases. Of these, 2218 have J equal to the maximal ideal (3, T ) of Λ. In these
cases C(f) has order 3. For the remaining 1241 fields the module C(f) is strictly larger.
This is approximately 4% of all cases.

Rather than listing each ideal J , we indicate in section 3 how often ideals of a certain
type appear in our computation. The full list of ideals may be of interest by itself and is
available on github [12]. We also single out some discriminants for which the ideal J has
a remarkable shape.

2. Upper bounds and lower bounds.

In this section we give a sketchy description of the algorithm. For the details see [6, 8].
Let Q(

√
f) be a real quadratic field of discriminant f . Let J be the Λ-ideal described in

the introduction for which C(f) = Λ/J . For n ≥ 0 we put ωn(T ) = (1 + T )p
n − 1 and we

write (ωn) for the ideal generated by it.
First we discuss the case where the discriminant f is not congruent to 1 (mod 3). In

[6] it is explained that in this case we have

Cn = C(f)/ωnC(f) = Λ/(J + (ωn)), for all n ≥ 0.

The Galois module C(f) is finite if and only if ωnC(f) = 0 and hence C(f) = Cn for
some n ≥ 0. By Nakayama’s lemma this happens if and only if J + (ωn) = J + (ωn+1)
for some n ≥ 0. This observation leads to the following algorithm. For n = 0, 1, 2, . . . we
compute the shrinking ideals J + (ωn) until we find that J + (ωn) = J + (ωn+1).

Our method for computing the ideals J + (ωn) runs as follows. For a given n we first
calculate a lot of elements in the ideal. As is explained in [6], this involves calculations
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with cyclotomic units modulo certain primes and leads to an upper bound for Λ/(J+(ωn)).
To obtain a lower bound we employ a method due to G. and M.-N. Gras [3]. This involves
calculations with high precision approximations of the cyclotomic units in Fn ⊗ R. See
also [6, section 4]. Clearly, when the upper and lower bounds agree, we have determined
J + (ωn) and hence Cn = Λ/(J + (ωn)).

The calculation of the lower bound becomes very time consuming and takes a lot
of memory as n grows. This is caused by the high precision computations with units in
cyclotomic fields of conductors several millions and degrees in the hundreds. In fact, for
most discriminants f it becomes infeasible when n exceeds 2. Fortunately, for most f we
find that J + (ωn) = J + (ωn+1) and hence C(f) = Cn for n ≤ 2.

In the rare cases where we need to consider J + (ωn) for n ≥ 3, it is still feasible to
compute the upper bound. This means that we can calculate a lot of elements in J +(ωn).
An application of the Cebotarev density theorem suggests that these elements probably
generate J + (ωn), so that our upper bound is actually equal to the lower bound, but we
have no rigorous proof of this.

Fortunately, we can still rigorously prove that C(f) = Λ/J is finite and thus confirm
Greenberg’s conjecture even when we cannot use our algorithm to compute lower bounds
for Λ/(J + (ωn)). It suffices to have an upper bound for n and a lower bound for some
m ≤ n to which the following lemma applies. In the range of our computations this always
works out with n ≥ m = 2.

Lemma 2.1. Let M be a finitely generated Λ-module. Suppose that for certain integers
n ≥ m ≥ 0 and b ≥ a ≥ 0 we have

#M/ωmM ≥ pa and #M/ωnM ≤ pb.

If b− a < n−m, then ωnM = 0. In particular, if M/ωnM is finite, so is M .

Proof. In the filtration

ωnM ⊂ ωn−1M ⊂ . . . ⊂ ωm+1M ⊂ ωmM

there are n−m inclusions. We have inequalities

#(ωnM/ωmM) =
#M/ωnM

#M/ωmM
≤ pb−a < pn−m.

It follows that one of the inclusions must be an equality. So we have ωk+1M = ωkM for
some k = m, . . . , n−1. Then x = ωk+1/ωk is an element of the maximal ideal of Λ that has
the property that xωkM = ωkM . Nakayama’s lemma implies then ωkM = 0. It follows
that ωnM is zero, as required.

When the discriminant f is congruent to 1 (mod 3), our method is the same, but
the details are slightly different. See [7, 8] for the details. This time we have Cn =
C(f)/ω′nC(f) = Λ/(J + (ω′n)) for all n ≥ 0. Here ω′n = ωn/T . In particular we have
ω′0 = 1 and C0 = 0. For each n = 1, 2, . . . we compute the shrinking ideals J + (ω′n) until
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we find J+(ω′n) = J+(ω′n+1), in which case Nakayama’s lemma implies that J = J+(ω′n)
and hence C(f) = Cn and we are done.

The issues with upper bounds and lower bounds are similar. We can still prove that
C(f) = Λ/J is finite in each case in the range of our computations. When the lower bound
is not available for some n ≥ 3, we invoke Lemma 2.1 with ωm and ωn replaced by ω′m and
ω′n respectively.

3. Numerical data.

There are 30394 real quadratic fields of discriminant f < 100, 000. In order to present our
results, it is convenient to separate cases according to the residue class of f modulo 3.

Case f ≡ 0 (mod 3).
There are 7606 real quadratic fields with discriminant f ≡ 0 (mod 3) and f < 100, 000.
For precisely 769 of them the Galois module C(f) = Λ/J is not zero. This is approximately
10%. For 513 discriminants J is equal to the maximal ideal (3, T ) of Λ. For the remaining
256 discriminants J is strictly smaller. Table 3.1 contains some data.

The rows of Table 3.1 correspond to the level of stabilization n. This means that n
is the smallest integer for which the ideals J + (ωn) and J + (ωn+1) are equal and hence
J = J + (ωn). In particular, we have Λ/J = C(f) = Cn. The number n is also the
smallest for which ωn = (1 + T )3

n − 1 is in J . Equivalently, 3n is the order of 1 + T in the
multiplicative group (Λ/J)∗. The columns are indexed by the symbols T k for k = 1, 2, . . ..

The entry in the n-th row and the T k-column is the number of discriminants for which
the level of stabilization is n, and the image of J in the ring F3[[T ]] is the ideal (T k). Since
ωn is congruent to T 3n modulo 3, the (n, T k)-entry is zero whenever k > 3n. In particular,
in the row corresponding to n = 0, all entries with k > 1 are zero.

Table 3.1. The modules Λ/J for f ≡ 0 (mod 3).

n T T 2 T 3 Total

0 536 0 0 536
1 112 50 2 164
2 35 7 2 44
3 15* 0 0 15
4 5* 1* 0 6
5 2* 0 0 2
6 2* 0 0 2

707 58 4 769

In the first column we count the discriminants for which the ideal J is of the form J =
(T − a, b) for certain a, b ∈ Z. For 536 discriminants there is stabilization at level n = 0
and we have a = 0. This means that #C0 = #C1 or, equivalently #A0 = #A1. The
discriminants for which J is equal to the maximal ideal of Λ are included here. This entry
was checked by computing the class numbers of the fields F0 and F1 of degrees 2 and 6
respecively. For the other entries in the first column, we have a 6∈ bZ3 and stabilization
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occurs at level n = v3(b/a). The calculations were done using a few lines of PARI/GP [11]
code in these cases.

An asterisk indicates that we do not have a rigorous lower bound for C(f) for some
of the discriminants appearing in this entry. However, our upper bound is very likely to
be sharp, so that almost certainly C(f) is isomorphic to Λ/J . In each case Lemma 2.1
was applied to prove Greenberg’s conjecture. The 62 cases appearing in the second and
third columns were dealt with using the polynomial arithmetic of Magma [1]. We single
out nine discriminants f for special mention.

Table 3.2. Exotic Galois modules for f ≡ 0 (mod 3).

f J n T k

31989 (T − 996, 2187) 6 T
38424 (T + 261, 2187) 5 T
59061 (T 2 + 3T − 9, 81) 4 T 2

60513 (T 3 + 3, 3T, 9) 2 T 3

61629 (T 3, 3) 1 T 3

69117 (T + 69, 729) 5 T
71049 (T 3, 3)) 1 T 3

76584 (T 3 + 3, 3T, 9) 2 T 3

95385 (T − 2988, 6561) 6 T

Case f ≡ 2 (mod 3).
There are 11394 real quadratic fields with discriminant f ≡ 2 (mod 3) and f < 100, 000.
For precisely 1250 of them the Galois module C(f) = Λ/J is not zero. This is approxi-
mately 11% of all discriminants. For 781 discriminants J is equal to the maximal ideal
(3, T ) of Λ. For the remaining 469 discriminants J is strictly smaller. This is about 4% of
all cases. Table 3.3 contains some data.

Table 3.3. The modules Λ/J for f ≡ 2 (mod 3).

n T T 2 T 3 T 4 Total

0 827 0 0 0 827
1 158 87 8 0 253
2 101 7 4 1 113
3 36* 2* 0 0 38
4 13* 1* 0 0 14
5 4* 0 0 0 4
6 1* 0 0 0 1

1140 97 12 1 1250

The interpretation of the data is the same as in the case f ≡ 0 (mod 3). The 781 discrimi-
nants with J = (3, T ) are included in the entry with n = 0 of the first column. In this case
we the discriminants in the first column were taking care of using a few lines of PARI/GP
code. The other 110 cases were dealt with using the polynomial arithmetic of Magma. We
single out a few discriminants for special mention.
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Table 3.4. Exotic Galois modules for f ≡ 2 (mod 3).

f J n T k

14165 (T − 255, 729) 5 T
16673 (T + 462, 2187) 6 T
29165 (T − 282, 729) 5 T
47633 (T 2 − 9, 3T − 90, 243) 4 T 2

51809 (T 2 + 18, 3T − 18, 81) 3 T 2

71921 (T 2 + 18, 3T + 18, 81) 3 T 2

76604 (T + 294, 729) 5 T
90005 (T + 15, 729) 5 T
98105 (T 4 + 3, 3T, 9) 2 T 4

Case f ≡ 1 (mod 3).
There are 11394 real quadratic fields with discriminant f ≡ 1 (mod 3) and f < 100, 000.
For precisely 1340 of them the module C(f) is not zero. This is approximately 12% of all
discriminants. For 824 discriminants J is equal to the maximal ideal (3, T ) of Λ. For the
remaining 516 discriminants the ideal J is strictly smaller. This is 4.5% of all cases.

The mathematics is a bit different in this case. First of all, the groups A0, B0 are
irrelevant for our computations and we have C0 = 0. In addition, every module Cn is
a cyclic module over the ring Λ/(ωn) that is killed by ω′n. In particular, C1 is a cyclic
module over the discrete valuation ring Λ/(ω′1), where ω′1 = ω1/T = T 2 + 3T + 3. Since T
is a uniformizer of the ring Λ/(ω′1), the module C1 is isomorphic to Λ/(T 2 + 3T + 3, T k)
for some k ≥ 0.

By Nakayama’s lemma the ideal J contains a monic polynomial of degree 1 if and only
if the ideal (T 2+3T+3, T k) does. If J is a proper ideal, this happens precisely when k = 1,
in which case C1 is isomorphic to the order 3 module Λ/(3, T ). These cases appear in the
first column and were computed using PARI/GP. Their ideals J are of the form (T − a, b)
with level of stabilization equal to v3(b). In particular, the first entry contains the 824
discriminants for which J is equal to the ideal (3, T ). The 119 entries in the remaining
columns were taken care of using Magma’s polynomial arithmetic.

Table 3.5. The modules Λ/J for f ≡ 1 (mod 3).

n T T 2 T 3 T 4 T 5 Total

1 824 79 0 0 0 903
2 249 18 8 1 0 276
3 88 7 1 0 1 97
4 47∗ 3∗ 0 0 0 50
5 9∗ 0 1∗ 0 0 10
6 2∗ 0 0 0 0 2
7 2∗ 0 0 0 0 2

1221 107 10 1 1 1340
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We single out eleven discriminants for special mention.

Table 3.6. Exotic Galois modules for f ≡ 1 (mod 3).

f J n T k

15217 (T 4 + 3, 3T, 9) 2 T 4

30904 (T 3 − 27, 3T − 63, 243) 5 T 3

39256 (T + 621, 2187) 7 T
40441 (T 2, 9T − 27, 81) 4 T 2

44053 (T + 348, 729)) 6 T
57832 (T 2 + 27, 3T − 27, 81) 4 T 2

71821 (T 3 + 18, 3T + 9, 27) 3 T 3

78037 (T − 849, 2187) 7 T
80056 (T 5 + 9T + 9, 3T 2 + 18, 27) 3 T 5

81769 (T 2 + 18, 3T + 9, 81) 4 T 2

96712 (T − 30, 729) 6 T
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