Preliminary version December 9, 2017

II Università degli Studi di Roma

Is a finite locally free group scheme killed by its order?

René Schoof

Dipartimento di Matematica 2^a Università di Roma "Tor Vergata" I-00133 Roma ITALY Email: schoof@mat.uniroma2.it

1. Introduction.

Lagrange's Theorem implies that every finite group G of order m has the property that $g^m = 1$ for every $g \in G$. One could ask whether a similar result is true for a finite locally free group scheme G of order m over a base scheme X. Let $[m] : G \longrightarrow G$ be the composite of the diagonal and multiplication morphisms $G \longrightarrow G^m$ and $G^m \longrightarrow G$.

Question. Is G annihilated by m? In other words, does the morphism [m] factor as $G \longrightarrow X \xrightarrow{e} G$ where $e: X \longrightarrow G$ is the unit section of G?

Grothendieck wrote in SGA 3 [1, Exp. VIII Remarque 7.3.1]: "Il serait intéressant de trouver une démonstration dans ce cas général". The question has been answered affirmatively in two important cases.

In SGA 3 itself one finds a proof of the fact that over a field, any finite group scheme, commutative or not, is annihilated by its order [1, Exp. VII_A Prop.8.5]. This easily implies that the same is true for finite locally free group schemes over a reduced base scheme X. See also [5, (3.8)] and [4, Cor. 2.2]. Pierre Deligne showed in 1969 that the answer to the question is affirmative whenever the group scheme G is commutative [3, p.4] or [5, (3.8)]. His result holds for an arbitrary base X.

The question remains unanswered in general. See [3, Remark p.5] or [5, (3.8)]. An affirmative answer would follow from an affirmative answer in the following special case.

Question'. Let R be a local Artin ring with residue field of characteristic p > 0. Is every finite free local group scheme G over R killed by its order?

Indeed, in order to answer the first question affirmatively, it suffices to do so for base schemes X that are the spectra of a local rings R. Then G = Spec(A) where A is a finite free R-algebra. The rank of A is the order of G. The group scheme G is determined by the structure of the R-Hopf algebra A. The Hopf algebra structure of A is given by the multiplication, comultiplication, inverse, unit, coinverse and counit homomorphisms. These are R-linear maps between R, A and $A \otimes_R A$. Choosing an R-basis for A, the group scheme G is determined by the entries of the matrices that correspond to these maps. Replacing R by the subring generated by the entries of the matrices and localizing once again, we may assume that G is a finite free or, equivalently, finite flat group scheme over a local Noetherian ring R. By Krull's Theorem we may even assume that R is a local Artin ring.

Then there is for any finite group scheme G an exact sequence of group schemes

$$0 \longrightarrow G^0 \longrightarrow G \longrightarrow G^{\text{\'et}} \longrightarrow 0,$$

where G^0 denotes the connected component of G and $G^{\text{ét}}$ its largest étale quotient. By ordinary group theory, $G^{\text{ét}}$ is annihilated by its order.

Since finite group schemes in characteristic zero are étale, we may assume that the characteristic of the residue field of R is p > 0, and that G is a local group scheme, as required.

If the maximal ideal \mathfrak{m} of the Artin ring R in the second question is zero, R is a field and the answer is affirmative by the SGA 3 result mentioned above. In [4] it is shown that if

$$\mathfrak{m}^p = p\mathfrak{m} = 0,$$

then every finite free group scheme G over R is also killed by its order. This happens in particular when the maximal ideal \mathfrak{m} satisfies $\mathfrak{m}^2 = 0$.

In this note we give proofs of the two main results mentioned above. In section 2 we prove that finite group schemes over fields are killed by their orders and in section 3 we present Deligne's proof of the fact that finite commutative locally free group schemes are killed by their orders. Finally, in section 4, we outline the proof of the result in [4].

2. Finite group schemes over fields.

In this section we show that finite group schemes over a field are killed by their orders. See [6] for basic facts concerning group schemes. The first proposition was explained to me by Bas Edixhoven several years ago.

Proposition 2.1. Let G = Spec(A) be a finite flat group scheme over a ring R. Let $I \subset A$ denote the augmentation ideal of A. Let p be a prime and let $[p] : A \longrightarrow A$ denote the R-algebra morphism corresponding to the morphism $[p] : G \longrightarrow G$. Then

$$[p](I) \subset pI + I^p.$$

Proof. Since A is a flat R-algebra, we have that $pI = pA \cap I$. Therefore we may replace R by the characteristic p ring R/pR and show that $[p](I) \subset I^p$. Let n denote the rank of G. Consider the closed immersion of G into the linear group GL_n that is induced by the action of G on its Hopf algebra A via left translations [6, 3.4]. Let φ denote the corresponding surjective morphism from the Hopf algebra $B = R[Y_{11}, \ldots, Y_{1n}, \ldots, Y_{n1}, \ldots, Y_{nn}, 1/\operatorname{det}(Y_{ij})]$ of GL_n to the Hopf algebra A of G. The entries of the matrix σ – id, where σ is given by

$$\sigma = \begin{pmatrix} Y_{11} & \cdots & Y_{1n} \\ \vdots & & \vdots \\ Y_{n1} & \cdots & Y_{nn} \end{pmatrix},$$

generate the augmentation ideal J of B. So the entries of σ^p – id generate [p](J). Since $=\sigma^p - \mathrm{id} = (\sigma - \mathrm{id})^p$, the usual matrix multiplication formulas show that $[p](J) \subset J^p$. Applying φ , we find that $[p](I) \subset I^p$ as required.

Corollary 2.2. Finite group schemes over fields are annihilated by their orders.

Proof. It suffices to show this for an algebraically closed field. By the remarks made in the introduction concerning the connected-étale exact sequence, we may assume that k has characteristic p > 0 and that G is local. By [6, 14.4], the order of G is equal to p^m for some $m \ge 0$ and the Hopf algebra A of G is a local Artin k-algebra of dimension p^m . Therefore the augmentation ideal I of A satisfies $I^{p^m} = 0$. Prop.2.1 then implies that $[p^m](I) = 0$. This means that the morphism $[p^m]: A \longrightarrow A$ factors through A/I = k, so that G is killed by its order p^m , as required.

3. Commutative group schemes.

Let G be a finite locally free *commutative* group scheme of order m over a base X. In 1969 Deligne showed the following [3, p.4].

Theorem 3.1. The group scheme G is annihilated by m.

Any element x of an ordinary finite group of order m, has the property that x^m is equal to the neutral element. For *commutative* groups this can be proved by the following wellknown argument: let $P = \prod_x x$ be the product of all elements of the group and let y be an arbitrary element. Then $P = \prod_x x = \prod_x xy = y^m \prod_x x = y^m P$ and hence y^m is equal to the neutral element. Deligne's proof can be said to carry this argument over to group schemes.

It suffices to prove Theorem 3.1 for $X = \operatorname{Spec}(R)$ for a ring R and $G = \operatorname{Spec}(A)$ a finite free commutative group scheme over R. For any finite free R-algebra S we have

$$G(S) = \operatorname{Hom}_{\operatorname{alg}}(A, S) \subset \operatorname{Hom}_{R}(A, S) \cong A' \otimes_{R} S.$$

Here $\operatorname{Hom}_{\operatorname{alg}}(A, S)$ denotes the set of *R*-algebra homomorphisms $A \longrightarrow S$ and $\operatorname{Hom}_R(A, S)$ is the *R*-module of *R*-module homomorphisms $A \longrightarrow S$. We write A' for $\operatorname{Hom}_R(A, R)$. Since *G* is commutative, A' carries the structure of an *R*-algebra, the multiplication $A' \otimes_R A' \longrightarrow A'$ being given by the dual of the comultiplication map $c : A \longrightarrow A \otimes_R A$. Moreover A' is the Hopf algebra of the Cartier dual of *G*, with comultiplication map $c' : A' \otimes_R A' \longrightarrow A'$ equal to the dual of the multiplication map $m : A \otimes_R A \longrightarrow A$. This easily implies that for any *R*-algebra *S* we have

$$G(S) = \{ f \in (A' \otimes_R S)^* : c'(f) = f \otimes f \}.$$

One easily checks that the group operation of G(S) coincides with the algebra multiplication in the multiplicative group $(A' \otimes_R S)^*$ of the algebra $A' \otimes_R S$. See [6, 2.4].

For an *R*-algebra *S*, the structure morphism $R \longrightarrow S$ gives rise to a group homomorphism $G(R) \longrightarrow G(S)$. When *S* is finite and free over *R*, Deligne constructs a *Trace* map $G(S) \longrightarrow G(R)$ in the other direction. To do this he uses the *Norm* map $N : S \longrightarrow R$, which for $s \in S$ is defined as the determinant of any representative matrix of the *R*-linear multiplication-by-*s*-map $S \longrightarrow S$.

The norm is multiplicative. It induces for all *R*-algebras *B*, norm maps $N_B = id_B \otimes N$ from $B \otimes_R S$ to *B*. These are functorial in the sense that for every morphism $f : B \longrightarrow C$ of *R*-algebras the diagram

commutes.

Lemma 3.2. Let S be a finite free R-algebra and let G = Spec(A) as above. Then the norm map $N_{A'}: A' \otimes_R S \longrightarrow A'$ maps G(S) to G(R) and is a group homomorphism.

$$egin{array}{rcl} G(S) &\subset& A'\otimes_R S \ &&&&& \ &&& \ && \ && \ &&& \ && \$$

Proof. Suppose that $a \in G(S) \subset A' \otimes_R S$. So, it is invertible and satisfies $c'(a) = a \otimes a$. Then we have

$$c'(N_{A'}(a)) = N_{A'}(a) \otimes N_{A'}(a).$$

This follows easily from the commutativity of the diagrams (*) applied to the morphisms $A' \longrightarrow A' \otimes_R A'$ given by the maps $a \mapsto a \otimes 1'$, $a \mapsto 1' \otimes a$ and c'(a) respectively. Here 1' denotes the unit element of the algebra A'. It is the counit map $e_A : A \longrightarrow R$.

The formula shows that $N_{A'}(a) \in G(R)$. Since the group laws in G(R) and G(S) agree with algebra multiplication in A' and $A' \otimes_R S$ respectively, and since the norm is multiplicative, we see that $N : G(S) \longrightarrow G(R)$ is a group homomorphism. This proves the lemma.

Proof of Theorem 3.1 Let m denote the order of G. In other words, m is the R-rank of A. We must show that for every R-algebra S and any $u \in G(S)$ the m-th power of u is equal to the neutral element in G(S). Replacing R by S, we see that it suffices to show this for all $u \in G(R)$.

Translation by u is an invertible morphism $G \longrightarrow G$ and therefore induces an Rautomorphism σ of the R-algebra A and hence an A'-automorphism, $\mathrm{id} \otimes \sigma$ of $A' \otimes A$. On the other hand, translation by $u \in G(R) \subset G(A)$ agrees with multiplication by u in the algebra $A' \otimes A$. Applying this to the algebra homomorphism id_A in G(A), we find that

$$(\mathrm{id}\otimes\sigma)(\mathrm{id}_A) = u\cdot\mathrm{id}_A.$$

Since applying σ to elements of A does not affect their norm to R, applying id $\otimes \sigma$ does not affect $N_{A'}$. Therefore we have

$$N_{A'}(\mathrm{id}_A) = N_{A'}((\mathrm{id} \otimes \sigma)(\mathrm{id}_A)) = N_{A'}(u \cdot \mathrm{id}_A) = N_{A'}(u) N_{A'}(\mathrm{id}_A) = u^m N_{A'}(\mathrm{id}_A).$$

Since $N_{A'}(\mathrm{id}_A)$ is invertible in A', it follows that u^m is equal to the unit element 1' of A', as required.

Remark. In this proof, the element $N_{A'}(\mathrm{id}_A)$ of A' plays the role of the product P of all elements of a finite group. It is well known that P is not always equal to the neutral element, but its square is. Similarly, in Deligne's proof the norm $N_{A'}(\mathrm{id}_A)$ is in general not equal to the unit element $1' \in A'$, but its square is.

Indeed, since the coinverse morphism $i_A : A \longrightarrow A$ is the inverse of id_A in the group G(A), the same is true in the multiplicative group $(A' \otimes_R A)$ *. It follows that

$$N_{A'}(i_A \cdot \mathrm{id}_A) = 1'$$

On the other hand, i_A is an *R*-automorphism of *A* so that $id_{A'} \otimes i_A$ is an *A'*-automorphism of $A' \otimes_R A = \operatorname{Hom}_R(A, A)$. It carries id_A to i_A . Since *A'*-automorphisms do not change $N_{A'}$, we get

$$N_{A'}(\mathrm{id}_A) = N_{A'}(i_A).$$

It follows that $N_{A'}(\mathrm{id}_A)^2 = 1'$ as required.

4. Finite group schemes over Artin rings.

In this section we outline the proof given in [4] of the following result.

Theorem 4.1. Let R be an Artin ring with maximal ideal \mathfrak{m} and residue field of characteristic p > 0, with the property that

$$\mathfrak{m}^p = p\mathfrak{m} = 0.$$

Then every finite free local group scheme G over R is annihilated by its order.

We first reduce to the special case that k is separably closed. Indeed, by [2, 18.8.8], the strict Henselization of R is a local faithfully flat R-algebra whose maximal ideal is generated by the maximal ideal of R. Therefore it is Artinian and its maximal ideal \mathfrak{m} satisfies $\mathfrak{m}^p = p\mathfrak{m} = 0$. It follows that we may replace R by its strict Henselization and hence assume that its residue field k is separably closed.

Recall that $G = \operatorname{Spec}(A)$, where A is a local free R-Hopf algebra of rank p^n for some $n \geq 1$. Theorem 4.1 says that the augmentation ideal $I \subset A$ has the property that $[p^n](I) = 0$. If n = 1, it follows from [3, Thm. 1] that G is commutative, so that Deligne's theorem implies that G is killed by its order. Therefore we may assume that $n \geq 2$. By the result in SGA 3, the group scheme G considered over the residue field k, is killed by p^n . If it happens to already be killed by p^{n-1} , then the augmentation ideal $I \subset A$ has the property that $[p^{n-1}](I) \subset \mathfrak{m}I$. Then Proposition 2.1 easily implies $[p^n](I) \subset \mathfrak{m}^p + p\mathfrak{m} = 0$ and the theorem follows.

We are left with the local group schemes G over R of order p^n whose reductions over k are killed by p^n , but not by p^{n-1} . In [4] the group schemes with this property are determined. There are only two possibilities: over k they are either isomorphic to the multiplicative group μ_{p^n} or to the non-commutative matrix group scheme M_n given by

$$M_n(S) = \{ \begin{pmatrix} 1 & x \\ 0 & y \end{pmatrix} : x, y \in A \text{ satisfying } x^p = 0 \text{ and } y^{p^{n-1}} = 1 \}.$$

for every k-algebra S.

If G is isomorphic to μ_{p^n} over k, then it is a deformation of μ_{p^n} . However, since k is separably closed, [1, Exp. X, Corollaires 2.3 and 2.4] imply that G must then be diagonalizable. Therefore we have $G \cong \mu_{p^n}$ over R. In particular, G is killed by p^n .

If G is over k isomorphic to M_n for some $n \ge 2$, then R must have characteristic p and is therefore a k-algebra. Moreover, there exists a faithfully flat R-algebra R' such that the base change of G to R' is isomorphic to a base change from k to R' of the group scheme M_n . See [4] for more details. It follows that G is killed by p^n .

This completes the outline of the proof of the theorem.

Acknowledgements.

The author was supported by Tor Vergata funds n. E82F16000470005.

Bibliography

- Demazure, M. et Grothendieck, A.: Schémas en Groupes, dans Sém. de Géometrie Algébrique du Bois Marie (1962/64) SGA 3, vols. I, II and III, Lecture Notes in Math. 151, 152 and 153, Springer-Verlag, Berlin Heidelberg New York 1970.
- [2] Grothendieck, A. and Dieudonné, J.: Étude local des schémas et des morphismes de schémas, dans Éléments de Géometrie Algébrique IV, Publ. Math. IHES 32 (1966).
- [3] Tate, J. and Oort, F.: Group schemes of prime order, Ann. Scient. Éc. Norm. Sup. 3 (1970), 1–21.
- [4] Schoof, R.: Finite Flat Group Schemes over Local Artin Rings, Compositio Mathematica 128 (2001), 1–15
- [5] Tate, J.: Finite flat group schemes, in: Cornell, G. Silverman, J. and Stevens, G.: Modular Forms and Fermat's Last Theorem, Springer-Verlag, New York 1997.
- [6] Waterhouse, W.: Introduction to affine group schemes, Graduate Texts in Math. 66, Springer-Verlag, Berlin Heidelberg New York 1979.