COHOMOLOGY OF CLASS GROUPS OF CYCLOTOMIC FIELDS; AN APPLICATION TO MORSE-SMALE DIFFEOMORPHISMS

René SCHOOF

Dipartimento di Matematica, Università di Pisa, 56100 Pisa, Italy

Communicated by J.D. Stasheff Received 4 December 1986

The obstruction group SSF came up in the topological investigations of Shub and Franks. It was studied by Bass and Lenstra; the latter showed that

$$SSF \cong \bigoplus_{n \ge 1} \operatorname{Pic}\left(\mathbb{Z}\left[\zeta_n, \frac{1}{n}\right]\right).$$

In this paper the structure of SSF as an abelian group is determined. It is proved that

 $SSF \cong \bigoplus_{n \ge 1} \mathbb{Z}/n\mathbb{Z}$

confirming a conjecture of Lenstra.

1. Introduction

Let M be a compact smooth manifold. In [9] Shub and Sullivan showed that if a diffeomorphism $f: M \to M$ is 'Morse-Smale', then the eigenvalues of f_* acting on $H_*(M, \mathbb{Q})$ are roots of unity. In the course of proving some kind of converse to this theorem, Shub and Franks [5] introduced a certain obstruction group which was baptized SSF by Bass [1]. It is defined as follows:

Let \mathscr{C} denote the category with objects pairs (H, u) where H is a finitely generated abelian group and $u \in \operatorname{Aut}(H)$ is such that $u \otimes \mathbb{Q}$ has only roots of unity as its eigenvalues; the \mathscr{C} -morphisms are defined in the obvious way. A pair (H, u) is called a permutation module if H has a \mathbb{Z} -basis permuted by u. Let $K_0(\mathscr{C})$ denote the Grothendieck group of \mathscr{C} and let $P \subset K_0(\mathscr{C})$ denote the subgroup generated by the classes of the permutation modules. We define

$$SSF = K_0(\mathscr{C})/P.$$

In [7] Lenstra showed that there is a natural isomorphism

$$SSF \cong \bigoplus_{n \ge 1} \operatorname{Pic}\left(\mathbb{Z}\left[\frac{1}{n}, \zeta_n\right]\right).$$
(1)

0022-4049/88/\$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

Here ζ_n denotes a primitive *n*th root of unity. In this paper we will prove the following theorem:

Theorem 1.1. There is an isomorphism of abelian groups

$$\mathrm{SSF} \cong \bigoplus_{n \ge 1} \mathbb{Z}/n\mathbb{Z}$$

This result was conjectured by H.W. Lenstra, c.f. [1,7]. In fact, in [7] Lenstra determined the structure of SSF as an abelian group except for its 2-part. In this paper we determine the structure of the 2-part of SSF. For the sake of completeness, a self-contained proof of Theorem 1.1, including a discussion of the odd part of SSF, is given in Section 4. For a related computation see [2].

In Section 2 we discuss the Galois cohomology of class groups of abelian number fields with special attention for their 2-parts. In Section 3 we apply the results of Section 2 to the class groups of the fields in the cyclotomic \mathbb{Z}_2 -extension of $\mathbb{Q}(\zeta_{116})$.

For every commutative ring R with 1 we denote by R^* the group of units of R. For a prime p we denote by \mathbb{Z}_p the ring of p-adic integers and by \mathbb{Q}_p the field of p-adic numbers; for an abelian group A, its p-part $A \otimes_{\mathbb{Z}} \mathbb{Z}_p$ is denoted by A_p . For a prime power q > 1 we denote by \mathbb{F}_q a field of q elements. For every commutative ring R with 1 and every abelian group G we denote for every subgroup H of G by I_H the kernel of $R[G] \rightarrow R[G/H]$. For a finite group G, a $\mathbb{Z}[G]$ -module M and an integer q we denote by $\hat{H}^q(G, M)$ the qth Tate cohomology group of G with values in M. For every $n \in \mathbb{Z}_{\geq 1}$, we let ζ_n denote a primitive nth root of unity and we will also write i for ζ_4 .

2. Cohomological triviality of class groups

In this section we will study the Galois cohomology of the class groups of abelian number fields. We will investigate in which cases the 2-parts of the minus class groups of abelian number fields are cohomologically trivial. For the class field theory and cohomology theory that we will use see [3].

We will first prove two general lemmas.

We introduce some notation: Let G denote a finite p-group and let Δ denote a finite abelian group of order prime to p. For every character $\chi : \Delta \to \overline{\mathbb{Q}}_p^*$ and every $\mathbb{Z}_p[\Delta]$ -module M. We denote by $M(\chi)$ the χ -part of M, i.e. $M(\chi) = \text{Hom}_{\mathbb{Z}_p[\Delta]}(O_{\chi}, M)$ where O_{χ} is the unramified extension $\mathbb{Z}_p[\text{im }\chi]$ of \mathbb{Z}_p : it is a module over $\mathbb{Z}[\Delta]$ as follows: for $\delta \in \Delta$ and $x \in O_{\chi}$ we define $\delta \cdot x = \chi(\delta) \cdot x$.

Lemma 2.1. (i) For every $\mathbb{Z}[G \times \Delta]$ -module M we have that $\hat{H}^q(G, M)^{\Delta} \cong \hat{H}^q(G, M^{\Delta})$ for all $q \in \mathbb{Z}$.

(ii) For every $\mathbb{Z}_p[G \times \Delta]$ -module M and every character $\chi : \Delta \to \overline{\mathbb{Q}}_p^*$ it holds that $\hat{H}^q(G, M(\chi)) \cong \hat{H}^q(G, M)(\chi)$ for all $q \in \mathbb{Z}$.

Proof. (i) It is trivial that the inclusion $M^{\Delta} \to M$ induces a map $\hat{H}^q(G, M^{\Delta}) \xrightarrow{f} \hat{H}^q(G, M)^{\Delta}$. The Δ -trace map $M \to M^{\Delta}$ induces a map $\hat{H}^q(G, M)^{\Delta} \xrightarrow{g} \hat{H}^q(G, M^{\Delta})$. Clearly both fg and gf are just multiplication by $\#\Delta$ which is a bijection on the cohomology groups, since these groups, being killed by #G have order coprime to $\#\Delta$.

(ii) It is trivial that the canonical map $M(\chi) \hookrightarrow M$ induces a map $\hat{H}^q(G, M(\chi)) \to \hat{H}^q(G, M)(\chi)$. Since Δ is abelian of order coprime to # G, the composite map $\bigoplus_x M(\chi) \to M$ is an isomorphism and so is $\bigoplus_x \hat{H}^q(G, M(\chi)) \to \bigoplus_x \hat{H}^q(G, M)(\chi)$. This proves (ii). \Box

Lemma 2.2. Let O be a finite extension of \mathbb{Z}_p and let M be a finite O[G]-module. The following are equivalent:

- (i) *M* is a cohomologically trivial O[G]-module;
- (ii) There is an exact sequence

 $0 \to F \to F \to M \to 0$

where F is O[G]-free of rank equal to the number of generators of M/I_GM as an O-module.

Proof. It is trivial that (ii) implies (i); to prove the converse we observe that since G is a p-group, the ring O[G] is a local ring with maximal ideal m and residue field k isomorphic to the residue field of the local ring O. By Nakayama's lemma there is an O[G]-surjection $F \rightarrow M$ where F is O[G]-free of O[G]-rank equal to $\dim_k M/mM = \operatorname{rk}_O M/I_G M$. This gives us an exact sequence $0 \rightarrow A \rightarrow F \rightarrow M \rightarrow 0$ where A is O-free since F is and where A is cohomologically trivial since both M and F are. It follows from an analogue of [3, Theorem 8, p. 113] (replace \mathbb{Z} by O and give the same proof) that A is an O[G]-projective module. Since O[G] is a local ring, A is in fact free and since M is finite, it has the same rank as F. This proves Lemma 2.2. \Box

For future reference we mention the following well-known results. In the notation of Lemma 2.2, let M be a finite O[G]-module sitting in an exact sequence $0 \rightarrow F \xrightarrow{\theta} F \rightarrow M \rightarrow 0$, where F is free of finite rank. It is well known that up to a *p*-adic unit, the order of M is given by

$$#M = \operatorname{Norm}_{O/\mathbb{Z}_{\rho}} \left(\prod_{\chi \in G^{-}} \chi(\det \theta) \right),$$
(2)

here \widehat{G} denotes $\operatorname{Hom}(G, \overline{\mathbb{Q}}_p^*)$ and $\chi \in \widehat{G}$ is linearly extended to a ring homomorphism $\chi : O[G] \to \overline{\mathbb{Q}}_p^*$. In fact, for every subgroup H of G we have

$$# M/I_H M = \operatorname{Norm}_{O/\mathbb{Z}_p} \left(\prod_{\chi \in (G/H)^{\widehat{}}} \chi(\det \theta) \right).$$
(3)

Next we apply the above in the case where G and Δ are Galois groups of number fields. We introduce some notation: let F be a number field; by 0_F we denote the ring of integers of F, by 0_F^* its units and by Cl_F its class group. Let C_F denote the idèle class group \mathbb{A}_F^*/F^* of F and let U_F denote the unit idèles: $U_F = (x \in \mathbb{A}_F^*: |x|_v = 1 \text{ for all finite valuations } v \text{ of } F)$. If E/F is a finite abelian extension of number fields with $G = \operatorname{Gal}(E/F)$ we let $G_{\mathfrak{p}} \subset G$, for a prime \mathfrak{p} of F, denote the decomposition group of any prime \mathfrak{q} in E over \mathfrak{p} .

Lemma 2.3. Let L/k be a finite abelian extension of number fields with $Gal(L/k) = G \times \Delta$ where G is a p-group and Δ has order prime to p. Let $\chi : \Delta \to \overline{\mathbb{Q}}_p^*$ denote a character.

(i) $\hat{H}^q(G, C_1)(\chi) = 0$ for all $q \in \mathbb{Z}$, if $\chi \neq 1$.

(ii) $\hat{H}^{q}(G, U_{L})(\chi) = 0$ for all $q \in \mathbb{Z}$, if $\chi(\Delta_{\mathfrak{p}}) \neq 1$ for every prime \mathfrak{p} of k ramified in L^{Δ}/k .

Proof. (i) By global class field theory there is for every $q \in \mathbb{Z}$ a canonical isomorphism

$$\hat{H}^q(G,C_I) \cong \hat{H}^{q-2}(G,\mathbb{Z}).$$

Since \mathbb{Z} is Δ -invariant it follows from Lemma 2.1(i) that $\hat{H}^q(G,\mathbb{Z})$ is Δ -invariant as well and (i) follows.

(ii) By Shapiro's lemma we have

$$\hat{H}^q(G, U_L) \cong \prod_{\mathfrak{q} \text{ of } K} \hat{H}^q(G_{\mathfrak{q}}, 0^*_{L_t}) \text{ as } \Delta\text{-modules.}$$

where K denotes L^G and r is a prime of L over q. It is well known that $\hat{H}^q(G_q, 0_{L_r}^*) = 0$ whenever q is unramified in L/K or equivalently if p is unramified in L^d/k ; here p denotes the prime of k over which q lies. There is an exact sequence of $\Delta_p \times G_q$ -modules

$$0 \to 0^*_{L_r} \to L^*_r \to \mathbb{Z} \to 0.$$

By local class field theory there is for every $q \in \mathbb{Z}$ a canonical isomorphism

$$\hat{H}^{q}(G_{\mathfrak{g}}, L_{\mathfrak{r}}^{*}) \cong \hat{H}^{q-2}(G_{\mathfrak{g}}, \mathbb{Z}).$$

By Lemma 2.1 the groups $\hat{H}^q(G_q, \mathbb{Z})$ and $\hat{H}^q(G_q, L_r^*)$ have trivial Δ_p -action. Since $gcd(\#\Delta_p, \#G_q) = 1$ we see that the same is true for $\hat{H}^q(G_q, 0_{L_r}^*)$. It follows that the χ -part of $\hat{H}^q(G_q, 0_{L_r}^*)$ is 0 whenever $\chi(\Delta_p) \neq 1$. This proves the lemma. \Box

We introduce some more notation; let K be a CM-field with maximal real subfield K^+ and let σ denote the non-trivial K^+ -automorphism of K. By μ_K we denote the group of roots of unity in K; we let $U_K^- = (\sigma - 1)U_K = \{\sigma(u)/u \in U_K\}$ and we observe that $(\sigma - 1)U_K = U_K/U_K^+$. By C_K^- we denote $(\sigma - 1)C_K$ which is isomorphic to C_K/C_K^+ and finally by Cl_K^- we denote $Cl_K/im(Cl_{K^+})$.

Lemma 2.4. For every CM-field K there is an exact sequence

$$0 \to \mu_K \cap U_K^- \to U_K^- \to C_K^- \to \operatorname{Cl}_K^- \to 0.$$

Proof. From the diagram

we obtain an exact sequence

$$U_K^- \! \to \! C_K^- \! \to \! \operatorname{Cl}_K^- \! \to \! 0$$

and from the diagram

we see that $\ker(U_K^- \to C_K^-) = 0_K^* \cap U_K^-$. If $\varepsilon \in 0_K^* \cap U_K^-$, then $\varepsilon = \sigma(u)/u$ for some $u \in U_K$; therefore $\sigma(\varepsilon) \cdot \varepsilon = 1$ and it follows that ε is a root of unity. We conclude that $0_K^* \cap U_K^- = \mu_K \cap U_K^-$. This proves the lemma.

Theorem 2.5. Let L/K be a 2-power degree extension of complex abelian number fields. Let k be a subfield of K^+ such that $[K^+:k]$ is odd.

Let Δ denote $\operatorname{Gal}(K^+/k)$ and let $\chi : \Delta \to \overline{\mathbb{Q}}_2^*$ be a nontrivial character. Put $O_{\chi} = \mathbb{Z}_2[\operatorname{im} \chi]$ and $G = \operatorname{Gal}(L/K) \cong \operatorname{Gal}(L^+/K^+)$.

If $\chi(\Delta_p) \neq 1$ for all primes \mathfrak{p} of k over which primes ramify in L/K^+ , then (i) For every field $K \subset F \subset L$ with $H = \operatorname{Gal}(L/F)$ we have

 $\operatorname{Cl}_{F,2}^{-}(\chi) \cong \operatorname{Cl}_{L,2}^{-}(\chi)/I_{H}\operatorname{Cl}_{L,2}^{-}(\chi)$ as $O_{\chi}[G/H]$ -modules.

(ii) There is an exact sequence of $O_{\gamma}[G]$ -modules

$$0 \to O_{\chi}[G]^r \to O_{\chi}[G]^r \to \operatorname{Cl}_{L,2}^{-}(\chi) \to 0$$

where $r = \operatorname{rank}_{O_{\chi}} \operatorname{Cl}_{K,2}^{-}(\chi)$.

Proof. Let *F* be a subfield, $K \subset F \subset L$. Let H = Gal(L/F) and let N_H denote the *H*-norm map.

Since *H* is a 2-group, the cohomology groups of $\mu_L \cap U_L^-$ and $\mu_{L,2} \cap U_L^-$ are isomorphic. The Galois group Gal(\overline{F}/F) acts via a quotient group of 2-power order on $\mu_{L,2}$, so, the group Δ , being of odd order, must act trivially on $\mu_{L,2}$. Since $\chi \neq 1$, we deduce from Lemma 2.1(ii) that

$$\hat{H}^{q}(H,\mu_{L}\cap U_{L}^{-})(\chi) = 0, \quad \text{for all } q \in \mathbb{Z}.$$
(4)

From the exact sequence $0 \rightarrow U_L^+ \rightarrow U_L \rightarrow U_L^- \rightarrow 0$ and the fact that $\chi(\Delta_p) \neq 1$ for all primes p of k over which primes in L are ramified over K^+ , we conclude from Lemma 2.3(ii) that

$$\hat{H}^{q}(H, U_{L}^{-})(\chi) = 0, \quad \text{for all } q \in \mathbb{Z}.$$
(5)

From the long cohomology sequence of the above sequence we obtain the exact sequence $0 \rightarrow U_F^- \rightarrow (U_L^-)^H \rightarrow H^1(H, U_L^+)...$, which gives us that

$$((U_L^-)^H/U_F^-)(\chi) = 0.$$
 (6)

From the long cohomology sequence of the exact sequence

$$0 \to \mu_L \cap U_L^- \to U_L^- \to U_L^- / \mu_L \cap U_L^- \to 0$$

we find an exact sequence

$$\cdots \to (U_L^-)^H \to (U_L^-/\mu_L \cap U_L^-)^H \to H^1(H,\mu_L \cap U_L^-) \to \cdots$$

and (4) with q = 1 and (6) imply that

$$\operatorname{cok}(U_{F}^{-}/\mu_{F}\cap U_{F}^{-}\to (U_{L}^{-}/\mu_{L}\cap U_{L}^{-})^{H})(\chi) = 0.$$
(7)

From the exact sequence $0 \rightarrow C_{L^+} \rightarrow C_L \rightarrow C_L^- \rightarrow 0$ and the fact that $\chi \neq 1$, we conclude by Lemma 2.3(i) that

$$\hat{H}^{q}(H, C_{L}^{-})(\chi) = 0, \quad \text{for all } q \in \mathbb{Z}$$
(8)

and from the long cohomology sequence of this sequence and the fact that $H^{1}(H, C_{L^{+}}) \simeq \hat{H}^{-1}(H, \mathbb{Z}) = 0$ we conclude that

$$(C_L^{-})^H = C_F^{-}.$$
 (9)

From Lemma 2.4 we obtain the exact sequence

$$0 \to \mu_L \cap U_L^- \to U_L^- \to C_L^- \to \operatorname{Cl}_L^- \to 0$$

and it follows from (4), (5) and (8) that $\hat{H}^q(H, \operatorname{Cl}_L^-)(\chi) = 0$ for all $q \in \mathbb{Z}$ and hence

that $\operatorname{Cl}_{L,2}^{-}(\chi)$ is a cohomologically trivial *G*-module.

From the diagram

and (7) and (9) we conclude:

The map
$$\operatorname{Cl}_{F,2}^{-}(\chi) \to (\operatorname{Cl}_{L,2}^{-}(\chi))^{H}$$
 is injective. (10)

From the diagram

and the fact that $(C_F^-/N_H C_L^-)(\chi) = \hat{H}^0(H, C_L^-)(\chi) = 0$, it follows that the map $N_H: \operatorname{Cl}_{L,2}(\chi) \to \operatorname{Cl}_{F,2}(\chi)$ is surjective. By (10) the kernel of this map is equal to the kernel of $N_H: \operatorname{Cl}_{L,2}(\chi) \to \operatorname{Cl}_{L,2}(\chi)$ which, since $\hat{H}^{-1}(H, \operatorname{Cl}_{L,2}(\chi)) = 0$, is equal to $I_H \operatorname{Cl}_{L,2}(\chi)$. This proves (i).

We have already proved that $\operatorname{Cl}_{L,2}^{-}(\chi)$ is cohomologically trivial. When we apply (i) with H = G we find that $\operatorname{Cl}_{L,2}^{-}(\chi)/I_G \operatorname{Cl}_{L,2}^{-}(\chi) \approx \operatorname{Cl}_{F,2}^{-}(\chi)$. Part (ii) now follows easily from Nakayama's Lemma.

3. Minus class groups in a special \mathbb{Z}_2 -extension

In this section we will study the 2-parts of the minus class groups of the fields $\mathbb{Q}(\zeta_{29,2^m})$ where $m \in \mathbb{Z}$ is at least 4. We let *E* denote the subfield of $\mathbb{Q}(\zeta_{29})$ which is of degree 7 over \mathbb{Q} and we put $\Delta = \text{Gal}(E/\mathbb{Q})$.

Lemma 3.1. Let K be a real number field satisfying $E \subset K \subset \mathbb{Q}(\zeta_{2^{9} \cdot 2^m})$. Suppose $\chi : \Delta \to \overline{\mathbb{Q}}_2^*$ is a non-trivial character. Then

$$\mathrm{Cl}_{K,2}(\chi)=0.$$

Proof. We first show that *E* has class number 1: the root discriminant of *E* equals $29^{6/7}$ and Odlyzko's discriminant bounds in Diaz y Diaz's tables [4] imply at once that h(E) = 1. Next we consider arbitrary *K* satisfying the conditions stated in the lemma.

Let G = Gal(K/E); clearly G is a 2-group and $\text{Gal}(K/\mathbb{Q}) \cong \Delta \times G$. The only primes

ramified in K/E are over 2 and 29. Since 29 is ramified in E/\mathbb{Q} and since 2 is inert in this extension it follows from Lemma 2.3 that

$$\hat{H}^q(G, C_K)(\chi) = \hat{H}^q(G, U_K)(\chi) = 0$$

so

$$\hat{H}^{q}(G, \operatorname{Cl}_{K,2}(\chi)) = \hat{H}^{q+2}(G, 0_{K}^{*})(\chi).$$

Since $Cl_E = 0$ it follows that

$$0 = \ker(\operatorname{Cl}_E \to \operatorname{Cl}_K) = \ker(H^1(G, 0_K^*) \to H^1(G, U_K))$$

and since $H^{1}(G, U_{K})(\chi) = 0$ we see that

$$H^{1}(G, 0_{K}^{*})(\chi) = \hat{H}^{-1}(G, \operatorname{Cl}_{K, 2}(\chi)) = 0.$$

Now $\hat{H}^{-1}(G, \operatorname{Cl}_{K,2}(\chi)) = \operatorname{Cl}_{K,2}(\chi)/I_G \operatorname{Cl}_{K,2}(\chi)$ because $\operatorname{Cl}_{E,2}(\chi) = 0$. Nakayama's lemma implies that $\operatorname{Cl}_{K,2}(\chi) = 0$ and that proves the lemma. \Box

Lemma 3.2. The O_{χ} -module $\operatorname{Cl}_{\overline{E}(i),2}(\chi)$ is isomorphic to $O_{\chi}/2O_{\chi}$ for one non-trivial character $\chi : \Delta \to \overline{\mathbb{Q}}_2^*$ while it is zero for the, up to $\operatorname{Gal}(\overline{\mathbb{Q}}_2/\mathbb{Q}_2)$ -conjugacy, only other such character.

Proof. The only complex number fields contained in E(i) are $\mathbb{Q}(i)$ and E(i) itself. Since $\mathbb{Q}(i)$ has class number one it follows that

$$Cl_{E(i),2}^{-} \cong Cl_{E(i),2}^{-}(\chi_{1}) \times Cl_{E(i),2}^{-}(\chi_{2})$$

where χ_1 and χ_2 denote the, up to $\operatorname{Gal}(\overline{\mathbb{Q}}_2/\mathbb{Q}_2)$ -conjugacy, two non-trivial characters of Δ . The class group of E, the maximal real subfield of $E(\mathbf{i})$, is trivial by Lemma 3.1. This implies that $\operatorname{Cl}_{\overline{E}(\mathbf{i}),2} = \operatorname{Cl}_{E(\mathbf{i})} = \operatorname{ker}(\operatorname{Cl}_{E(\mathbf{i})} \xrightarrow{N} \operatorname{Cl}_E)$ and we can compute that $\#\operatorname{Cl}_{\overline{E}(\mathbf{i})} = 56$ by calculating the appropriate generalized Bernoulli numbers. Both $\operatorname{Cl}_{\overline{E}(\mathbf{i}),2}(\chi_1)$ and $\operatorname{Cl}_{\overline{E}(\mathbf{i}),2}(\chi_2)$ are modules over $O_{\chi_1} = \mathbb{Z}_2[\operatorname{im}(\chi_1) = \operatorname{im}(\chi_2)] \cong \mathbb{Z}_2[\zeta_7]$, the unique unramified extension of degree 3 of \mathbb{Z}_2 . The ring O_{χ} has a residue field with 8 elements and it follows that (say) $\operatorname{Cl}_{\overline{E}(\mathbf{i}),2} = O_{\chi}/2O_{\chi}$ and $\operatorname{Cl}_{\overline{E}(\mathbf{i}),2}(\chi_2) = 0$. This proves Lemma 3.2. \Box

We let $\chi : \Delta \to \overline{\mathbb{Q}}_2^*$ denote the character for which according to Lemma 3.2 we have that $\operatorname{Cl}_{\overline{E}(0),2}^- = \operatorname{Cl}_{\overline{E}(0),2}^-(\chi) \neq 0$.

Next let $m \in \mathbb{Z}_{\geq 1}$ and let $K = \mathbb{Q}(\zeta_{29 \cdot 2^{m+3}})$ and put $G = \text{Gal}(K/E(i)) \cong \text{Gal}(K/E(\zeta_{2^{m+3}})) \times \text{Gal}(K/\mathbb{Q}(\zeta_{29}, i)).$

We identify the group ring $O_{\chi}[G]$ with $O_{\chi}[[t, T]]/((1+t)^4 - 1, (1+T)^{2^{m+1}} - 1)$ where 1 + t corresponds to a generator of $\text{Gal}(K/E(\zeta_{2^{m+3}}))$ and 1 + T to a generator of $\text{Gal}(K/\mathbb{Q}(\zeta_{29}, i))$.

Theorem 3.3. For $m \in \mathbb{Z}_{\geq 1}$ there is an isomorphism of O_{γ} -modules

$$\operatorname{Cl}_{K,2}^{-}(\chi) \cong O_{\chi}[t]/((1+t)^4 - 1, 2^m \phi)$$

where $\phi \in O_{\chi}[t]$ is a polynomial of degree 2 for which $\phi = t^2 \pmod{2}$.

Proof. The only primes that ramify in the extension K over E(i) are the primes over 2 and 29; since 2 is inert in E over \mathbb{Q} , Theorem 2.7(ii) applies and we find an exact sequence

$$0 \to \phi \to \phi \to \operatorname{Cl}_{K,2}^{-}(\chi) \to 0$$

where Φ is $O_{\chi}[G]$ -free of rank = rk_{O_{χ}}Cl⁻_{E(i),2}(χ). By Lemma 3.2, this rank is equal to one and therefore

$$X = \operatorname{Cl}_{K,2}^{-}(\chi) \cong O_{\chi}[[t,T]]/((t+1)^4 - 1, (1+T)^{2^{m-1}} - 1, F(t,T))$$
(11)

for some power series F(t, T) in $O_{\chi}[[t, T]]$. By Theorem 2.5(i) we have

$$\operatorname{Cl}_{E(i),2}^{-}(\chi) \cong X/I_G X \cong O_{\chi}[t,T]/(t,T,F(t,T)) \cong O_{\chi}/(F(0,0))$$

and Lemma 3.2 gives that $F(0,0) = 2 \cdot \text{unit.}$

Let *H* denote $Gal(K/\mathbb{Q}(\zeta_{29.16})) \subset G$ and let

$$Y = X/I_H X \cong O_{\chi}[t, T]/((t+1)^4 - 1, (T+1)^4 - 1, F(t, T)).$$

The order of Y is by (3) equal to

Norm
$$\prod_{O_{\chi}/\mathbb{Z}_{2}} \prod_{\zeta^{4}=1} \prod_{\xi^{4}=1} F(\zeta-1, \xi-1).$$

Since 2 divides F(0,0) we see that

- 2 divides $F(\zeta 1, \xi 1)$ if $\{\zeta, \xi\} \subset \{-1, 1\}$,
- i 1 divides $F(\zeta 1, \xi 1)$ otherwise

and we find that the order of Y is at least

Norm
$$_{O_{\chi}/\mathbb{Z}_{2}}(2^{4} \cdot (i-1)^{16-4}) = 2^{30}.$$

The power of 2 dividing $h_{\mathbb{Q}(\zeta_{29\cdot 16})}^-$ is exactly 2^{30} as one finds in [8] or in the tables in [10]. Since $Y \hookrightarrow \mathrm{Cl}_{\mathbb{Q}(\zeta_{29\cdot 16})}^-$ we conclude that $\# Y = 2^{30}$ and that

$$F(\zeta - 1, \xi - 1) = \begin{cases} 2 \cdot \text{unit} & \text{if } \{\zeta, \xi\} \subset \{-1, 1\}, \\ (i - 1) \cdot \text{unit} & \text{otherwise} \end{cases}$$
(12)

We write $F(t, T) = \sum_{k \ge 0} f_k(t) T^k$ and we have that 2 divides $f_0(0) = F(0, 0)$. By the above

$$f_1(0)(i-1) + f_0(0) \equiv F(0, i-1) \equiv (i-1) \cdot \text{unit} \pmod{2}$$

so $f_1(0)$ is a unit in O_{χ} and f_1 is a unit in $O_{\chi}[[t]]$. Applying Weierstrass' Preparation Theorem to powerseries with coefficients in the complete local ring $O_{\chi}[[t]]/((1+t)^4-1)$ (see [6]) we find that we may assume that F(t,T) = T - g(t) for some powerseries $g(t) \in O_{\gamma}[[t]]$. Equation (11) now becomes

$$X = O_{\chi}[[t]] / ((1+t)^4 - 1, (g+1)^{2^{m+1}} - 1).$$
(13)

We write $g(t) = t \cdot h(t) + g(0)$ and since g(0) = F(0, 0) is divisible by 2 we obtain that for $k \ge 2$

$$(g+1)^{2^{k}} + 1 \equiv g^{2^{k}} + 2g^{2^{k-1}} + 2 \equiv t^{2^{k}}h^{2^{k}} + 2g^{2^{k-1}} + 2 \pmod{4}.$$

Since $t^{2^k} \equiv 2t^{2^k-2} \mod (4, (t+1)^4 - 1)$ we conclude that $(g+1)^{2^k} + 1 = 2 \cdot \text{unit} \pmod{(t+1)^4 - 1}$ and we find that $X = O_{\chi}[[t]]/((t+1)^4 - 1, 2^{m-1}((g+1)^4 - 1)))$. One easily checks that

$$(g+1)^4 - 1 \equiv 2t^2 h^2 (h^2 + 1) \mod (4, (t+1)^4 - 1).$$
⁽¹⁴⁾

Up to a unit we have that F(i-1,0) = g(i-1) so by (12) that $(i-1)h(0) + g(0) = (i-1) \cdot \text{unit (mod 2)}$. Since $g(0) \equiv 0 \pmod{2}$ we find that $h(0) \neq 0 \pmod{2}$. Up to a unit we have that F(i-1,i-1) = (i-1) - g(i-1) so by (12) we have $(i-1) \cdot \text{unit} = (i-1) - g(i-1) = (i-1) - (i-1)h(i-1) - g(0) \equiv (i-1)(1-h(0)) \pmod{2}$. We conclude that $h(0) \neq 1 \pmod{2}$. And hence from (14) and the Weierstrass Preparation Theorem that $(g+1)^4 - 1 \equiv 2 \cdot \varphi \cdot \text{unit mod } ((t+1)^4 - 1)$ where φ is a Weierstrass polynomial of degree 2. This proves Theorem 3.3.

Proposition 3.4. Let $m \in \mathbb{Z}_{\geq 1}$; The χ -part of the 2-part of the class group of $\mathbb{Q}(\zeta_{29,2^{m+3}})$ has a direct summand isomorphic to $\mathbb{Z}/2^m\mathbb{Z}$.

Proof. Let K denote $\mathbb{Q}(\zeta_{29\cdot 2^{m+3}})$. Since $\operatorname{Cl}_{K^+,2}(\chi) = 0$ by Lemma 3.1, we see that the χ -part of the 2-part of the class group of K is precisely $\operatorname{Cl}_{K,2}^-(\chi)$. It therefore suffices by Theorem 3.3 to show that

$$X = O_{\gamma}[t]/((1+t)^4 - 1, 2^m \varphi)$$

(where φ is a Weierstrass polynomial of degree 2) has a direct summand isomorphic to $\mathbb{Z}/2^m\mathbb{Z}$. Clearly $X/2^mX \cong (O_\chi/2^mO_\chi)^4$ and since $\varphi \equiv T^2 \pmod{2}$ we have that $X/2^{m+1}X \cong (O_\chi/2^mO_\chi)^2 \times (O_\chi/2^{m+1}O_\chi)^2$; since $O_\chi/2^mO_\chi \cong (\mathbb{Z}/2^m\mathbb{Z})^3$, this clearly implies that X has a copy of $\mathbb{Z}/2^m\mathbb{Z}$ as a direct summand. This proves Proposition 3.4. \Box

4. Proof of the main theorem

In this section we will prove Theorem 1.1, the main result of this paper. The determination of SSF is done in two steps: first the odd part is computed and then the 2-part. The odd part was already done by Lenstra in [7]; the 2-part is computed using Proposition 3.4.

Theorem 4.1. $\bigoplus_{n \ge 1} \operatorname{Pic}(\mathbb{Z}[\zeta_n, 1/n]) \cong \bigoplus_{n \ge 1} \mathbb{Z}/n\mathbb{Z}.$

Proof. For every prime p, the p-part of $\bigoplus_{n\geq 1} \mathbb{Z}/n\mathbb{Z}$ is isomorphic to $\bigoplus_{m\geq 1} (\mathbb{Z}/p^m\mathbb{Z})^{(\aleph_0)}$. So, to prove the theorem it suffices to show that for every prime p and every positive integer m there exist infinitely many n such that $\mathbb{Z}/p^m\mathbb{Z}$ is a direct summand of Pic($\mathbb{Z}[\zeta_n, 1/n]$). First we consider the case where $p \neq 2$. Let m be a positive integer. By a result of Yamamoto [11] there exists a quadratic number field K with discriminant not divisible by p which has a subgroup of its class group isomorphic to $\mathbb{Z}/p^m\mathbb{Z}$. Let f denote the absolute value of the discriminant of K. It is well known that $K \subset \mathbb{Q}(\zeta_f)$. Let G denote $\operatorname{Gal}(\mathbb{Q}(\zeta_f)/\mathbb{Q})$, let $N \subset G$ be the subgroup $\operatorname{Gal}(\mathbb{Q}(\zeta_f)/K)$ and let $\chi : \operatorname{Gal}(K/\mathbb{Q}) \to \{\pm 1\}$ denote the non-trivial character of $\operatorname{Gal}(K/\mathbb{Q})$.

The cokernel of the norm map $\operatorname{Cl}_{\mathbb{Q}(\zeta_f)} \to \operatorname{Cl}_K$ is a quotient of $C_K/N(C_{\mathbb{Q}(\zeta_f)}) = \hat{H}^0(N, C_K) \simeq \hat{H}^{-2}(N, \mathbb{Z}) \simeq N$. Since G is abelian, the canonical action of $\operatorname{Gal}(K/\mathbb{Q})$ on N is trivial. Since $\chi \neq 1$ we conclude that $N_p(\chi) = 0$ and therefore that the norm $\operatorname{Cl}_{\mathbb{Q}(\zeta_f),p}(\chi) \to \operatorname{Cl}_{K,p}(\chi)$ is surjective. Since $\operatorname{Cl}_{\mathbb{Q}} = 0$ we have that $\operatorname{Cl}_{K,p} = \operatorname{Cl}_{K,p}(\chi)$ and it follows that $\operatorname{Cl}_{\mathbb{Q}(\zeta_f),p}(\chi)$ has a subgroup isomorphic to $\mathbb{Z}/p^m\mathbb{Z}$. Let $G = \operatorname{Gal}(\mathbb{Q}(\zeta_f)/\mathbb{Q})$ and let G_l denote the decomposition group of a prime over l in $\mathbb{Q}(\zeta_f)$. There is an exact sequence of G-modules

$$\coprod_{l\mid f} \mathbb{Z}[G/G_l] \to \operatorname{Cl}_{\mathbb{Q}(\zeta_f)} \to \operatorname{Pic} \mathbb{Z}\left[\zeta_f, \frac{1}{f}\right] \to 0.$$

Since all primes that ramify in $\mathbb{Q}(\zeta_f)/\mathbb{Q}$ also ramify in K/\mathbb{Q} we have that $G_l \not\subseteq \ker \chi$ and we conclude that $\mathbb{Z}_p[G/G_l](\chi) = 0$ for every $l \mid f$. Tensoring the above exact sequence with \mathbb{Z}_p , and taking χ -cigenspaces gives us therefore an isomorphism

$$\operatorname{Cl}_{\mathbb{Q}(\zeta_f),p}(\chi) \cong \operatorname{Pic}\left(\mathbb{Z} \left| \zeta_f, \frac{1}{f} \right| \right)_p(\chi).$$

Suppose $l_1, ..., l_t$ are prime ideals of $\mathbb{Q}(\zeta_f)$ satisfying

(i) Each l_i lies over a rational prime $l_i \neq 1 \pmod{p}$.

(ii) The classes of the ideals l_j in $\operatorname{Pic}(\mathbb{Z}[\zeta_f, 1/f])$ generate the subgroup $(\operatorname{Pic}(\mathbb{Z}[\zeta_f, 1/f]))^{p^m}$.

Let *L* denote the product of the primes l_j . Since $(\operatorname{Pic}(\mathbb{Z}[\zeta_f, 1/f]))^{p^m}$ is stable under the action of $\operatorname{Gal}(\mathbb{Q}(\zeta_f)/\mathbb{Q})$, the classes of all conjugates of the primes l_j generate $(\operatorname{Pic}(\mathbb{Z}[\zeta_f, 1/f]))^{p^m}$ as well and we conclude that $\operatorname{Pic}(\mathbb{Z}[\zeta_f, 1/(fL)]) \cong$ $\operatorname{Pic}(\mathbb{Z}[\zeta_f, 1/f])/(\operatorname{Pic}(\mathbb{Z}[\zeta_f, 1/f]))^{p^m}$ and therefore also that $\operatorname{Pic}(\mathbb{Z}[\zeta_f, 1/(fL)])$ has a direct summand isomorphic to $\mathbb{Z}/p^m\mathbb{Z}$.

It follows from (i) that the degree $[\mathbb{Q}(\zeta_{fL}):\mathbb{Q}(\zeta_f)]$, being a divisor of $\prod_{j=1}^{t} (l_j - 1)$, is prime to *p*. We write $\theta = [\mathbb{Q}(\zeta_{fL}):\mathbb{Q}(\zeta_f)]^{-1}$. Norm and we conclude from the commuting diagram

that Pic($\mathbb{Z}[\zeta_{fL}, 1/(fL)]$) has a copy of $\mathbb{Z}/p^m\mathbb{Z}$ as a direct summand.

The proof in the case where $p \neq 2$ is now completed since there are infinitely many sets of primes I_i satisfying conditions (i) and (ii). This is, since $p \neq 2$ and since the intersection of $\mathbb{Q}(\zeta_p)$ and the Hilbert class field of $\mathbb{Q}(\zeta_f)$ is precisely \mathbb{Q} , easily implied by the Čebotarev Density Theorem.

Now we finish the proof by taking care of the case where p=2.

By Proposition 3.4 for every integer $m \ge 0$ the group $\operatorname{Cl}_{\mathbb{Q}(\zeta_{2^9,2^{m+3}}),2}(\chi)$ has a direct summand isomorphic to $\mathbb{Z}/2^m\mathbb{Z}$. Here χ denotes the character of conductor 29 and order 7 for which $\operatorname{Cl}_{\mathbb{Q}(\zeta_{2^9}),2}(\chi) \ne 0$. Put $f=29 \cdot 2^{m+3}$ and let G denote the Galois group of $\mathbb{Q}(\zeta)/\mathbb{Q}$ and let G_2 (resp. G_{2^9}) denote the decomposition group of a prime over 2 (resp. 29) in $\mathbb{Q}(\zeta_f)$.

There is an exact sequence

$$\mathbb{Z}[G/G_2] \times \mathbb{Z}[G/G_{29}] \to \operatorname{Cl}_{\mathbb{Q}(\zeta_f)} \to \operatorname{Pic}\left(\mathbb{Z}\left[\zeta_f, \frac{1}{f}\right]\right) \to 0.$$

Since 29 ramifies totally in $\mathbb{Q}(\zeta_{29})/\mathbb{Q}$ and since 2 is inert in $\mathbb{Q}(\zeta_{29})/\mathbb{Q}$ it follows, as before, that we have an isomorphism

$$\operatorname{Cl}_{\mathbb{Q}(\zeta_f),2}(\chi) \simeq \operatorname{Pic}\left(\mathbb{Z}\left[\zeta_f,\frac{1}{f}\right]\right)_2(\chi)$$

and we see that $\operatorname{Pic}(\mathbb{Z}[\zeta_f, 1/f])_2$ has a direct summand isomorphic to $\mathbb{Z}/2^m\mathbb{Z}$.

Let k be a positive integer; the degree of the extension $\mathbb{Q}(\zeta_{f\cdot 29^k})/\mathbb{Q}(\zeta_f)$ is a power of 29 and hence odd. It follows that $\operatorname{Pic}(\mathbb{Z}[\zeta_f, 1/f])_2$ is a direct summand of $\operatorname{Pic}(\mathbb{Z}[\zeta_{f\cdot 29^k}, 1/(f \cdot 29^k)])$ and hence that $\mathbb{Z}/2^m\mathbb{Z}$ is a direct summand of $\operatorname{Pic}(\mathbb{Z}[\zeta_n, 1/n])$ for every n of the form $f \cdot 29^k$, $k \in \mathbb{Z}_{\geq 0}$. This proves the theorem. \Box

Theorem 4.1 combined with Lenstra's result (1) yields Theorem 1.1.

References

- [1] H. Bass, Lenstra's calculation of $G_0(R\pi)$, and applications to Morse-Smale diffeomorphisms, In: Integral Representations and Applications, Lecture Notes in Mathematics 882 (Springer, Berlin, 1981) 287-318.
- [2] A. Brumer, The class group of all cyclotomic integers. J. Pure Appl. Algebra 20 (1981) 107-111.
- [3] J.W.S. Cassels and A. Fröhlich, Algebraic Number Theory (Academic Press, New York, 1967).
- [4] F. Diaz y Diaz, Tables minorant la racine n-ième du discriminant d'un corps de degré n, Publ. Math. Orsay 80.06 (Univ. Paris, Orsay, 1980).
- [5] J. Franks and M. Shub, The existence of Morse-Smale diffeomorphisms, Topology 20 (1981) 273-290.
- [6] S. Lang, Cyclotomic fields, Graduate Texts in Mathematics 59 (Springer, Berlin, 1978).
- [7] H.W. Lenstra, Grothendieck groups of abelian group rings, J. Pure Appl. Algebra (1981) 173-193.
- [8] G. Schruttka von Rechtenstamm, Tabelle der (Relativ)-Klassenzahlen der Kreiskörper deren φ-Funktion des Wurzelexponenten (Grad) nicht grösser als 256 ist, Abh. Deutschen Akad. Wiss. Berlin, Kl. Math. Phys. 2 (1964) 1-64.

- [9] M. Shub and D. Sullivan, Homology theory and dynamical systems, Topology 14 (1975) 109-132.
- [10] L.C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics 83 (Springer, Berlin, 1982).
- [11] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970) 57-76.