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The obstruction group SSF came up in the topological investigations of Shub and Franks. It
was studied by Bass and Lenstra; the latter showed that

o
SSF= B Pic(ll g,,,—D.
a=1 I

In this paper the structure of SSF as an abelian group is determined. It is proved that

SSF=® z/nz

nz1

confirming a conjecture of Lenstra.

1. Introduction

Let M be a compact smooth manifold. In [9] Shub and Sullivan showed that if
a diffeomorphism f: M — M is ‘Morse-Smale’, then the eigenvalues of f, acting on
H (M, Q) are roots of unity. In the course of proving some kind of converse to this
theorem, Shub and Franks [5] introduced a certain obstruction group which was
baptized SSF by Bass [1]. It is defined as follows:

Let € denote the category with objects pairs (H, u) where H is a finitely generated
abelian group and v € Aut(H') is such that ¥ & @ has only roots of unity as its eigen-
values; the €-morphisms are defined in the obvious way. A pair (H,u) is called a
permutation module if A has a Z-basis permuted by u. Let Ky(#%) denote the
Grothendieck group of € and let PC K (%) denote the subgroup generated by the
classes of the permutation modules. We define

SSF = K,(#)/P.

In [7] Lenstra showed that there is a natural isomorphism

SSF= @ Pic(Z[%,Cn]>. (1

n=1
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Here {,, denotes a primitive nth root of unity. In this paper we will prove the
following theorem:

Theorem 1.1. There is an isomorphism of abelian groups

SSF= &P 7/nz7.

nzl

This result was conjectured by H.W. Lenstra, c.f. [1,7]. In fact, in [7] Lenstra
determined the structure of SSF as an abelian group except for its 2-part. In this
paper we determine the structure of the 2-part of SSF. For the sake of completeness,
a self-contained proof of Theorem 1.1, including a discussion of the odd part of
SSF, is given in Section 4. For a related computation see {2].

In Section 2 we discuss the Galois cohomology of class groups of abelian number
fields with special attention for their 2-parts. In Section 3 we apply the results of
Section 2 to the class groups of the fields in the cyclotomic Z,-extension of Q({,¢)-

For every commutative ring R with 1 we denote by R* the group of units of R.
For a prime p we denote by Z, the ring of p-adic integers and by ©Q, the field of
p-adic numbers; for an abelian group A, its p-part A&z Z,, is denoted by A,. For
a prime power ¢ > 1 we denote by [, a field of g elements. For every commutative
ring R with 1 and every abelian group G we denote for every subgroup H of G by
Iy the kernel of R[G]— R[G/H]. For a finite group G, a Z[G]-module M and an
integer ¢ we denote by H %G, M) the gth Tate cohomology group of G with values
in M. Forevery neZ, ,, we let {, denote a primitive nth root of unity and we will
also write i for {,.

2. Cohomological {riviality of class groups

In this section we will study the Galois cohomology of the class groups of abelian
number fields. We will investigate in which cases the 2-parts of the minus class
groups of abelian number fields are cohomologically trivial. For the class field
theory and cohomology theory that we will use see [3].

We will first prove two general lemmas.

We introduce some notation: Let G denote a finite p-group and let 4 denote a
finite abelian group of order prime to p. For every character X:A—»@;‘ and
every Z,{4]-module M. We denote by M(y) the x-part of M, ie. M(x)=
Homy 141(0,, M) where O, is the unramified extension Z,[imx] of Z,: it is a
module over Z{4] as follows: for e 4 and xe O, we define §- x=yx(5) - x.

Lemma 2.1. (i) For every Z[G xAl-module M we have that HYU(G,M)* =
HYG,M?) for all ge Z.

(i) For every Z,[G x A]-module M and every character x : A —*@g‘ it holds that
HYG,M()=HYG,M)Y) for all ge7.
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Proof. (i) It is trivial that the inclusion M4 — M induces a map HY(G, MA)J—»
HY9(G,M)?. The A-trace map M—M? induces a map HY(G, M) - HY (G, M?).
Clearly both fg and gf are just multiplication by #A4 which is a bijection on the
cohomology groups, since these groups, being killed by # G have order coprime to
#A4.

(ii) It is trivial that the canonical map M(x)< M induces a map HY(G, M(x))—
H(G,M)(x). Since A is abelian of order coprime to # G, the composite map
®xM(x)—M is an isomorphism and so is @, H(G,M(x))~ @, HU (G, M)(x).
This proves (ii). [

Lemma 2.2. Let O be a finite extension of Z,, and let M be a finite O[G]-module.
The following are equivalent:

(i) M is a cohomologically trivial O[Gl-module;

(ii) There is an exact sequence

0>F->F->M-0

where F is O[G]-free of rank equal to the number of generators of M/I;M as an
O-module.

Proof. It is trivial that (ii) implies (i); to prove the converse we observe that since
G is a p-group, the ring O[G] is a local ring with maximal ideal m and residue field
k isomorphic to the residue field of the local ring O. By Nakayama’s lemma there
is an O[G]-surjection F—>M where F is O[G]-free of O[G]-rank equal to
dim, M/mM =rkoM/I;M. This gives us an exact sequence 0—>A—F—->M—0
where A is O-free since F' is and where A is cohomologically trivial since both M
and F are. It follows from an analogue of [3, Theorem 8, p. 113] (replace Z by O
and give the same proof) that 4 is an O[G]-projective module. Since O[G] is a local
ring, A is in fact free and since M is finite, it has the same rank as F. This proves
Lemma 2.2. [

For future reference we mention the following well-known results. In the notation
of Lemma 2.2, let M be a finite O[G]-module sitting in an exact sequence 0—
F— F—>M—0, where Fis free of finite rank. It is well known that up to a p-adic
unit, the order of M is given by

#M = Norm < IT x(det 9)>, 2

O/Z, xeG
here G™ denotes Hom(G, Q#) and x e G is linearly extended to a ring homomor-

phism y : O[G]H@j. In fact, for every subgroup H of G we have

#M/I;M = Norm < II  x(det 9)>. 3)
0/Z, xe(G/H)"
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Next we apply the above in the case where G and A are Galois groups of number
fields. We introduce some notation: let F be a number field; by 0 we denote the
ring of integers of F, by 0fits units and by Cl its class group. Let Cr denote the
idele class group AEL/F* of F and let Uy denote the unit idéles:
Up={(xe Af: |x|,=1 for all finite valuations v of F). If E/F is a finite abelian ex-
tension of number fields with G=Gal(E/F) we let G,C G, for a prime p of F,
denote the decomposition group of any prime g in £ over p.

Lemma 2.3. Let L/k be a finite abelian extension of number fields with Gal(L/k) =
G x A where G is a p-group and A has order prime to p. Let y: A —>®1§," denote a
character.

@) HUG,C ) x)=0 for all ge Z, if x+1.

(i) BYUG, U (x)=0 forall geZ, if x(4,)# 1 for every prime p of k ramified in
LAk

Proof. (i) By global class field theory there is for every geZ a canonical iso-
morphism

HYG,C,)=HI%G,7).

Since Z is A-invariant it follows from Lemma 2.1(i) that H%(G, Z) is A-invariant as
well and (i) follows.
(ii) By Shapiro’s lemma we have

AYG, U= [l HYG,,0f) as A-modules.
gqof K

where K denotes LY and t is a prime of L over q. It is well known that
H 9G,,0f )=0 whenever g is unramified in L/K or equivalently if p is unramified
in L4/k; here p denotes the prime of & over which q lies. There is an exact sequence
of 4,x G -modules

0-0f - Li—7~0.

By local class field theory there is for every g € Z a canonical isomorphism
HYG, LH=H"%G,, ).

By Lemma 2.1 the groups I—?q(Gq,Z) and F{q(Gq,L;“) have trivial 4-action. Since
ged(# 4, #G ) =1 we see that the same is true for H"(Gq,Ofr). It follows that the
x-part of ﬁ"(Gq,()}'fr) is 0 whenever y(4,)# 1. This proves the lemma. LI

We introduce some more notation; let K be a CM-field with maximal real subfield
K™ and let ¢ denote the non-trivial K *-automorphism of K. By ux we denote the
group of roots of unity in K; we let Ux =(0 — 1)Uyx = {o(u)/ue Uy} and we observe
that (o — D)Ux=Uyx/U¢. By Cg we denote (¢~ 1)Cx which is isomorphic to
Cx/Cy and finally by Cly ™ we denote Clg/im(Clg+).
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Lemma 2.4. For every CM-field K there is an exact sequence

0—pux N Ug — Ug — Cg ~ Clg —0.

Proof. From the diagram

Ug- Cy- Clg- 0

Ug Ck Clg 0
we obtain an exact sequence
Ug—Cg—Clg—0

and from the diagram

0 0
Ui C
O O;xé UK — CK

we see that ker(Ug = Cg)=0fNUg. If ee0fNUg, then e=0o(u)/u for some
u e Uyg; therefore g(g)-e=1 and it follows that € is a root of unity. We conclude
that 0F N Ug =u, N Ug . This proves the lemma. O

Theorem 2.5. Let L/K be a 2-power degree extension of complex abelian number
fields. Let k be a subfield of K* such that [K " :k] is odd.

Let A denote Gal(K */k) and let y:A—Q% be a nontrivial character. Put
O, =2,[im ) and G=Gal(L/K)=Gal(L"/K").

If x(A4,)#1 for all primes p of k over which primes ramify in L/K ", then
(1) For every field KC FC L with H=Gal(L/F) we have

Cly 5 (x) = Cly ,(x)/I5Cl 2 (x) as O,[G/H-modules.



130 R. Schoof

(i) There is an exact sequence of O,|G)-modules
0—-0,IG]"~ 0,[G]) ~Cl. ,(x)—0
where r=rankg Clg »(x)-
Proof. Let F be a subfield, KCFC L. Let H=Gal(L/F) and let Ny denote the H-
norm map.
Since H is a 2-group, the cohomology groups of u, N U, and y; ,N YU, are
isomorphic. The Galois group Gal(F/F) acts via a quotient group of 2-power order

on 4; ,, 5o, the group 4, being of odd order, must act trivially on #; ,. Since y #1,
we deduce from Lemma 2.1(ii) that

HYH,u, NUT)x) =0, for all ge Z. 4)

From the exact sequence 0— U; = U, ~> U, =0 and the fact that x(4,)#1 for
all primes p of k over which primes in L are ramified over K*, we conclude from
Lemma 2.3(i) that

HIYH, U )x) =0, forall geZ. )

From the long cohomology sequence of the above sequence we obtain the exact se-
quence 0— Uz ~(Up)*— H'(H,U;)..., which gives us that

WD"7UR) = 0. ©6)
From the long cohomology sequence of the exact sequence

0-u, NU; U, - U /u,NUL—0
we find an exact sequence

e UDT (UL /g VU > HYH p N UD) =
and (4) with ¢g=1 and (6) imply that

cok(Ur /up N U > (U /N U000 = 0. M

From the exact sequence 0 Cy+ -, —>C; —0 and the fact that x#1, we con-
clude by Lemma 2.3(i) that

HIYIH, CY(x) =0, for all geZ 8)

and from the long cohomology sequence of this sequence and the fact that
H\(H,C,)=H (H,Z)=0 we conclude that

€ =Ck. ®
From Lemma 2.4 we obtain the exact sequence

Oy, NU U —Cy —=Clp 0
and it follows from (4), (5) and (8) that H(H, Cl;)(x) =0 for all ge7 and hence
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that Cl; ,(x) is a cohomologically trivial G-module.
From the diagram

0—— Ui/uyNUp —— Cp — Clp —0

| | |
l i 1

0 —— (U /u, NUHH —— (cHf — (@)Y —— H'(H, UL /u, N UL)

and (7) and (9) we conclude:

- = (W e iniective (1M
The map C}F,Z(X)%(CgLJ{L}} 18 injective. (iU}
From the diagram
Ur Cr Cl; 0
Ny Ny Ny
Ug Cr Clg 0

and the fact that (C;/NyC)(x)=HH,C[)(x)=0, it follows that the map
Ny : Clz 2 (0)— Clg 5 (x) is surjective. By (10) the k?rnei of this map is equal to the
kernel of Ny: Cl »(x)—Cl»(x) which, since H Y(H, Cl;2(x) =0, is equal to
I Cl7 5(x). This proves (i).

Weyhave already proved that Cl; ,(x) is cohomologically trivial. When we apply
(i) with H=G we find that Cl ,(x)/1Cl »(x) = Clg (). Part (ii) now follows
easily from Nakayama’s Lemma. O

3. Minus class groups in a special Z,-extension

In this section we will study the 2-parts of the minus class groups of the fields
©A{¢29.07) where me Z is at least 4. We let E denote the subfield of Q({y) which is
of degree 7 over Q and we put A = Gal(E/Q).

Lemmaﬁ3.1. Let K be a real number field satisfying EC K C Q({y.57). Suppose
x: 4—Q3 is a non-trivial character. Then

Clg,2(x) = 0.

Proof. We first show that E has class number 1: the root discriminant of E equals
29%7 and Odlyzko’s discriminant bounds in Diaz y Diaz’s tables [4] imply at once
that A(E)=1. Next we consider arbitrary K satisfying the conditions stated in the
lemma.

Let G=Gal(K/E); clearly G is a 2-group and Gal(K/Q) = A x G. The only primes
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ramified in K/E are over 2 and 29. Since 29 is ramified in E/Q and since 2 is inert
in this extension it follows from Lemma 2.3 that

HYG,Cx)(x) = HYG, Uy)(x) = 0
$0
HG,Clg,00) = H" %G, 09)(x).

Since Clz=0 it follows that

0 = ker(Clz— Clg) = ker(H (G, 0§) - HYG, Uy))
and since H (G, Ug)(x) =0 we see that

HYG,09)(x) = H (G, Clg 2(x)) = 0.

Now H NG, Clk ,(x))=Clk 2(x)/I5Clx ,(x) because Clg,(x)=0. Nakayama’s
lemma implies that Clg ,(x) =0 and that proves the lemma. D

Lemma 3.2, The Q[module Clgy,2(x) is isomorphic to O, /20, for one non-trivial
character x : A—Q5 while it is zero for the, up to Gal(Q,/Q,)-conjugacy, only
other such character.

Proof. The only complex number fields contained in E(i) are Qi) and E(i) itself.
Since Qi) has class number one it follows that

Clgg,2 = Clggy, 2(01) X Clgg, 2002)

where y, and yx, denote the, up to Gal(Q,/Q,)-conjugacy, two non-trivial charac-
ters of 4. The class group of E, the maximal real subfield of E(i}, is trivial by Lem-
ma 3.1. This implies that Clg(im:ClE(i):ker(ClEU)L Clg) and we can compute
that # Clgg =56 by calculating the appropriate generalized Bernoulli numbers.
Both Clgy 2(x;) and Clgg 2(x,) are modules over O, =Z,[im(x;)=im(x,)] =
Z,[¢;1, the unique unramified extension of degree 3 of Z,. The ring O, has
a residue field with 8 elements and it follows that (say) Clgg ,=0,/20, and
Clgg) 2(x2)=0. This proves Lemma 3.2. [

We let x : 4A— Q7 denote the character for which according to Lemma 3.2 we
have that Cigg) , = Clgg, 2(x) #0.

Next let meZ,, and let K=Q({y.y»+3) and put G=Gal(K/E()) =
Gal(K/E({5n+3)) X GallK/Q({49, 1)).

We identify the group ring O,[G] with O,[[s, TN+ = 1,0+ Ty " =1)
where 1 + ¢ corresponds to a generator of Gal(K/E({,=+3)} and 1+ T to a generator
of Gal(K/Q({ag, I).

Theorem 3.3. For meZ, there is an isomorphism of Q,-modules

Clg ,(0) = O, [/ + 1~ 1,279)
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where ¢ € O,[t] is a polynomial of degree 2 for which ¢ = * (mod 2).

Proof. The only primes that ramify in the extension K over E(i) are the primes over
2 and 29; since 2 is inert in E over @, Theorem 2.7(ii) applies and we find an exact

seqauance

SLHULILC

0— @~ & Clg ,(x)— 0

where @ is O, [G]-free of rank =rky Clg) 2(x). By Lemma 3.2, this rank is equal
to one and therefore

X = Clg 200 = Ol THAU+ D)~ 1,0+ T = 1,F(, T)) (11)

for some power series F'(¢, T) in O,[[¢, T]]. By Theorem 2.5(i) we have
Cleo.00) =X/ X= 0,0, T/ TEF(1,T) = 0,/(F(0,0)

and Lemma 3.2 gives that F(0,0)=2- unit.
Let H denote Gal(K/Q({y9.16)) C G and let

Y =X/ X=0,tTIAC+ ) - L(T+ Y = LLF@, T)).
The order of Y is by (3) equal to

Norm [] ][] F(-1,&-1).

O/ 2y =1 &4=1
Since 2 divides F(0,0) we see that

2 divides F({—-1,(-1) if {{,&yC{-1,1},

i—1 divides F({—1,£~1) otherwise
and we find that the order of Y is at least

Norm (2*-(i—1)!¢~% = 2%,

0,/7;
The power of 2 dividing hgy,,  is exactly 2°° as one finds in [8] or in the tables in
[10]. Since Y¢>Clgy,, ) we conclude that # Y =2 and that

2 - unit if {,¢yc{-1,1},

12
(i—1)-unit otherwise (12)

FC-1,6-1)= {

We write F(£, T)= Y »0/fc ()T* and we have that 2 divides £,(0)=F(0,0). By the
above

HOG-1D)+/,0)= FO,i—1)=({~1)-unit (mod 2)

so f1(0) is a unit in O, and f; is a unit in O, [[¢]]. Applying Weierstrass’ Preparation
Theorem to powerseries with coefficients in the complete local ring O,[[f]]/
(1 +*—1) (see [6]) we find that we may assume that F(¢, T)=T— g(f) for some
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powerseries g(f) € O,[[t]]. Equation (11) now becomes
X = O lIMAQ+* ~1,(g+ 1D = 1). (13)

We write g(¢) =t h(f) + g(0) and since g(0) = F (0, 0) is divisible by 2 we obtain that
for k=2 v ’ ‘ '
(g+ ¥ +1=g+2g" "+2=/n" +2¢¥ " +2 (mod 4).

Since #'=24""? mod@,(t+1)*~1) we conclude that (g+1)* +1=2-unit
(mod (£ + 1)*— 1) and we find that X=O,[[fl1/((+ D= 1,2" 7 '((g+ 1)* = 1)). One
easily checks that

(g+D*=1=22(*+1) mod (4, (1 + 1)* = 1). (14)

Up to a unit we have that F(i—1,0)=g({-1) so by (12) that (i— DA0)+ g(0)=
(i~ 1)-unit (mod 2). Since g(0)=0 (mod 2) we find that 2(0)#0 (mod 2). Up to a
unit we have that FG—1,i— D=0~ 1)—g{i—1) so by (12) we have (i— 1)-unit=
i-D—g(i—-D=>0{-1)-0-DAGE-1D—-g0)=0—- DA~ A1) (mod2). We con-
clude that #(0)# 1 (mod 2). And hence from (14) and the Weierstrass Preparation
Theorem that (g+1)*—1=2-¢-unit mod ((t+ 1)*—1) where ¢ is a Weierstrass
polynomial of degree 2. This proves Theorem 3.3, 0

Proposition 3.4. Let meZ.; The x-part of the 2-part of the class group of
Q(L59.om+3) has a direct summand isomorphic to 7/2"7.

Proof. Let K denote Q({9.57+3). Since Clg+ »(x)=0 by Lemma 3.1, we see that
the y-part of the 2-part of the class group of K is precisely Clg ;(x). It therefore
suffices by Theorem 3.3 to show that

X =0,[t}/A +0*~1,2"p)

(where ¢ is a Weierstrass polynomial of degree 2) has a direct summand isomorphic
to Z/2"Z. Clearly X/2"X =(0,/2"0,)" and since p=T7? (mod2) we have that
X/2" X =(0,/2"0,)* % (0,/2"'0, )% since 0,/2"0,=(2/2"7)’, this clearly
implies that X has a copy of Z/2™7 as a direct summand. This proves Proposition
3.4. (J

4. Proof of the main theorem

In this section we will prove Theorem 1.1, the main result of this paper. The deter-
mination of SSF is done in two steps: first the odd part is computed and then the
2-part. The odd part was already done by Lenstra in [7); the 2-part is computed us-
ing Proposition 3.4.

Theorem 4.1. @,,»; Pic(Z[{,, 1/n]) = P2y Z/0Z.
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Proof. For every prime p, the p-part of (,»,Z/nZ is isomorphic to
@B m=1 Z/p"7)*. So, to prove the theorem it suffices to show that for every
prime p and every positive integer m there exist infinitely many # such that Z/p"'7Z
is a direct summand of Pic(Z{{,, 1/n}). First we consider the case where p#2. Let

111 he a macit] intaoe Ry a -
m be a positive integer. By a result of Yamamoto [11] there exists a quadratic num

ber field K with discriminant not divisible by p which has a subgroup of its class
group isomorphic to Z/p™Z. Let f denote the absolute value of the discriminant of
K. It is well known that K CQ({;). Let G denote Gal(Q({,)/Q), let NC G be the
subgroup Gal(Q({,)/K) and let y : Gal(K/Q)— { £ 1} denote the non-trivial charac-

tor nf Giall kK /(DY
{er O1 uans /W)

The cokernel of the norm map CIQ(Q)*CIK is a quotient of Cx/MCyy, )=
HON,Cy)=H *N,Z)=N. Since G is abelian, the canonical action of Gal(K/Q)
on N is trivial. Since x # 1 we conclude that N,(x)=0 and therefore that the norm
Clg ), p(0) = Clg ,(x) is surjective. Since Clg =0 we have that Cly ,=Clg ,(x) and
it follows that Clg,, ,(x) has a subgroup isomorphic to Z/p"7. Let G=
Gal(Q(¢)/Q) and let G, denote the decomposition group of a prime over / in
Q(Zy). There is an exact sequence of G-modules

1
1 zi6/G)~ Cly,,— Pic z[g,}] —0.
s

Since all primes that ramify in Q({,)/©Q also ramify in K/Q we have that G, & ker
and we conclude that Z,[G/G,](x) =0 for every / | /. Tensoring the above exact se-
quence with Z,, and taking x-eigenspaces gives us therefore an isomorphism

i
CI@(C;},p(X) = PiC(Z{ gf’}j));:(x)‘

Suppose [y, ..., [, are prime ideals of Q({,) satisfying

(i) Each {; lies over a rational prime /;# 1 (mod p).

(ii) The classes of the ideals [; in Pic(Z[{;,1/f]) generate the subgroup
(Pic(ZILy 1/ F I
Let L denote the product of the primes /;. Since (Pic(Z[{, 1/f1)7" is stable under
the action of Gal(Q({,)/Q), the classes of all conjugates of the primes [; gen-
erate (Pic(Z[{,1//1)"" as well and we conclude that Pic(Z[(;,1/(fL)]) =
Pic(Z[Ly, 1/ f1)/(Pic(Z[L,, 1//1)7" and therefore also that Pie(Z[{,, 1/(fL)]) has a
direct summand isomorphic to Z/p"Z.

It follows from (i) that the degree [Q({;;):Q((,)], being a divisor of H}: =1,
is prime to p. We write 8= [Q({;.): Q)] . Norm and we conclude from the com-
muting diagram

PICZ[CJ’:?IL—} — Pi¢ ZI:CfL, i}

WA

Pic Z{Cf, flL}
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that Pic(Z[{;, 1/(fL)]) has a copy of Z/p™7 as a direct summand.

The proof in the case where p # 2 is now completed since there are infinitely many
sets of primes {; satisfying conditions (i) and (ii). This is, since p# 2 and since the
intersection of Q({,) and the Hilbert class field of Q({;) is precisely @, easily im-
plied by the Cebotarev Density Theorem.

Now we finish the proof by taking care of the case where p=2.

By Proposition 3.4 for every integer m =0 the group Cly,, ».4,2(x) has a direct
summand isomorphic to Z/2"7Z. Here y denotes the character of conductor 29 and
order 7 for which Clg,, 2(x)#0. Put f=29.2" *3 and let G denote the Galois
group of Q({)/Q and let G, (resp. G49) denote the decomposition group of a prime
over 2 (resp. 29) in Q({y).

There is an exact sequence

!
ZIG/G,] % ZIG/Gl = Clyy(,y = Pic(Z [ gf,J—fD -0.

Since 29 ramifies totally in Q({,9)/0 and since 2 is inert in Q({;9)/Q it follows, as
before, that we have an isomorphism

1
Clog,) 200 = Pic(Z[Cf,]—cDEQ)

and we see that Pic(Z[{;, 1/f1), has a direct summand isomorphic to Z/2"7.

Let k be a positive integer; the degree of the extension Q({;.,94)/Q({,) is a power
of 29 and hence odd. It follows that Pic(Z[{;,1/f]), is a direct summand of
Pic(Z[{ .29, 1/( S+ 29Y)) and hence that Z/2"7 is a direct summand of Pic(Z[(,, 1/n])
for every n of the form f-29%, k€ Z.,. This proves the theorem. 0

Theorem 4.1 combined with Lenstra’s result (1) yields Theorem 1.1.
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