

Minus Class Groups of the Fields of the l-th Roots of Unity

Author(s): René Schoof

Source: Mathematics of Computation, Vol. 67, No. 223 (Jul., 1998), pp. 1225-1245

Published by: American Mathematical Society

Stable URL: https://www.jstor.org/stable/2585181

Accessed: 25-06-2020 14:23 UTC

REFERENCES

Linked references are available on JSTOR for this article: https://www.jstor.org/stable/2585181?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

 $American \ \textit{Mathematical Society} \ \text{is collaborating with JSTOR to digitize, preserve and extend access to } \textit{Mathematics of Computation}$

MINUS CLASS GROUPS OF THE FIELDS OF THE *l*-TH ROOTS OF UNITY

RENÉ SCHOOF

ABSTRACT. We show that for any prime number l>2 the minus class group of the field of the l-th roots of unity $\overline{\mathbf{Q}_p}(\zeta_l)$ admits a finite free resolution of length 1 as a module over the ring $\widehat{\mathbf{Z}}[G]/(1+\iota)$. Here ι denotes complex conjugation in $G=\mathrm{Gal}(\overline{\mathbf{Q}_p}(\zeta_l)/\overline{\mathbf{Q}_p})\cong (\mathbf{Z}/l\mathbf{Z})^*$. Moreover, for the primes $l\leq 509$ we show that the minus class group is cyclic as a module over this ring. For these primes we also determine the structure of the minus class group.

Introduction

Let l be an odd prime and let ζ_l denote a primitive l-th root of unity. In this paper we study the cyclotomic fields $\mathbf{Q}(\zeta_l)$ and the class groups Cl_l of their rings of integers $\mathbf{Z}[\zeta_l]$. The class group Cl_l splits in a natural way into two parts: the natural map from the class group Cl_l^+ of the ring of integers of the subfield $\mathbf{Q}(\zeta_l + \zeta_l^{-1})$ to Cl_l is injective [24, p.40]. Its cokernel, the *minus class group of* $\mathbf{Q}(\zeta_l)$, is denoted by Cl_l^- . There is an exact sequence

$$0 \longrightarrow Cl_l^+ \longrightarrow Cl_l \longrightarrow Cl_l^- \longrightarrow 0.$$

About the groups Cl_l^+ little is known. For small primes l they are trivial [23]. See [3], [21] for a numerical study of these groups. In this paper we consider the other groups, the minus class groups Cl_l^- , which are easier to handle. There is, first of all, an explicit and easily computable formula for their cardinalities h_l^- . See [24, p.42]:

$$h_l^- = 2l \prod_{\chi \text{ odd}} -\frac{1}{2} B_{1,\chi},$$

where the product runs over the characters $\chi: (\mathbf{Z}/l\mathbf{Z})^* \longrightarrow \mathbf{C}^*$ which are odd, i.e. which satisfy $\chi(-1) = -1$. The numbers $B_{1,\chi}$ are generalized Bernoulli numbers; they are defined in section 1.

Around 1850, E. E. Kummer [9], [10] used this formula to compute the minus class numbers h_l^- for the primes l < 100. These calculations were extended by D. H. Lehmer and J. M. Masley [15] in 1978 to the primes $l \leq 509$. The numbers h_l^- grow very rapidly with l. For instance, h_{491}^- already has 138 decimal digits.

The class number h_l^- alone does, of course, not determine the structure of the group Cl_l^- . If h_l^- is squarefree, the group Cl_l^- is cyclic, but in general h_l^- has

Received by the editor March 28, 1994 and, in revised form, December 2, 1996. 1991 Mathematics Subject Classification. Primary 11R18, 11R29, 11R34.

Key words and phrases. Cyclotomic fields, class groups, cohomology of groups.

©1998 American Mathematical Society

multiple factors. It is a natural problem to try and determine the *structure* of the minus class groups. Kummer [12] addressed this problem in 1853. He showed, for instance, that for l=29 the minus class group is isomorphic to $\mathbf{Z}/2\mathbf{Z}\times\mathbf{Z}/2\mathbf{Z}\times\mathbf{Z}/2\mathbf{Z}$. He claimed moreover that the minus class group of $\mathbf{Q}(\zeta_{31})$ is cyclic of order 9. Only in 1870 he gave a rigorous proof of this fact [11]. It involves a lengthy calculation in the field $\mathbf{Q}(\zeta_{31})$. His claim that the group Cl_{71}^- is cyclic of order $7^2 \cdot 79241$ is correct, but has, as far as I know, never been justified previously [6].

In this paper we study the structure of the minus class groups Cl_l^- as Galois modules. Since complex conjugation ι acts as -1 on Cl_l^- , it is natural to study Cl_l^- as a module over the ring $\widehat{\mathbf{Z}}[G]/(1+\iota)$ where $\widehat{\mathbf{Z}}$ denotes the profinite ring $\varprojlim \mathbf{Z}/n\mathbf{Z}$ and $G = \operatorname{Gal}(\mathbf{Q}(\zeta_l)/\mathbf{Q}) \cong (\mathbf{Z}/l\mathbf{Z})^*$. We prove the following:

Theorem I. Let l be an odd prime. Then there exist an exact sequence of $\widehat{\mathbf{Z}}[G]/(1+\iota)$ -modules

$$0 \longrightarrow L \xrightarrow{\Theta} L \longrightarrow Cl_l^- \longrightarrow 0$$

where L is free of finite rank over $\widehat{\mathbf{Z}}[G]/(1+\iota)$.

Theorem I is an immediate consequence of Theorems 2.2(i) and 3.2(i). For small l we can be more precise:

Theorem II. For $l \leq 509$ one can take L of rank 1 in Theorem I. In other words, the minus class group is isomorphic to $\widehat{\mathbf{Z}}[G]/(1+\iota,\Theta)$ as a $\widehat{\mathbf{Z}}[G]/(1+\iota)$ -module. Moreover, for Θ one can take the modified Stickelberger element introduced in section 1.

Theorem II is proved in section 4. In the course of the proof we determine completely the structure of the minus class groups Cl_l^- as abelian groups for $l \leq 509$. As an example we mention Cl_{491}^- , which we show to be isomorphic to a product of six cyclic groups:

 $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/982\mathbf{Z} \times \mathbf{Z}/10802\mathbf{Z} \times \mathbf{Z}/18680189262665824155664817/205804054998786681161963704417938182602575815795883211941228272982586/25221939971178506931727800584004906\mathbf{Z}.$

Theorem II probably holds for several other primes l, but is definitely not true in general. It does, for instance, not hold for l=3299. This follows from the fact that, when $l\equiv 3\pmod 4$, the minus class group Cl_l^- is cyclic over $\widehat{\mathbf{Z}}[G]/(1+\iota)$ if and only if the class group of the quadratic subfield $\mathbf{Q}(\sqrt{-l})\subset\mathbf{Q}(\zeta_l)$ is a cyclic group. Since the class group of $\mathbf{Q}(\sqrt{-3299})$ is isomorphic to $\mathbf{Z}/3\mathbf{Z}\times\mathbf{Z}/9\mathbf{Z}$, the group Cl_{3299}^- is not cyclic as a $\widehat{\mathbf{Z}}[G]/(1+\iota)$ -module [13, p.80].

Finally, we single out a particularly simple consequence of our results. Roughly speaking, it says that for prime divisors p of l-1, the p-part of Cl_l^- is cyclic whenever it is small.

Theorem III. Let l and p be odd primes and let M denote the p-part of the minus class group of $\mathbf{Q}(\zeta_l)$. If #M divides $(l-1)^2$, then M is a cyclic group.

Theorem III is proved in section 2. Applying it with $l=31,\,p=3$ and $l=71,\,p=7$ respectively we obtain a proof of Kummer's claims. The condition that

#M divide $(l-1)^2$ cannot be relaxed further: in section 4 we show that the 5-part of the minus class group of $\mathbf{Q}(\zeta_{101})$ is isomorphic to $\mathbf{Z}/125\mathbf{Z}\times\mathbf{Z}/25\mathbf{Z}$.

Our method is, in some sense, a finite version of Iwasawa theory. It is closely related to V. A. Kolyvagin's work [7]. In order to obtain information about the structure of a certain χ -eigenspace of the p-part of a minus class group, we "deform" the Dirichlet character χ and study the extension L corresponding to $\chi\psi$, where ψ is some character of p-power order. The generalized Bernoulli numbers $B_{1,\chi\psi}$ contain information about the χ -eigenspace of the class group of this extension. This information is obtained by viewing the field L as a "truncated" \mathbf{Z}_p -extension and by studying the χ -part of the minus class group of L by mimicking techniques from Iwasawa theory. The main results are Theorem III and the two criteria for cyclicity, Theorems 2.3 and 3.3.

The main difficulty in extending Theorem II to primes l > 509 is the size of the class numbers. For larger l one is bound to encounter composite numbers that cannot be factored within reasonable time. Sooner or later one will also encounter χ -parts that are *not* cyclic Galois modules. In these cases the methods of this paper do not apply.

The paper is organized as follows. In section 1 we briefly recall some well known facts concerning $\mathbf{Z}[G]$ -modules when G is a finite abelian group. In this section we also discuss some elementary properties of Stickelberger elements and generalized Bernoulli numbers. Even though there are similarities between the structure of the odd and even parts of the minus class groups, the differences are sufficiently big to merit separate treatment. In section 2 we consider the p-parts of minus class groups for odd primes p. In section 3 we do the same for p=2. Finally, in section 4, we present the numerical results and prove Theorem II.

We need to know the complete prime decomposition of the class numbers h_l^- for $l \leq 509$. In the appendix a table of the prime factorizations of these numbers is given. This table is complete and supersedes the one computed by Lehmer and Masley [15]. The present table contains also the factorizations of the unfactored composite numbers in their table. I thank Arjen Lenstra, Peter Montgomery, Bob Silverman and Herman te Riele for computing the unknown prime factors, François Morain for several primality proofs and Pietro Cornacchia for catching an error in Table 4.4.

1. Preliminaries

In this section we recall some elementary facts concerning modules over group rings $\mathbf{Z}[G]$ when G is a finite abelian group. In addition we recall some basic properties of Stickelberger elements and generalized Bernoulli numbers.

Let G be a finite abelian group. For a G-module M, we denote by M^G the subgroup of G-invariant elements of M. Now fix a prime p and let

$$G \cong \pi \times \Delta$$
,

where π is the p-part of G and Δ is the maximal subgroup of G of order prime to p. We write the group ring $\mathbf{Z}_p[G]$ as $\mathbf{Z}_p[\Delta][\pi]$. By the orthogonality relations there is an isomorphism of rings

$$\mathbf{Z}_p[\Delta] \cong \prod_{\chi} O_{\chi}.$$

Here χ runs over the characters $\chi: \Delta \longrightarrow \overline{\mathbf{Q}}_p^*$ up to $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ -conjugacy. The rings O_χ are unramified extensions of \mathbf{Z}_p generated by the values of χ . They are $\mathbf{Z}_p[\Delta]$ -algebras via the rule $\sigma \cdot x = \chi(\sigma)x$ for $x \in O_\chi$ and $\sigma \in \Delta$. The ring isomorphism is given by mapping $\sigma \in \Delta$ to $\chi(\sigma)$ in each component O_χ . The residue field of O_χ is $\mathbf{F}_p(\zeta_d)$ where d is the order of χ .

Definition. Let M be a $\mathbf{Z}_p[G]$ -module and let $\chi: \Delta \longrightarrow \overline{\mathbf{Q}}_p^*$ be a character. Equivalently, χ is a character of G of order prime to p. The χ -eigenspace $M(\chi)$ or χ -part of M is defined by

$$M(\chi) = M \otimes_{\mathbf{Z}_p[\Delta]} O_{\chi}.$$

We have a decomposition into eigenspaces of M:

$$M\cong \prod_{\chi} M(\chi),$$

where χ runs over the characters $\chi: \Delta \longrightarrow \overline{\mathbf{Q}}_p^*$ up to $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ -conjugacy. Each eigenspace $M(\chi)$ is a module over the local ring $O_{\chi}[\pi]$. The residue field of this ring is equal to the residue field of O_{χ} which is $\mathbf{F}_p(\zeta_d)$, where d is the order of χ .

We frequently use the following properties of the Tate cohomology groups [2]. Let M be a G-module and let $P \subset \pi$. The natural action of P on the Tate cohomology groups $\widehat{H}^q(P,M)$ is trivial, but Δ acts, in general, in a non-trivial way. Note that the groups $\widehat{H}^q(P,M)$ are $\mathbf{Z}_p[\Delta]$ -modules, because they are killed by #P.

Lemma 1.1. Let p be a prime and let G be a finite abelian group. Let π and Δ be as above and let P be a subgroup of π .

- (i) For every $\mathbf{Z}[G]$ -module M we have that $\widehat{H}^q(P, M^{\Delta}) \cong \widehat{H}^q(P, M)^{\Delta}$ for all $q \in \mathbf{Z}$.
 - (ii) For every $\mathbf{Z}_p[G]$ -module M and every character $\chi: \Delta \longrightarrow \overline{\mathbf{Q}}_p^*$ we have that

$$\widehat{H}^q(P, M(\chi)) \cong \widehat{H}^q(P, M)(\chi)$$
 for all $q \in \mathbf{Z}$.

Proof. (i) Since the actions of Δ and P commute, the inclusion $i:M^{\Delta}\hookrightarrow M$ and the Δ -norm map $N:M\to M^{\Delta}$ are P-morphisms. The maps $i\cdot N$ and $N\cdot i$ induce multiplication by $\#\Delta$ on $\widehat{H}^q(P,M)^{\Delta}$ and $\widehat{H}^q(P,M^{\Delta})$ respectively. Since $\#\Delta$ and #P are coprime, multiplication by $\#\Delta$ is an isomorphism and (i) follows.

(ii) Since the actions of Δ and P commute, the eigenspaces $M(\chi)$ are P-modules. Taking the sum over the characters $\chi: \Delta \longrightarrow \overline{\mathbf{Q}}_p^*$, up to $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ -conjugacy, of the natural maps $\widehat{H}^q(P,M(\chi)) \longrightarrow \widehat{H}^q(P,M)(\chi)$, we obtain precisely the map $\bigoplus_{\chi} \widehat{H}^q(P,M(\chi)) \longrightarrow \widehat{H}^q(P,M)$ induced by the isomorphism $\bigoplus_{\chi} M(\chi) \longrightarrow M$. This proves (ii).

The remainder of this section is devoted to properties of Stickelberger elements and generalized Bernoulli numbers. Let $f \not\equiv 2 \pmod{4}$ be a conductor and let $G = (\mathbf{Z}/f\mathbf{Z})^*$. The Stickelberger element θ_f of conductor f is given by

$$\theta_f = \sum_{\substack{a=1\\\gcd(a,f)=1}}^f \left(\frac{a}{f} - \frac{1}{2}\right) [a]^{-1} \in \mathbf{Q}[G].$$

For any prime number p we write $G = \pi \times \Delta$ as above. We have $\mathbf{Q}_p[G] \cong \bigoplus_{\chi} K_{\chi}[\pi]$ where the sum runs over the characters $\chi : \Delta \longrightarrow \overline{\mathbf{Q}}_p^*$ up to $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ -conjugacy and K_{χ} is the quotient field of O_{χ} . We denote the algebra homomorphism

 $\mathbf{Q}_p[G] \longrightarrow K_\chi[\pi]$ induced by χ again by χ . For every character $\chi \neq \omega$, the image $\frac{1}{2}\chi(\theta_f)$ of $\frac{1}{2}\theta_f$ in $K_\chi[\pi]$ is an element of the subring $O_\chi[\pi]$. Here $\omega: (\mathbf{Z}/p\mathbf{Z})^* \longrightarrow \overline{\mathbf{Q}}_p^*$ denotes the Teichmüller character. It is the character that gives the action of $\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ on the group μ_p of p-th roots of unity. Note that $\omega=1$ when p=2. For odd p the element $\frac{1}{2}\theta_f$ annihilates the χ -part of the p-part of the ideal class group of $\mathbf{Q}(\zeta_f)$. This is Stickelberger's Theorem [24, Chpt.6]. For p=2, C. Greither [4] has shown the same when π is cyclic and the conductor f is odd.

For any character φ of G of conductor f, the generalized Bernoulli number $B_{1,\varphi}$ is simply the value of the algebra homomorphism $\mathbf{Q}_p[G] \longrightarrow \overline{\mathbf{Q}}_p$ induced by φ evaluated on the Stickelberger element:

$$B_{1,\varphi} = \varphi(\theta_f) = \sum_{\substack{a=1 \ \gcd(a,f)=1}}^f \left(\frac{a}{f} - \frac{1}{2}\right) \varphi(a)^{-1} \in \overline{\mathbf{Q}}_p.$$

Finally we assume that f=l is prime, so that $G=(\mathbf{Z}/l\mathbf{Z})^*$ and we introduce the modified Stickelberger element $\Theta\in\widehat{\mathbf{Z}}[G]/(1+\iota)$ that occurs in Theorem II. We have that $\widehat{\mathbf{Z}}[G]/(1+\iota)\cong\prod_p\mathbf{Z}_p[G]/(1+\iota)$. Moreover, each factor $\mathbf{Z}_p[G]/(1+\iota)$ is isomorphic to $\prod_\chi O_\chi[\pi_p]$, where the χ run over all odd characters of order prime to p when p is odd and all characters of odd order when p=2 respectively. Here π_p denotes the p-part of G. Therefore it suffices to describe the various components $\chi(\Theta)$ of Θ : if p=l and $\chi=\omega$ or if p=2 and $\chi=1$, we let $\chi(\Theta)=1$. In all other cases $\chi(\Theta)=\frac{1}{2}\chi(\theta_l)$.

The modified Stickelberger element $\Theta \in \widehat{\mathbf{Z}}[G](1 + \iota)$ annihilates Cl_l^- . The order of $\widehat{\mathbf{Z}}[G](1 + \iota, \Theta)$ is equal to the minus class number h_l^- .

2. Odd primes p

In this section we study the p-parts of the minus class groups of complex abelian number fields for odd primes p. We show that certain eigenspaces of these groups are cohomologically trivial Galois modules. This puts restraints on their structure. We derive an easily applicable criterion for these eigenspaces to be cyclic Galois modules.

In this section $p \neq 2$ is a prime. We fix a complex abelian number K field with $G = \operatorname{Gal}(K/\mathbf{Q})$. Let π denote the p-part of G and $F = K^{\pi}$ its fixed field. We fix an odd character $\chi: G \longrightarrow \overline{\mathbf{Q}}_p^*$ of order prime to p, which is not equal to the Teichmüller character ω . Since $p \neq 2$, we have that $Cl_K^-(\chi) = Cl_K(\chi)$. Therefore we work, in this section, with the class group Cl_K itself rather than the minus class group Cl_K^- .

Theorem 2.1. Let $P \subset G$ be a subgroup of π with fixed field $E = K^P$. Suppose that that for all primes r that are ramified in $E \subset K$ we have that $\chi(r) \neq 1$. Then

- (i) the eigenspace $Cl_K(\chi)$ is a cohomologically trivial $O_{\chi}[P]$ -module; (ii) the natural map $Cl_E(\chi) \longrightarrow Cl_K(\chi)^P$ is bijective and the norm map $Cl_K(\chi)$ $\longrightarrow Cl_E(\chi)$ is surjective.
- *Proof.* (i) It suffices to show that $\widehat{H}^q(P, Cl_K(\chi)) = 0$ for all $q \in \mathbf{Z}$. Let O_K denote the ring of integers of K, let C_K denote the idèle class group of K and let U_K denote the group of unit idèles, i.e. the group of K-idèles that have trivial valuation at all

finite primes. We have the exact sequence of G-modules [2]

$$0 \longrightarrow O_K^* \longrightarrow U_K \longrightarrow C_K \longrightarrow Cl_K \longrightarrow 0.$$

We show that the χ -parts of the Tate P-cohomology groups of these modules are all zero. For the unit group O_K^* we have the following exact sequence [24, p.39]

$$0 \longrightarrow \{1,-1\} \longrightarrow \mu_K \times O_{K^+}^* \longrightarrow O_K^* \longrightarrow Q \longrightarrow 0.$$

Here O_{K^+} is the ring of integers of the maximal real subfield K^+ of K and μ_K denotes the group of roots of unity in K. The group Q has order at most 2. Complex conjugation acts trivially on $\{1,-1\}$, on Q and on $O_{K^+}^*$. Since χ is an odd character, we have, by Lemma 1.1, that $\widehat{H}^q(P,O_K^*)(\chi) \cong \widehat{H}^q(K,\mu_K)(\chi)$ for all $q \in \mathbf{Z}$. Since χ is not the Teichmüller character, the χ -part of μ_K is zero so that, by Lemma 1.1, $\widehat{H}^q(P,O_K^*)(\chi) = 0$ for all $q \in \mathbf{Z}$.

By global class field theory there are natural isomorphisms $\widehat{H}^q(P, C_K) \cong \widehat{H}^{q-2}(P, \mathbf{Z})$ for all $q \in \mathbf{Z}$. Since G acts trivially on \mathbf{Z} , it follows from Lemma 1.1 that $\widehat{H}^q(P, C_K)(\chi) = 0$ for all $q \in \mathbf{Z}$.

We use *local* class field theory to compute the cohomology of U_K . See also [20]. By Shapiro's lemma we have

$$\widehat{H}^{q}(P, U_{K}) \cong \bigoplus_{v} \widehat{H}^{q}(P_{r}, O_{w}^{*}) = \bigoplus_{r} \bigoplus_{v \mid r} \widehat{H}^{q}(P_{r}, O_{w}^{*})$$

where v runs over the prime ideals of E and r runs over ordinary prime numbers. The ring O_w is the ring of integers of the completion K_w of K at a prime w of K over v. We have $\mathbf{Q}_r \subset E_v \subset K_w$ with Galois groups $G_r = \operatorname{Gal}(K_w/\mathbf{Q}_r)$, $P_r = \operatorname{Gal}(K_w/E_v)$ and $H_r = \operatorname{Gal}(E_v/\mathbf{Q}_r)$. Since G is abelian, the decomposition groups P_r and P_r only depend on the prime P_r . Since $\hat{H}^q(P_r, O_w^*)$ vanishes when P_r is unramified in P_r , it suffices to consider only primes P_r that are ramified in P_r . For each prime ideal P_r of P_r dividing a ramified prime P_r , there is an exact sequence of P_r -modules

$$0 \longrightarrow O_w^* \longrightarrow K_w^* \longrightarrow \mathbf{Z} \longrightarrow 0.$$

Consider the long exact sequence of Tate P_r -cohomology groups. By Lemma 1.1, the group H_r acts trivially on the cohomology groups $\widehat{H}^q(P_r, \mathbf{Z})$. By local class field theory there are natural isomorphisms $\widehat{H}^q(P_r, K_w^*) \cong \widehat{H}^{q-2}(P_r, \mathbf{Z})$ for all $q \in \mathbf{Z}$, so that H_r also acts trivially on the groups $\widehat{H}^q(P_r, K_w^*)$. Let Δ_r denote the maximal subgroup of H_r of order prime to p. Then Δ_r and P_r have coprime orders, so that the long cohomology sequence remains exact when we take Δ_r -invariants. It follows that $\widehat{H}^q(P_r, O_w^*)$ is Δ_r -invariant. Therefore Δ_r acts trivially on the sum $\bigoplus_{v|r} \widehat{H}^q(P_r, O_w^*)$. Since $\chi(r) \neq 1$ for all ramified primes r, we see that $\Delta_r \not\subset \ker(\chi)$. This implies that the χ -part of $\bigoplus_{v|r} \widehat{H}^q(P_r, O_w^*)$ is zero.

It follows that $\widehat{H}^q(G, U_K)(\chi) = 0$ for all $q \in \mathbf{Z}$. Combining all this and using Lemma 1.1 one more time, we deduce that $\widehat{H}^q(P, Cl_K(\chi)) = 0$ for all $q \in \mathbf{Z}$. This proves (i).

(ii) It is easy to see that the natural map $C_E/N(C_K) \longrightarrow Cl_E/N(Cl_K)$ is surjective. Since $\chi \neq 1$, the group $C_E/N(C_K) = \widehat{H}^0(P, C_K) \cong \widehat{H}^{-2}(P, \mathbf{Z})$ has trivial χ -part, and it follows that the norm map $N: Cl_K(\chi) \longrightarrow Cl_E(\chi)$ is surjective. Notice that in order to prove surjectivity of this norm map we have not really used the condition on χ , but merely the fact that χ is not trivial.

The P-cohomology groups of each module in the exact sequence $0 \longrightarrow O_K^* \longrightarrow U_K \longrightarrow C_K \longrightarrow Cl_K \longrightarrow 0$ have trivial χ -parts. Since the natural maps $O_E^* \to O_K^{*P}$, $U_E \to U_K^P$ and $C_E \to C_K^P$ are all isomorphisms, so is $Cl_E(\chi) \to Cl_K(\chi)^P$. This proves (ii).

Theorem 2.2. If for all primes r that are ramified in $F \subset K$ we have that $\chi(r) \neq 1$, then

(i) there is an exact sequence of $O_{\chi}[\pi]$ -modules

$$0 \longrightarrow O_{\chi}[\pi]^d \xrightarrow{\Theta} O_{\chi}[\pi]^d \longrightarrow Cl_K(\chi) \longrightarrow 0$$

where d is the O_{χ} -rank of $Cl_F(\chi)$;

(ii) we have

$$\#Cl_K(\chi)=\#O_\chi/(\prod_\psi B_{1,\chi^{-1}\psi})$$

where ψ runs over all characters $\psi:\pi\longrightarrow\overline{\overline{\mathbf{Q}}_{p}}^{*}$.

Proof. By Nakayama's lemma there is a surjective $O_{\chi}[\pi]$ morphism $O_{\chi}[\pi]^d$ — $Cl_K(\chi)$. By Theorem 2.1, the class group $Cl_K(\chi)$ and hence the kernel of this map are cohomologically trivial. Now one copies the proof of [2, p.113, Thm.8] with ${\bf Z}$ replaced by the discrete valuation ring O_{χ} . It follows that the kernel is a projective $O_{\chi}[\pi]$ -module. Since $O_{\chi}[\pi]$ is local, the kernel is therefore free. It has rank d since it is of finite index in $O_{\chi}[\pi]^d$. This proves (i).

Part (ii) is a generalization of the Theorem of B. Mazur and A. Wiles [7], [16], [17], [18]. By D. Solomon's Theorem [22, p.472], we have for every subgroup $P \subset \pi$ with cyclic quotient π/P ,

$$\#Cl_{K^P}(\chi)[N_{P'}/N_P] = \#O_\chi/(\prod_{ker \, \psi = P} B_{1,\chi^{-1} \, \psi}).$$

Here the ψ run over the characters of G for which $\ker \psi = P$. Here P' denotes the unique subgroup of π containing P as a subgroup of index p and N_P and $N_{P'}$ denote the norm maps $\sum_{\sigma \in P} \sigma$ and $\sum_{\sigma \in P'} \sigma$ respectively. In the exceptional case $P = \pi$ the group P' is not defined and we simply put $N_{P'} = 0$. By $Cl_K^P[N_{P'}/N_P]$ we denote the kernel of the relative norm map $N_{P'}/N_P$ from the class group $Cl_{K^P}(\chi)$ to itself.

Put $S_{\chi} = \prod_{P} N_{P} O_{\chi}[\pi] / N_{P'} O_{\chi}[\pi]$. Here P runs over the subgroups of π with cyclic quotient π/P . The natural map

$$g: O_{\chi}[\pi] \longrightarrow S_{\chi}$$

becomes an isomorphism when we take the tensor product with the quotient field K_{χ} of O_{χ} . Therefore g is injective and has finite cokernel.

All modules occurring in the exact sequence of part (i) are cohomologically trivial. Therefore it remains exact when we apply the functor $\prod_P N_P(-)/N_{P'}(-)$ to it. We obtain the following diagram with exact rows.

Theorem 2.1(i) and (ii) and an application of the snake lemma then gives that

$$\#Cl_K(\chi) = \prod_P \#(N_P Cl_K(\chi)/N_{P'} Cl_K(\chi)) = \prod_P \#(Cl_{K^P}(\chi)[N_{P'}/N_P])$$

and the result follows from Solomon's Theorem.

It is not difficult to express the order of $Cl_K(\chi)$ in terms of the matrix Θ of Theorem 2.1(i). One has [1, III, sect.9, Prop.6]

$$\#Cl_K(\chi) = \#O_\chi/(\prod_{\psi} \psi(\det(\Theta))).$$

Here ψ runs over the characters of π , and $\psi(\det(\Theta))$ indicates the value of the natural extension of ψ to an algebra homomorphism $O_{\chi}[\pi] \longrightarrow \overline{\mathbf{Q}}_p$ on $\det(\Theta) \in O_{\chi}[\pi]$.

Next we deduce a sufficient condition for the eigenspace $Cl_K(\chi)$ to be a cyclic $O_X[\pi]$ -module.

Theorem 2.3. Suppose that for all primes r that are ramified in $F \subset K$ we have that $\chi(r) \neq 1$. If one of the following conditions holds:

- $B_{1,\chi^{-1}} = pu$ for some unit $u \in O_{\chi}^*$;
- there exists a character $\varphi: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \longrightarrow \overline{\mathbf{Q}_p}^*$ of order $p^k > 1$ such that $B_{1,\chi^{-1}\varphi} = (1 \zeta_{p^k})u$ for some unit u in $O_{\chi}[\zeta_{p^k}]$,

then there is an isomorphism of $O_{\chi}[\pi]$ -modules

$$Cl_K(\chi) \cong O_{\chi}[\pi]/(\theta_{\chi}).$$

In particular, $Cl_K(\chi)$ is a cyclic $O_{\chi}[\pi]$ -module.

Proof. We first show that $Cl_F(\chi)$ is a cyclic O_χ -module. If $B_{1,\chi^{-1}} = pu$ for some unit $u \in O_\chi^*$, it follows from Theorem 2.2(ii) that $\#Cl_F(\chi)$ is equal to the order of the residue field $O_\chi/(p)$. Therefore $Cl_F(\chi)$ is cyclic over O_χ .

In the other case, let $E=\overline{\mathbf{Q}}^{\ker\varphi}F$ and let $P=\operatorname{Gal}(E/F)$. Then P is cyclic and we let $F\subset E'\subset E$ be the unique subfield of E of index p. Since $\varphi\neq 1$, it follows from Theorem 2.1(ii) that the norm map $N_{E/E'}:Cl_E(\chi)\longrightarrow Cl_{E'}(\chi)$ is surjective. To compute the order of the kernel of $N_{E/E'}$, we observe that

$$Norm(B_{1,\chi^{-1}\varphi}) = Norm(1 - \zeta_{p^k}) = p$$

(here the Norm is the $\mathbf{Q}_p(\zeta_{p^k})/\mathbf{Q}_p$ -norm). By Solomon's Theorem [22, Thm. II, 1], we conclude that $Cl_E(\chi)[N_{E/E'}]$ has the same order as the residue field $O_\chi/(p)$ of R_χ . Therefore so does $Cl_E(\chi)/(N_{E/E'})$. By Nakayama's lemma, $Cl_E(\chi)$ is therefore cyclic over the group ring $O_\chi[P]$. It follows that $Cl_F(\chi)$ is cyclic over O_χ in this case as well.

To complete the proof, we observe that, by Theorem 2.1, $Cl_K(\chi)$ is cohomologically trivial and the π -norm map induces an O_χ -isomorphism between $Cl_F(\chi)$ and $Cl_K(\chi)$ modulo the augmentation ideal of $O_\chi[\pi]$. It follows from Nakayama's lemma that $Cl_K(\chi)$ is cyclic over $O_\chi[\pi]$. By Stickelberger's theorem there is therefore a surjection $O_\chi[\pi]/(\theta_\chi) \longrightarrow Cl_K(\chi)$, which is an isomorphism because both groups have the same order by Theorem 2.2. This proves Theorem 2.3.

In the case the p-group π is cyclic of order p^e , say, we can be a little bit more explicit. We have the usual isomorphism of local rings, familiar in Iwasawa theory

$$O_{\chi}[\pi] \cong O_{\chi}[T]/((1+T)^{p^e}-1),$$

where 1+T corresponds to some generator of π . The maximal ideal of this local ring is (T, p). For $i \geq 0$, we let $\omega_i(T) = (1+T)^{p^i} - 1$.

By the Weierstrass Preparation theorem [24], every non-zero $f(T) \in O_{\chi}[[T]]/((1+T)^{p^e}-1)$ is the residue class of a polynomial of the form $p^{\mu}u(T)h(T)$ where μ is a non-negative integer, u(T) a unit and $h(T) = T^{\lambda} + a_{\lambda-1}T^{\lambda-1} + \ldots + a_1T + a_0$ is a Weierstrass polynomial of degree $\lambda < p^e$. This means that $a_i \equiv 0 \pmod{p}$ for $i = 0, 1, \ldots, \lambda - 1$.

Proposition 2.4. Suppose that for all primes r that are ramified in $F \subset K$ we have that $\chi(r) \neq 1$. Suppose that the Galois group π is cyclic of order p^e and that $Cl_F(\chi)$ is a cyclic O_χ -module. If for some character ψ of π of order p, for some $\lambda < p-1$ and for some unit $u \in O_\chi[\zeta_p]$, we have that $B_{1,\chi^{-1}\psi} = (1-\zeta_p)^{\lambda}u$, then

$$Cl_K(\chi) \cong (O_\chi/(p^e))^{\lambda-1} \times O_\chi/(p^e B_{1,\chi^{-1}})$$

as an O_{χ} -module.

Proof. We write $O_{\chi}[\pi] = O_{\chi}[T]/(\omega_e(T))$ as above. Since $Cl_F(\chi)$ is a cyclic O_{χ} -module, it follows from Theorem 2.1 that the eigenspace $Cl_K(\chi)$ is a cohomologically trivial cyclic $O_{\chi}[\pi]$ -module. Therefore $Cl_K(\chi) \cong O_{\chi}[\pi]/(p^{\mu}f(T))$ for some Weierstrass polynomial f(T). Since $Cl_F(\chi) \cong O_{\chi}[\pi]/(T) \cong O_{\chi}/(p^{\mu}f(0))$, we have that $p^{\mu}f(0) = B_{1,\chi^{-1}}$, up to a p-adic unit. Similarly, for the subfield $F \subset E \subset K$ of degree p over F we have that $Cl_E \cong O_{\chi}[T]/(f(T), \omega_1(T))$. Applying Solomon's Theorem [22, Thm. II, 1], we find that, up to a p-adic unit, $f(1-\zeta_p) = B_{1,\chi^{-1}\psi} = (1-\zeta_p)^{\lambda}$.

Since $\lambda < p-1$, this implies $\mu = 0$ and $\deg(f) = \lambda$. Since $O_{\chi}[T]/(f(T), \omega_e(T))$ is cohomologically trivial, we have the following exact sequence

$$0 \longrightarrow O_{\chi}[T]/(f(T), \omega_e(T)/T) \xrightarrow{T} O_{\chi}[T]/(f(T), \omega_e(T)) \longrightarrow O_{\chi}/(f(0)) \longrightarrow 0.$$

We analyze the ideal $(f(T), \omega_e(T)/T)$. Consider for $0 \le i < e$ the quotient

$$\frac{\omega_{i+1}(T)}{\omega_i(T)} = (1+T)^{p^i(p-1)} + \ldots + (1+T)^{p^i} + 1.$$

Since $\lambda < p-1$ we have that $T^{p-1} \equiv Tpg(T) \pmod{f(T)}$ for some polynomial $g(T) \in O_{\chi}[T]$. This implies that $\omega_{i+1}/\omega_i = p + pTh(T)$ for some $h(T) \in O_{\chi}[T]$. Therefore

$$\frac{\omega_e(T)}{T} = \prod_{i=0}^{e-1} \frac{\omega_{i+1}}{\omega_i} \equiv p^e \cdot u(T) \pmod{f(T)}$$

where u(T) is some unit in $O_{\chi}[T]/(\omega_e(T))$. This shows that the ideals $(f(T), \omega_e(T)/T)$ and $(f(T), p^e)$ are equal and that there is an isomorphism of O_{χ} -modules

$$O_{\chi}[T]/(f(T), \omega_e(T)/T) \cong (O_{\chi}/p^e O_{\chi})^{\lambda}.$$

To complete the proof, we observe that $f(0) \in O_{\chi}[T]/(f(T), \omega_e(T))$ is the image of

$$\frac{f(T)-f(0)}{T}\in O_{\chi}[T]/(f(T),\omega_e(T)/T)=O_{\chi}[T]/(f(T),p^e),$$

under the multiplication by T map. Since f is monic, this implies that f(0) has order p^e . Therefore $1 \in O_{\chi}[T]/(\omega_e(T), f(T))$ has, up to p-adic unit, order $f(0)p^e$. This completes the proof

The following simple result often suffices to determine the structure of the p-part of the minus class group of $\mathbf{Q}(\zeta_l)$ when p divides l-1. Note that the proof does not rely on the theorems of Mazur-Wiles, Kolyvagin or Solomon.

Theorem III. Let l and p be odd primes and let M be the p-part of the minus class group of $\mathbf{Q}(\zeta_l)$. If #M divides $(l-1)^2$, then M is a cyclic group.

Proof. Let π denote the p-part of $G = \operatorname{Gal}(\mathbf{Q}(\zeta_l)/\mathbf{Q})$; it is a cyclic group of order p^e . Let F be the fixed field of π , let χ be a character of G of order prime to p and let $M(\chi)$ be the corresponding eigenspace of M. We assume that $M(\chi) \neq 0$. Since the condition of Theorem 2.1 is satisfied for $K = \mathbf{Q}(\zeta_l)$, there is an exact sequence

$$0 \longrightarrow O_{\chi}[\pi]^d \xrightarrow{\Theta} O_{\chi}[\pi]^d \longrightarrow M(\chi) \longrightarrow 0,$$

where d is the O_{χ} -rank of $Cl_F(\chi)$. Let $q=p^a$ denote the number of elements in the residue field of O_{χ} . We write $\det(\Theta)=p^{\mu}u(T)f(T)\in O_{\chi}[\pi]\cong O_{\chi}[T]/(\omega_e(T))$ for some Weierstrass polynomial $f(T)=T^{\lambda}+a_{\lambda-1}T^{\lambda-1}+\ldots+a_1T+a_0$ and some unit u(T). Then $\#M(\chi)=\#O_{\chi}/(\prod_{C^{p^e}=1}p^{\mu}f(\zeta-1))$, so that

$$\#M(\chi) > q^{\mu p^e + \min(\lambda, p-1)e + 1}$$

and hence

$$2e \ge a(\mu p^e + \min(\lambda, p - 1)e + 1).$$

Since $2e < p^e + 1$, we have $\mu = 0$. Since $M(\chi) \neq 0$, this implies that $\lambda > 0$. Moreover, since $a \cdot \min(\lambda, p - 1) < 2$, we have that $\lambda = 1$ and a = 1 so that $O_{\chi} = \mathbf{Z}_{p}$. This shows that, up to a unit, $f(T) = \det(\Theta) = T - \beta$ for some $\beta \in p\mathbf{Z}_{p}$. Since d is the O_{χ} -rank of $Cl_{F}(\chi)$, any surjection $O_{\chi}[\pi]^{d} \longrightarrow Cl_{l}(\chi)$ is an isomorphism modulo the maximal ideal \mathfrak{m} of the local ring $O_{\chi}[\pi]$. This implies that all entries of the matrix Θ are contained in \mathfrak{m} so that $\det(\Theta) \in \mathfrak{m}^{d}$.

It follows that d=1, so that $M(\chi) \cong \mathbf{Z}_p[T]/((1+T)^{p^e}-1, T-\beta) \cong \mathbf{Z}_p/p^e\beta\mathbf{Z}_p$ is a cyclic group. We conclude the proof by observing that $\#M(\chi) \geq p^{e+1}$, so that only one eigenspace $M(\chi)$ is non-trivial and hence $M=M(\chi)$.

3. The 2-part

In this section we study the 2-part of the minus class group of a complex abelian number field K. We show that certain eigenspaces of the 2-part are cohomologically trivial Galois modules. This has consequences for their structure. Finally we prove a criterion for cyclicity of these eigenspaces as Galois modules.

Let $G = \operatorname{Gal}(K/\mathbf{Q})$, let $\iota \in G$ denote complex conjugation and let K^+ denote the fixed field of ι . We have inclusions of idèle class groups $C_{K^+} \subset C_K$ and of idèle unit groups $U_{K^+} \subset U_K$. There is a natural map $Cl_{K^+} \longrightarrow Cl_K$. We define

$$\begin{split} U_K^- &= U_K/U_{K^+}, \\ C_K^- &= C_K/C_{K^+}, \\ Cl_K^- &= Cl_K/\text{im}\,Cl_{K^+}, \\ \mu_K^- &= \mu_K \cap U_K^-. \end{split}$$

Note that U_K^- is isomorphic to the submodule $U_K^{1-\iota}$ of U_K . The intersection $\mu_K \cap U_K^-$ is taken inside U_K .

A diagram chase involving the exact sequence $0 \longrightarrow O_K^* \longrightarrow U_K \longrightarrow C_K \longrightarrow Cl_K \longrightarrow 0$ and the analogous sequence for K^+ shows that there is an exact sequence [19]

$$0 \longrightarrow \mu_K^- \longrightarrow U_K^- \longrightarrow C_K^- \longrightarrow Cl_K^- \longrightarrow 0.$$

It is important to use the definition of the minus class group Cl_K^- that we give here. Often the minus class group of an abelian number field K is defined to be the kernel of the norm map $N:Cl_K\longrightarrow Cl_{K^+}$. The present definition differs at most in the 2-part. It has several advantages: as we will see below, it is easy to compute the Galois cohomology of Cl_K^- ; the results for the 2-part are very similar to the results for the odd parts. I don't know how to do the calculations using the other definition.

Another advantage over the usual definition is the following. It is easy to deduce the following formula for the order of Cl_K^- from the usual class number formula:

$$\#Cl_K^- = \frac{2}{[\mu_K:\mu_K^-]} \#\mu_K \prod_{\chi \ odd} -\frac{1}{2} B_{1,\chi}.$$

This formula does not involve the unit index " Q_K " of Hasse [5, Ch.20], which is, in general, difficult to compute. This time there is the factor $2/[\mu_K:\mu_K^-]$, which is either 1 or 2, but this quantity is easy to compute; it captures, in some sense, only the easy aspects of the unit index Q_K and its calculation is precisely the content of Hasse's Satz 22 in [5].

In this section we fix a complex abelian number field K with $G = \operatorname{Gal}(K/\mathbb{Q})$. Let π be the 2-part of G with fixed field $k = K^{\pi}$. We fix a non-trivial character χ of G of odd order. We denote the fixed field of K under ι by K^+ . Note that $k \subset K^+$.

Theorem 3.1. Let $P \subset \pi$ be a 2-group that does not contain ι and let $E = K^P$. Let E^+ be the fixed field of E under ι . If all primes r that ramify in $E^+ \subset K$ satisfy $\chi(r) \neq 1$, then

- (i) $Cl_K^-(\chi)$ is a cohomologically trivial $O_\chi[P]$ -module;
- (ii) the natural map $Cl_E^-(\chi) \longrightarrow Cl_K^-(\chi)^P$ is bijective and the norm map $N: Cl_K^-(\chi) \longrightarrow Cl_E^-(\chi)$ is surjective.

Proof. Note that $Gal(K/E^+) \cong P \times \{1, \iota\}$. The proof follows the pattern of the proof of Theorem 2.1.

(i) It suffices to show that $\widehat{H}^q(P,Cl_K^-(\chi))=0$ for all $q\in\mathbf{Z}$. Consider the exact sequence

$$0 \longrightarrow \mu_K^- \longrightarrow U_K^- \longrightarrow C_K^- \longrightarrow Cl_K^- \longrightarrow 0.$$

We show that the χ -parts of the P-cohomology groups of the first three modules are trivial. Lemma 1.1 then implies that $\widehat{H}^q(P, Cl_K^-(\chi)) = 0$ for all $q \in \mathbf{Z}$.

Since χ has odd order, it acts trivially on the 2-part of μ_K^- and therefore on its P-cohomology groups. This shows that $\widehat{H}^q(P,\mu_K^-)(\chi)=0$ for all $q\in \mathbf{Z}$. By global class field theory $\widehat{H}^q(P,C_K)$ and $\widehat{H}^q(P,C_{K^+})$ are isomorphic to $\widehat{H}^{q-2}(P,\mathbf{Z})$ and have therefore trivial G-action and, since $\chi\neq 1$, trivial χ -parts. It follows that $\widehat{H}^q(P,C_{K^-})(\chi)=0$ for all $q\in \mathbf{Z}$.

By local class field theory and the fact that $\chi(r) \neq 1$ for the primes r that ramify in $E \subset K$ and $E^+ \subset K^+$ we have that $\widehat{H}^q(P, U_K)$ and $\widehat{H}^q(P, U_{K^+})$ have trivial χ -parts. The proofs are similar to the proof of part (i) of Theorem 2.1.

(ii) The natural map $C_E^-/N(C_K^-) \longrightarrow Cl_E^-/N(Cl_K^-)$ is surjective. We saw already in the proof of part (i) that $C_E^-/N(C_K^-) = \hat{H}^0(P,C_K^-)$ has trivial χ -part. Therefore the norm map $N:Cl_K^-(\chi) \longrightarrow Cl_E^-(\chi)$ is surjective. Note that we only used the fact that $\chi \neq 1$ to prove this.

To prove the second statement, we consider the following diagram:

An easy diagram chase shows that the first three vertical arrows are injective and have cokernels with trivial χ -parts. By the proof of part (i), the P-cohomology groups of each of the modules μ_K^- , U_K^- , C_K^- and Cl_K^- have trivial χ -parts as well. This easily implies that the rightmost map induces an isomorphism $Cl_E^-(\chi) \longrightarrow Cl_K^-(\chi)^P$ as required.

Theorem 3.2. If all primes r that ramify in $k \subset K$ satisfy $\chi(r) \neq 1$, then (i) there is an exact sequence

$$0 \longrightarrow (O_{\chi}[\pi]/(1+\iota))^d \stackrel{\Theta}{\longrightarrow} (O_{\chi}[\pi]/(1+\iota))^d \longrightarrow Cl_K^-(\chi) \longrightarrow 0;$$

(ii) If, in addition, the prime 2 is not ramified in the field K, then

$$\#Cl_K^-(\chi) = O_\chi/(\prod_{\chi} \frac{1}{2} B_{1,\chi^{-1}\psi}),$$

where the product runs over the odd characters ψ of G of 2-power order.

Proof. Choose $\sigma \in \pi$ so that $\langle \sigma \rangle$ is a direct summand of π containing ι . Let 2^e denote the order of σ and let P be a complement of $\langle \sigma \rangle$ in π : we have $\pi = P \times \langle \sigma \rangle$. The eigenspace $Cl_K^-(\chi)$ is a $O_\chi[\pi]$ -module on which $\iota = \sigma^{2^{e-1}}$ acts as -1. Therefore $Cl_K^-(\chi)$ is a module over the ring $O_\chi[P \times \langle \sigma \rangle]/(1 + \iota) \cong O_\chi[\zeta_{2^e}][P]$.

By Theorem 3.1, $Cl_K^-(\chi)$ is a cohomologically trivial P-module. Let $O_\chi[\zeta_{2^e}][P]^d$ $\to Cl_K^-(\chi)$ be a surjective $O_\chi[\zeta_{2^e}][P]$ -homomorphism. The kernel is a cohomologically trivial torsion-free $O_\chi[\zeta_{2^e}][P]$ -module. As in the proof of Theorem 2.3, we copy the proof of [2, p.113, Thm.8] with $\mathbf Z$ replaced by the discrete valuation ring $O_\chi[\zeta_{2^e}]$. It follows that the kernel is projective and hence free over the local ring $O_\chi[\zeta_{2^e}][P]$. Since the quotient is finite, the kernel has rank d. This proves (i).

(ii) We proceed with induction with respect to the order of π . Since 2 is unramified we may apply C. Greither's Theorem [4, p.453, Thms. A and B] and we see that the result holds when π is cyclic. Suppose π is not cyclic. Writing $\pi = \langle \sigma \rangle \times P$ as in part (i), the group P is not trivial. Let $\tau \in P$ be an element of order 2. The fixed fields K^{τ} and $K^{\tau\iota}$ of τ and $\tau\iota$ are both complex abelian number fields containing k. The set of odd characters of G is the disjoint union of the sets of odd characters of $\operatorname{Gal}(K^{\tau\iota}/\mathbf{Q})$ and $\operatorname{Gal}(K^{\tau\iota}/\mathbf{Q})$.

By induction, the result holds for the fields K^{τ} and $K^{\tau\iota}$. By Theorem 3.1(i), $M = Cl_K^{-}(\chi)$ is cohomologically trivial, both as a $\{1, \tau\}$ -module and as a $\{1, \tau\iota\}$ -module. Moreover, by part (ii) of that theorem, $(1 + \tau)M$ and $(1 + \tau\iota)M$ are isomorphic to the χ -part of the 2-part of the minus class group of K^{τ} and $K^{\tau\iota}$

respectively. Since ι acts as -1 on M, it follows from the cohomological triviality of M that $\#M = \#(1+\tau)M \cdot \#(1-\tau)M = \#(1+\tau)M \cdot \#(1+\tau\iota)M$. proves (ii).

Finally we prove a sufficient condition for the eigenspace $Cl_K^-(\chi)$ to be a cyclic $O_{\chi}[\pi]/(1+\iota)$ -module.

Theorem 3.3. Suppose that all primes r that ramify in $k \subset K$ satisfy $\chi(r) \neq 1$. If there exists an odd character φ of odd conductor and of order 2^k for which each of the following two conditions hold:

- $\begin{array}{l} -\frac{1}{2}B_{1,\chi^{-1}\varphi}=(1-\zeta_{2^k})u \ for \ some \ unit \ u\in O_\chi[\zeta_{2^e}]^*, \\ -\chi(r)\neq 1 \ for \ all \ primes \ r \ dividing \ the \ conductor \ of \ \varphi, \end{array}$

then $Cl_K^-(\chi)$ is a cyclic $O_{\chi}[\pi]/(1+\iota)$ -module.

Proof. Let k_{φ} denote the composite field $k\mathbf{Q}^{\ker \varphi}$ and let K_{φ} denote $K\mathbf{Q}^{\ker \varphi}$. Both fields $k_{\varphi} \subset K_{\varphi}$ are complex. Put $\pi' = \operatorname{Gal}(K_{\varphi}/k)$ and $P = \operatorname{Gal}(K_{\varphi}/k_{\varphi})$. We have that $\iota \notin P$.

Since 2 is not ramified, it follows from Greither's Theorem that the order of $Cl_{k_{o}}^{-}(\chi)$ is equal to the order of $O_{\chi}/(\mathrm{Norm}(\frac{1}{2}B_{1,\chi^{-1}\varphi}))$. Here the Norm is the $O_{\chi}[\zeta_{2^k}]/O_{\chi}$ -Norm. Since Norm $(\frac{1}{2}B_{1,\chi^{-1}\varphi}) = \text{Norm}(1-\zeta_{2^k}) = 2$, we see that the order of $Cl_{k_{o}}^{-}(\chi)$ is equal to the order of the residue field of O_{χ} . Therefore $Cl_{k_{\varphi}}^{-}(\chi)$ is a cyclic Galois module. By Theorem 3.1, applied to $E=k_{\varphi}\subset K_{\varphi}$, the eigenspace $Cl^-_{K_{\omega}}(\chi)$ is a cohomologically trivial P-module and the P-norm map induces an isomorphism between $Cl_{k_{\varphi}}^{-}(\chi)$ and $Cl_{K_{\varphi}}^{-}(\chi)$ modulo the P-augmentation ideal. Therefore another application of Nakayama's Lemma implies that $Cl_{K_0}^-(\chi)$ is a cyclic $O_{\chi}[P]$ -module and hence a cyclic $O_{\chi}[\pi']/(1+\iota)$ -module. Therefore its quotient $Cl_K^-(\chi)$ is a cyclic $O_\chi[\pi]/(1+\iota)$ -module, as required.

If the group π is cyclic, then $O_{\chi}[\pi]/(1+\iota) \cong O_{\chi}[\zeta_{2^e}]$ where $\#\pi = 2^e$. Since the ring $O_{\chi}[\zeta_{2^e}]$ is a discrete valuation ring, the structure of finite modules over $O_{\chi}[\pi]/(1+\iota)$ is particularly simple.

Proposition 3.4. Suppose that π is cyclic and that $Cl_K^-(\chi)$ is cyclic over $O_{\chi}[\pi]$. If $\#Cl_K^-(\chi) = 2^{ft}$, where 2^f is the order of the residue field $O_\chi/(2)$, then there is an isomorphism of $O_{\chi}[\zeta_{2^e}]$ -modules

$$Cl_K^-(\chi) \cong O_{\chi}[\zeta_{2^e}]/((1-\zeta_{2^e})^t)$$

and there is an isomorphism of abelian groups

$$Cl_{\kappa}^{-}(\chi) \cong (\mathbf{Z}/2^{r}\mathbf{Z})^{f(2^{e-1}-s)} \times (\mathbf{Z}/2^{r+1}\mathbf{Z})^{fs}$$

where $r, s \in \mathbf{Z}$ are determined by $t = r2^{e-1} + s$ and $0 \le s < 2^{e-1}$.

Proof. This follows from the fact that $O_{\chi}[\zeta_{2^{e}}]$ is a discrete valuation ring with uniformizing element $1 - \zeta_{2e}$.

4. Tables

In this section we present the proof of Theorem II. An essential ingredient is the table of class numbers h_l^- given in the appendix. We briefly explain the notation.

l			l		
233	$p_{14}\cdot p_{29}$	PM	419	$p_{16}\cdot p_{30}\cdot p_{49}$	PM, HtR
269	$p_{16}\cdot p_{31}$	PM	433	$p_{14}\cdot p_{34}$	PM
317	$p_{25}\cdot p_{49}$	$_{ m HtR}$	439	$p_{11} \cdot p_{21} \cdot p_{23} \cdot p_{24}$	PM, PM, PM
337	$p_{13}\cdot p_{15}\cdot p_{15}$	PM, PM	449	$p_{18}\cdot p_{84}$	PM
359	$p_{13}\cdot p_{30}\cdot p_{45}$	PM, HtŘ	463	$p_{18}\cdot p_{21}\cdot p_{25}$	PM, BS
379	$p_{22}\cdot p_{24}$	BS	467	$p_{19}\cdot p_{49}\cdot p_{55}$	PM, AL
383	$p_{19}\cdot p_{24}\cdot p_{46}$	PM, HtR	479	$p_{20}\cdot p_{27}\cdot p_{70}$	PM, AL
389	$p_{24}\cdot p_{60}$	AL	487	$p_{30}\cdot p_{49}$	HtR
397	$p_8 \cdot p_{26} \cdot p_{27}$	PM, BS	499	$p_{15}\cdot p_{18}\cdot p_{47}$	PM, PM
401	$p_{16}\cdot p_{18}\cdot p_{31}$	PM, PM	503	$p_{12}\cdot p_{14}\cdot p_{112}$	PM, PM
409	$p_{12} \cdot p_{52}$	PM	509	$p_{16}\cdot p_{28}\cdot p_{101}$	PM, AL

Table 4.1

Let l be an odd prime. We have $l-1=2^e\cdot m$ with m odd. For every divisor d of l-1 which itself is divisible by 2^e we define

$$h_l^-(d) = \prod_{\text{ord}(\chi)=d} -\frac{1}{2} B_{1,\chi}$$

where the product runs over the characters $\chi: (\mathbf{Z}/l\mathbf{Z})^* \longrightarrow \mathbf{C}^*$ of order d; except when d = l - 1, in which case we multiply this product by l, and when $d = 2^e$, in which case we multiply it by 2. In the rare occasion when l - 1 is equal to 2^e , the only possible value for d is $l - 1 = 2^e$ and we put

$$h_l^{-}(d) = 2l \prod_{\text{ord}(\chi)=d} -\frac{1}{2} B_{1,\chi}.$$

This last case occurs only when l is a Fermat prime i.e., when l=3, 5, 17, 257, 65537 or has more than $2500\,000$ decimal digits.

The numbers $h_l^-(d)$ are listed in the appendix. They are rational integers [5], [24] and they are related to the minus class number h_l^- by

$$h_l^- = \#Cl_l^- = \prod_{2^e|d|l-1} h_l^-(d).$$

In [15] D. H. Lehmer and J. M. Masley presented a table with the numbers $h_l^-(d)$ for $l \leq 509$. Of most of these numbers the complete prime factorization was given, but their table contains 22 unfactored composite numbers. These were factored by Peter Montgomery (PM), Bob Silverman (BS), Herman te Riele (HtR) and Arjen Lenstra (AL). The most laborious factorization, for l=467, was performed by Arjen Lenstra, who factored a 103 digit factor of h_{467}^- into a product of two primes of 49 and 55 digits respectively. We list the various contributions in Table 4.1. By p_n we denote a prime factor of n decimal digits. The order in which the initials are given corresponds to the order of the prime factors. In order to prove Theorem II and, at the same time, determine the structure of Cl_l^- as an abelian group, we study the table of numbers $h_l^-(d)$ of the appendix. Clearly, if a prime p divides the class number h_l^- exactly once, the p-part of Cl_l^- is cyclic as a group and hence as a Galois module. This happens for most large prime divisors. All other cases are listed below. Tables 4.2, 4.3 and 4.4 contain the prime pairs (p,l) with $l \leq 509$ for which p^2 divides h_l^- . We discuss each table in some detail.

The class group Cl_l^- is a product of its p-parts and each p-part is a product of eigenspaces $Cl_l(\chi)$. The minus class group Cl_l^- is a cyclic Galois module if and only if for each prime p, each eigenspace $Cl_l^-(\chi)$ is cyclic over the local ring $O_{\chi}[\pi]$, where π is the p-part of $G = Gal(\mathbf{Q}(\zeta_l)/\mathbf{Q})$.

Table 4.2 .	Primes	p not	dividing	l $-$	1
---------------	--------	-------	----------	-------	---

l	p	d	f	$h_l(d)$	class group	
41	11	40	2	11^2	11 × 11	
131	3	26	3	3^3	$3 \times 3 \times 3$	
139	47	46	1	47^{2}	2209	Thm.2.3 with $r = 283$
	277	46	1	277	277	
		138	1	277	277	
149	3	4	2	3^2	3×3	
151	11	30	2	11^{2}	11×11	
157	157	156	1	157^{2}	157×157	Thm.2.2
211	281	14	1	281	281	
		70	1	281	281	
227	2939	226	1	2939^{3}	$2939 \times 2939 \times 2939$	Thm.2.2
241	47	16	2	47^{2}	47×47	
277	47	276	2	47^{2}	47×47	
281	11	40	2	11^{2}	11×11	
	41	40	1	41^{2}	1681	Thm.2.3 with $r = 83$
293	3	4	2	3^2	3×3	
313	37	24	2	37^{2}	37×37	
337	17	16	1	17^{2}	17×17	Thm.2.2
353	353	352	1	353^{2}	353×353	Thm.2.2
379	379	42	1	379	379	
		378	1	379	379	
397	23	132	2	23^{2}	23×23	
401	41	80	2	41^{2}	41×41	
409	5	24	2	5^2	5×5	
419	3	2	1	3^2	9	Thm.2.3 with $r = 7$
443	3	26	3	3^6	$9 \times 9 \times 9$	Thm.2.3 with $r = 7$
457	5	24	2	5^2	5×5	
467	467	466	1	467^{2}	467×467	Thm.2.2
479	5	2	1	5^2	25	Thm.2.3 with $r = 11$
487	7	2	1	7	7	
		6	1	7	7	
	37	18	1	37^{2}	37×37	Thm.2.2
491	3	2	1	3^2	9	Thm.2.3 with $r = 7$
	11	10	1	11^{3}	11×121	Thm.2.2, Thm.2.3 with $r = 23$
	491	98	1	491	491	
		490	1	491^{2}	491×491	Thm.2.2

In Table 4.2 we have listed all pairs (p,l) for which p is odd and p^2 divides h_l^- , but p does not divide l-1. In this case the p-part π of the Galois group of $\mathbf{Q}(\zeta_l)$ over \mathbf{Q} is trivial and an eigenspace $Cl_l(\chi)$ is cyclic as a Galois module if and only if it is a cyclic O_χ -module. It turns out that in all cases every $Cl_l(\chi)$ is cyclic as an O_χ -module.

To explain the table, we first note that in the case l=p, the Teichmüller eigenspace $Cl_l^-(\omega)$ is always trivial. Therefore we only have contributions for the

ℓ	p	d	h_0, h_1, \dots	group	
31	3	2	3, 3	9	
71	7	2	7, 7	49	
101	5	4	5, 25, 25	25×125	Prop.2.4, $\lambda = 2$
131	5	2	5, 5	25	
137	17	8	17, 17	289	
139	3	2	3, 3	9	
157	13	12	13, 13	169	
181	5	4	25, 5	125	Prop.2.4, $\lambda = 1$
199	3	2	9, 3, 3	81	
211	3	2	3, 3	9	
	7	6	7, 7	49	
283	3	2	3, 3	9	
307	3	2	3, 3, 3	27	
331	3	2	3, 9	3×9	Thm.2.3, $\theta = T^2 - 15T + 3$
	3	10	81, 81	$9 \times 9 \times 9 \times 9$	Prop.2.4, $\lambda = 1$
337	7	16	49, 49	49×49	Prop.2.4, $\lambda = 1$
367	3	2	9, 3	27	Prop.2.4, $\lambda = 1$
379	3	2	3, 3, 3, 3	81	
409	17	8	17, 17	289	
421	5	4	25, 5	125	Prop.2.4, $\lambda = 1$
439	3	2	3, 27	9×9	Thm.2.3, $\theta = T^2 - 3T - 3$
461	5	4	25, 25	5×125	Thm.2.3 with $r = 11$; Prop.2.4, $\lambda = 2$
463	7	2	7, 7	49	
	7	6	7, 7	49	
499	3	2	3, 3	9	

Table 4.3. Odd primes p dividing l-1

characters $\chi \neq \omega$. Let d be a divisor of l-1 for which p divides $h_l^-(d)$. Then for all characters χ of order d the ring O_χ has a residue field with p^f elements where f is the order of p modulo d. If p^f happens to be the exact power of p dividing $h_l^-(d)$, then it is clear that for exactly one character χ of order d the eigenspace $Cl_l^-(\chi)$ is isomorphic to $O_\chi/(2)$ while all others are trivial. These cases are listed without comment. In the remaining cases we apply the theorem of Mazur and Wiles which is the case with trivial π of Theorem 2.2. If the precise power of p dividing $h_l^-(d)$ is p^{fa} and for precisely a characters χ of order d the generalized Bernoulli number $B_{1,\chi^{-1}}$ is divisible by p, then each eigenspace $Cl_l^-(\chi)$ is either isomorphic to $O_\chi/(2)$ or is zero. In particular, each $Cl_l(\chi)$ is a cyclic Galois module. This happens in all but seven cases. In the remaining seven cases we use Theorem 2.3 and show that each eigenspace is a cyclic O_χ module by computing an additional Bernoulli number $B_{1,\chi^{-1}\varphi}$ where φ is a suitable even character of order p and conductor r.

In Table 4.3 we have listed all pairs (p,l) with $p \neq 2$ dividing l-1. We'll see below that in this case the class number h_l^- is automatically divisible by p^2 , so that Table 4.3 actually contains all pairs (p,l) for which p divides $\gcd(h_l^-,l-1)$. In order to explain the contents of the table, we fix p and l and we let p^e be the exact power of p dividing l-1.

If d and d' are two divisors of l-1 that only differ by a power of p, then $B_{1,\varphi^{-1}} \equiv B_{1,\varphi'^{-1}}$ modulo $(1-\zeta_{p^e})$ for all characters φ of order d and φ' of order d'. Therefore, as Lehmer observed [14, Thm.5], either both $h_l^-(d)$ and $h_l^-(d')$ are divisible by p

ℓ	d	$\operatorname{ord}(\chi)$	2^e	f	$h_l^-(d)$	2-class group	r
29	28	7	4	3	8	$2 \times 2 \times 2$	
11	3 112	7	16	3	8	$2 \times 2 \times 2$	
16	$3 \mid 6$	3	2	2	4	2×2	
19	$7 \mid 28$	7	4	3	8	$2 \times 2 \times 2$	l i
23	9 14	7	2	3	8^2	$4 \times 4 \times 4$	3
27	$7 \mid 12$	3	4	2	4^2	$2 \times 2 \times 2 \times 2$	3
31	$1 \mid 62$	31	2	5	32^{2}	$2 \times 2 \times$	1
33	7 336	21	16	6	64	$2 \times 2 \times 2 \times 2 \times 2 \times 2$	
34	$9 \mid 12$	3	4	2	4^2	$2 \times 2 \times 2 \times 2$	7
37	$3 \mid 124$	31	4	5	32	$2 \times 2 \times 2 \times 2 \times 2$	
39	$7 \mid 12$	3	4	2	4^3	$4 \times 4 \times 2 \times 2$	3
42	1 60	15	4	4	16	$2 \times 2 \times 2 \times 2$	
46	$3 \mid 14$	7	2	3	8	$2 \times 2 \times 2$	
49	$1 \mid 14$	7	2	3	8^2	$2 \times 2 \times 2 \times 2 \times 2 \times 2$	

Table 4.4. p=2

or none is. For this reason we have ordered the class numbers as follows: for each divisor d of l-1 which is itself not divisible by p but for which $h_l^-(d)$ is divisible by p, we list, for $i=0,1,\ldots,e$ the p-part h_i of $h_l^-(dp^i)$. By Lehmer's observation, each h_i is divisible by p. We note in passing that this implies that h_l^- is divisible by p^2 .

For each character χ of order d the residue field of O_{χ} has order p^f where f is the order of p modulo d. In all but one case either $h_0 = p^f$ or $h_1 = p^f$. In the latter case we have that, up to a unit, $B_{1,\chi^{-1}\psi} = 1 - \zeta_p$ for the characters ψ of conductor l and order p. In either case Theorem 2.3 applies and we see that $Cl_l(\chi)$ is cyclic over $O_{\chi}[\pi]$. The only exception is l = 461 with p = 5. In this case $h_0 = h_1 = 25$. In this case we have applied Theorem 2.3 with φ a character of order 5 and conductor 11. It turns out that in this exceptional case $Cl_l(\chi)$ is a cyclic $O_{\chi}[\pi]$ -module as well.

In most cases we can apply Theorem III and conclude that the eigenspace is a cyclic group. These cases are listed without comment. In the cases (l,p) = (101,5), (337,7), (461,5) and (331,3) (the latter for d=10) an application of Proposition 2.4 immediately gives the structure of $Cl_l(\chi)$. Finally, in the cases (l,p) = (439,3) and (331,3) (the latter for d=2) we have explicitly computed the Stickelberger element θ and applied Theorem 2.3 directly.

Finally we discuss the contents of Table 4.4. Let χ be a character of $(\mathbf{Z}/l\mathbf{Z})^*$ of odd order. The 2-part of Cl_l^- is a module over $O_\chi[\pi]/(1+\iota) \cong O_\chi[\zeta_{2^e}]$. Here 2^e is the exact power of 2 dividing l-1. It is well known that $Cl_l^-(\chi)$ is trivial when $\chi=1$. This implies that the prime p=2 never divides h_l^- with multiplicity 1. Therefore Table 4.4 actually contains all primes $l \leq 509$ for which h_l^- is even.

It turns out that $Cl_l^-(\chi)$ is in all cases a cyclic Galois module. This follows from several applications of Theorem 3.3. In all but 4 cases we have that $\prod_{\psi} \frac{1}{2} B_{1,\chi^{-1}\psi} = 2u$ for some unit $u \in O_{\chi}$. Here the product runs over the odd characters ψ of 2-power order and conductor l. In this case $Cl_l^-(\chi) \cong O_{\chi}/(2)$ which is a vector space of dimension f over \mathbf{F}_2 . Here f is the degree of $\mathbf{F}_2(\zeta_d)$ over \mathbf{F}_2 and d is the order of χ . In the remaining cases we applied Theorem 3.3 with an odd quadratic character φ of conductor r. Here $r \equiv 3 \pmod{4}$ is a prime for which $\chi(r) \neq 1$.

The structure of $Cl_l^-(\chi)$ then follows easily from Theorem 3.4.

1	p	$h_i^-(d)$
	18	3 · 19
	22	2
	99	25645093
	198	207293548177 · 31681904128/
		/39
211	7	
	9	3.7
	10	41
	14	281
	30	181
	42	7 · 421
	20	$71 \cdot 281 \cdot 12251$
	210	1051 - 113981701 - 4343510221
223	7	
	9	43
	74	17909933575379
	222	11757537731851 · 342480448/
		/3726447 .
227	7	ou.
	226	2939 ³ · 1692824021974901·
		.13444015915122722869
229	4	17
	12	
	92	53 - 478
	228	457 · 7753 · 41415390332169/
		/2666991589
233	∞	~
	232	233 - 79933937980769 - 13046/
		\simeq
239	7	າດ.
	14	20
	34	
	238	14136487 · 123373184789 · 2/
		/2497399987891136953079
241	16	472
	48	2
	80	
	240	13921 - 518123008737871423/
		/891201
251	2 ;	2
	10	11
	20	
	250	9631365977251 · 3696311145/
		75543724366362
257	226	257 · 20738946049 · 1022997/
		74456391196156129869818/
		/3419037149697

$13 \cdot 157^{2} \cdot 1093 \cdot 1873 \cdot 4 / \\ /18861$ 612771091 · 3673395066/ /9733713761 192026280449 6529 · 1581 · 29761 · 91/ /969 · 10369729 23 · 1877 7841 · 939830268487086/ /6656225611549 3 $23167 \cdot 441845817162679$ $\begin{array}{c} 1069 \cdot 144586673923349 / \\ /48286764635121 \\ 5^2 \end{array}$ 499 · 5123189985484229/ /035947419 20297 · 231169 · 725717/ /29362851870621 $149 \cdot 5129663383200408$, /0546113 1207501 · 312885301 13 3148601 $61 \cdot 1321$ $h_l^-(d)$ 6 6 10 30 30 50 150 4 4 12 52 6 118 54 1162 2 166 172 178 112 20 36 60 60 180 2 2 38 38 192 28 196 q2 9

$d h_i^-(d)$	792	24 1	72 134353		78 377911		82 279405653		_	3457	 		0 1	-	က	106 743 · 9859 · 2886593	1.3	36 1009	 16 17	112 $2^3 \cdot 11853470598257$		 14 43	 9	2 5	. c.	26 3°:53 130 131:1301:4673706701	17	36	33	 	138 277 - 967 - 1188961909
1	10	0	i	79		83		68		26	101	103	201		107		109		113		127			131			137		139		

$h_l^-(d)$	1						1			က	1	1	23	8	· co			1	37	1	11^{2}	1		1	211	130	1	4889	3	59 · 233	1	1,	41	1861		. 29	12739	٠ -	7
p	2	40	7 9	2 2	10	12	16	2 0	18	2	22	4	28	2	9	30	8 4	12	36	∞	40	2	9	14	7 6	7 7	7	52	2	58	4	12	70	09	7 9	22	99	2 5	14
1	3	ភ ព		11	- 2	2	17	19		23		59		31			37			41		43			1	47	r. c.	3	29		61			1	5			7	

APPENDIX

7	p	$h_{\cdot}^{-}(d)$	$p \mid l$	$h_i^-(d)$
263	3	13	22	23 · 67
	262	2 263 · 787 · 385927 · 418759100955678867328189444629948074260186283	30	$3^4 \cdot 61$
569	94		99	17406850561
Ì		$ 40170973189 \cdot 8625962877077617 \cdot 8297860832320483544484903227261$	11	110 476506973241784667381
271	2 5		33	330 270271.221475181712309125848473872740271
	ء و	31	337 16	337 16 7 ² · 17 ² · 353
	2 00	7 + 1	Δ,	238321 =2 000000000000000000000000000000000000
_	3 6	1201	1.	2/7 - 894469355265098929
	54	_	33	336 22 · 3246769 · 3622267546801 · 110537863229809 · 225164259907777
	90	64	347 2	5 347 10E408604966698888888989891918619688888888888888
	27($0 271 \cdot 811 \cdot 1621 \cdot 15391 \cdot 20238391 \cdot 666587726641$	40	0 34/-1934U0094Z000Z306Z6Z39U1Z1801933U0U933U80/Z03309U83443339// />>>>>=============================
277	4	17	349 4	349 4 5
	12	24	12	19 04 13
	92	89977 · 1371353 · 30697273	1 =	116 421081 943429 2021708236660033
	276	$3 \mid 47^2 \cdot 829 \cdot 4873333 \cdot 1776834909244716811072486129$	34	348 2089 · 17749 · 29247661 · 16684629796320170064136004281782850431997
281	8		353 32	6113 · 9473
	40		35	$ 352 353^2 \cdot 281249 \cdot 1380611233 \cdot 3001891553 \cdot 394388386054183213731974638871/$
	26			/81225470103134619777
	280	$ 3235961\cdot 977343139976233968569461075411406081$	359 2	119
283	2	<u></u>	35	358 5862361010431 · 813287316389858595758239885873 · 58922190801687625383/
	9			/9609863906122210269152723
	94	2064523 · 39341481709417	367 2	32
	282	2 283 · 5484646647490654799157896194266098076673	9	
293	3 4	32	12	122 733 - 268738874461290742168853881
	292	cu.	36	366 39163 · 127480330983805586375654833118494134773442493271686377913
		/54079833	373 4	4 5
30.7	7 0	m	12	61
	0 -	5 27	12	$124 2^5 \cdot 1117 \cdot 6218451821 \cdot 1699148567515153$
	0 70		37	2 1489 - 191953 - 124204598699794021789479401683826456140588477617076789
	103		379 2	ಣ
	308		9	3.13
311	2		14	1499
_			2 5	3.99I
	62	2 ¹⁰ . 9918966461	4 T	313 : 341
	310		12	126 127 · 757 · 9199 · 154412119
313	8	233	37	378 379 - 1087873417 - 3111358344381146608939 - 214670345683920446286163
	24	37 ²	383 2	11
	104	$65386361 \cdot 30358065621833$	38	382 300032351 · 3000702226373096449 · 290945169106342852317343 · 250644232/
1	312	$2.155288017 \cdot 82941207961 \cdot 986685963782009603919680953$		/2771948099181404130620436761970705901
7	# 5	1 1.0 CT	389 4	41
	5		8	388 389 - 1553 - 4847366257 - 128029167243805465177973 - 1027742679263367083/ 743655333188809496622747915533012083866597
331	7	ന്	397 4	13
	9	38	12	26
	의	3*	36	109 · 4861

1.2401	1	$d h_l^-(d)$	l	$h_l^-(d)$
306 9001 - 11414157 - 28894150148400351045400753 - 241002254399010330726544957 461 6 64449 80 041 - 476056112401 400 141 - 462972001 - 3692494801 - 2106370412068801 - 166771329637484801 - 348925 / 463 40 14 - 4760561140388290782801 8		44 23910808769 132 23 ² · 132189553 · 1917436489	1 4	$152 1217 \cdot 43777 \cdot 23353152677443223648257268496337 \\ 456 63841 \cdot 28668613681009535839148397954381101468353560199403645535773916736 / (2011) + 22668613681009535839148397954381101468353560199403645535773916736 / (2011) + 22668613681009535839148397954381101468353560199403645535773916736 / (2011) + 22668613681009535839148397954381101468353560199403645535773916736 / (2011) + 22668613681009535839167397 / (2011) + 22668613681009535839148397954381101468353560199403645535773916736 / (2011) + 22668613681009535839148397954381101468353560199403645535773916736 / (2011) + 22668613681009535839148397954381101468353560199403645535773916736 / (2011) + 22668613681009535839148397954381101468353560199403645535773916736 / (2011) + 22668613681009535839148397954381101468353560199403645535773916736 / (2011) + 2266861368109954381167468353560199403645535773916736 / (2011) + 226686199403645535773916736 / (2011) + 226686199403645535773916736 / (2011) + 226686199403645535773916736 / (2011) + 2266861994067376 / (2011) + 226686199679776 / (2011) + 2266861996796 / (2011) + 2266861996796 / (2011) + 226686199679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619679 / (2011) + 22668619 / (2011) $
40. 476056112401		396 9901 · 14141557 · 28894150148400351045400753 · 241092554399010330726544957 64849	461 4	/634/8/3193 52
400 47.0 47.0 47.0 47.0 47.0 47.0 47.0 4		$41^2 \cdot 476056112401$	7	
\$\frac{5}{15} \cdot \text{1.7} \\ \text{4.63} \\ \frac{5}{15} \cdot \text{1.7} \\ \text{4.63} \\ \frac{1}{15} \cdot \text{1.7} \\ \text{4.64} \\ \text{4.7} \\		$400401\cdot 462972001\cdot 3692494801\cdot 2106370412068801\cdot 166771329637484801\cdot 348925/ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ $	<u>04</u>	
403 47. 122181721 7960379881 29097077764969 408 409 725945242121 7960379881 29097077764969 408 409 72594524273 6183699722087375941883228469840272721633145678440121 2 3 4 102181721 7122181721 712181721 700090 418 725945254273 61836997220873759418832284698402727721633145678440121 2 2 64774 7 1036576156342483 7103671 72594915628871628716516342483 71036942480704298751	409	. цэ		/0371674719539068279993529581
10 17 · 12218 1721 · 7900379881 · 29097077764969 10 8 409 · 725945254273 · 6183699722087375941883228469840272721633145678440121 2 3 - 647747 38 103 · 5410099 11		24 73 . 1321	463 2	1- 1
2 3.7 28 103.5 4100.99 418 2719452561369347 • 440305024994584776198045120721 · 38089642480704298751/ 4 72.5 494615628571625716516342483 4 5 2 4 22064701 4 8 7 2 20064701 4 8 7 2 20064701 4 8 7 2 20064701 4 9 9 9 1 2 2 3 · 7 5 1 1 7 701 5 1 1 7 701 5 2 3 · 7 5 2 1 1 2 2528888965731920712483 5 3 · 7 5 3 · 7 5 3 · 7 5 3 · 7 5 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		136 17 - 122181721 - 7960379881 - 29097077764969 408 409 - 725945254273 - 6183699722087375941883228469840272721633145678440121	0 1	
22 (44747 38 1103 · 5410099 45 2719452561369347 · 440305024994584776198045120721 · 38089642480704298751 / 467 725494615628571625716516342483 4 57 25 24 2521 2 0 2 · 32506 2 0 2 · 32604701 3 4 70309 · 46085341 4 10 040781 · 16521541 · 672896721281 4 10 0401299010861 2 3 · 7 4 5 · 79 · 79 · 70 · 70 · 70 · 70 · 70 · 70	419	32	2	
18 271945261389347 440305024994584776198045120721 38089642480704298751 467 467 467 467 467 467 467 467 467 467 468 469 468 469 468 469 468 469 468 469 468 469 468 469 468 469 468 469 468 469 468 469 468 469 468 469			4,0	7 . 631 . 673
725494615628571625716516342483			<u> </u>	7 44.53 - 5304.2041 14 463 - 664064207818594609257539327251
2 2 4 5 5		/25494615628571625716516342483	407	$\begin{array}{c} 8779 \cdot 604417477499456083 \cdot 334167173856936895861 \cdot 1451125083064477390379041 \\ 7 \end{array}$
20 5. 2521 28 29.39509 60 24.22064701 84 77309. 409781. 16521541. 672896721281 140 409781. 16521541. 672896721281 141 409781. 16521541. 672896721281 142 421.33901. 3455761. 57979541174101. 2655579516751331409910861 15. 70 11. 701 18. 4233. 486 676649. 270051. 1122259884992246639243672859450218083129490012657313/ 14. 422358 14. 427239 14. 4347. 3021564742348701537217 15. 842353 16. 842353 17. 700 18. 842353 18. 842353 19. 842353 10. 84235 10.	421	12 27	407	4672 . 7842513546558078253 . 154987811800520892460672570209646887293261969
28 29.39509 479 60 2+.22064701 478 84 70309 - 46085341 487 2 84 403781 - 16521641 - 672896721281 487 2 85 470309 - 46085341 487 2 420 421 - 39901 - 3455761 - 5797941174101 - 2655579516751331409910861 18 18 421 421 421 48 4727301 48 86 67649 - 2700472364809333 48 4727321 48 4727321 48 16 4421 - 77722 470051 - 11222598849499224663924367285945021808312949713 48 4727321 48 4727321 48 4727321 48 4727321 48 4727321 48 4727321 48 4727321 48 4727321 48 4727321 48 4727321 48 4727321 48 4727321 48 4727321 48 48 48 48 4727321 48 48 48 48 48 48 48 48 48 <				/1231 · 4511882445351575687067360009368178199225508063847112361
60 24 · 22064701 487 2 478 487 2 58 7 2004701 487 2 58 7 2004701 487 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			$ 479 _{2}$	57.6
84 70309 46085341 140 490781 16521541 672896721281 140 409781 16521541 672896721281 140 409781 1.6521541 6.7799541174101 2655579516751331409910861 18 18 676649 2790951 3455761 57979541174101 2655579516751331409910861 18 676649 2709072364809333 18 4727329 144 34727329 144 34727329 145 24727329 146 24233 14727329 14727329 148 47277207 211607 47521 1403137 102550753 96686549358769 64340730822/ 149 3457 20205057 21601 47521 1403137 102550753 96686549358769 64340730822/ 140 325 25 25 25 25 25 25 25 25 25 25 25 25 2			4	m
140 499781 15521541 672896721221 420 420 420 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420 421 420		70309 · 46085341	1	
2 3.7 10 11.7 11 11.7 86 6.76649 . 2709472364809333 430 14621 . 7970051 . 112225988494992246639243672859450218083129490012657313/ 486 42253. 482253. 48 4727329 41 43.727329 43.31.2097 . 21601 . 41521 . 1403137 . 102550753 . 96686549358769 . 64340730822/ 70 423.31.2097 . 21601 . 47521 . 1403137 . 102550753 . 96686549358769 . 64340730822/ 490 5 3 . 5 6 3 . 5 7 61985367563988399449713 3 . 5 3 . 5 43.3 43.3 44.3 41.0 45.0 41.0 46.0 42.0 5 43.0 44.0 42.0 5 5 44.0 42.0 44.0 42.0 44.0 43.0 44.0 43.0 44.0 44.0 44.0 44.0 44.0 44.0		409781 - 16521541 - 672896721281 421 - 39901 - 3455761 - 57979541174101 - 2655579516751331409910861	487 2	. 2
10		3.7	_	
86 676649 - 2709472364809333		10 11 · 701	2	919 · 2647 · 10909
823968596573192207124531		86 676649 - 2709472364809333 130 14621 - 7970051 - 1122259884949922466392436728594502180831294900126573137	<u> </u>	;2 105792786991 - 1355141213869532941 66 58321 - 105290443 - 294594702996402697646390639203 - 90058027084074393088174 /
6 842333 1 1 1 1 1 1 1 1 1		/823968596573192207124531		/14913576150427261734980259
14 347 3021564742348701537217 10 11 14 347 3021564742348701537217 10 11 11 11 11 11 11	433			3.3
432 433 - 12097 - 21601 - 47521 - 14 20 20 20 20 20 20 20 2		48 47.27.329 144 2457 - 3031564743346701537317		
61985367563988399449713. 61985367563988399449713. 3 · 5 3 · 5 3 · 5 490 4 490 5 3 · 5 490 4 490 5 4 490 4 4 4 4 4 4 4 4 4		3137.	7	
3 · 5 490 43		/61985367563988399449713	- 6	491 . 101566319 . 2311247713517
146 293 · 527207 · 7171667 · 50898521 · 327151064937209 499 2 438 4013916617 · 607057872831881225737 · 15343765387604391577783 · 7611086694/ 499 2 5 5 5 499 2 4 5 36 · 79 · 157 499 2 34 377926037 442 12277 · 2099059 · 309860291076943369037303413323285158985313526398152831/ 503 2 5 5 5 5 2 5 6 400402969557121 502 3 448 18449 · 226736972834339969 · 772865886177933052632667046915246737827100/ 509 4 7 790144773744195236265019879496879953539649 7 501 4 8 7 7 5 5 5 44 5 5 5 5	439	3.3.5.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.	4	$490 \mid 491^2 \cdot 8489251 \cdot 17841391 \cdot 74468731 \cdot 18022473215169065702224279183302091210 / 100474712121690670224279183302091210 / 1004747121110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047411110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 1004747110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 10047471110 / 1004747110 / 100474110 / 1004747110 / 1004747110 / 1004747110 / 1004747110 / 100474110 / 1004747110 / 1004747110 / 1004747110 / 1004747110 / 100474110 / 1004747110 / 100474110 / 100474110 / 100474110 / 1004747110 / 100474110 / 100474110 / 100474110 / 100474110 / 100474110 / 100474110 / 1004741$
438 40139516617 · 667057872831881225737 · 15343765387604391577783 · 7611086694 6 2 5 5 5 5 5 5 5 5 5		7151064937209	499 2	/ 334 / 433466012 / 03485 / 0238921641 3
166 167		_	9	. 8
26 3 ⁶ · 79 · 157 34 367926037 420 1237 · 2099059 · 309860291076943369037303413323285158985313526398152831 / 503 2 502 1 503 2 502 1	443	/50001851817037	- 1	6 167 · 8170189 · 4568950377354424102616078873671968013
34 367926037 42. 12377 - 2099059 - 309860291076943369037303413323285158985313526398152831 / 5021 502 1 50.08871913595050372353059812436688273929 501 64 500402969557121 448 168449 - 226736972834339969 - 772865886177933052632667046915246737827100 / 509 4 7 7790144773744195236265619879496879953539649 508 1 8 1 24 52 - 577	2	26 36 . 79 . 157	4	
442 12377 - 2099659 - 30986021076943369037303413323285158985313526398152831 / 502 1		34 367926037	503 2	3.7
64 500402969557721 448 168449 - 226736972834339969 - 772865886177933052632667046915246737827100/ 509 4 1 7790144773744195236265619879496879953539649 8 41 24 5 ² - 577		442 12377 - 2099059 - 309860291076943369037303413323285158985313526398152831 /	ಬ	12 15061 - 182337132259 - 67961871500791 - 142639305944396395662911180592353348/
448 168449 - 226736972834339969 - 772865886177933052632667046915246737827100 509 4 1 1 1 1 1 1 1 1 1	449			/ 44z0516151061450922050555010009968455975452 1088500291891505574466075368/ / 455407
7 / 901.447 / 37.441932302050198 / 99535339049 508 1 8 41 7.24 52 - 577 / 22 62 - 577 / 52 62 62 62 62 62 62 62 62 62 62 62 62 62		$168449 \cdot 226736972834339969 \cdot 772865886177933052632667046915246737827100/$	509 4	13
$\frac{1}{24} \left[\frac{5^2}{5^2 \cdot 577} \right]$	457	//90144//3/441952562650198/94968/9955539649 3 41	ಬ	
		24 52 - 577		/zioorejozziozziozetarozeonolicolicoletraregonolegonologonol

References

- [1] Bourbaki, N.: Éléments de Mathématique, Algèbre, Hermann, Paris 1970.
- [2] Cassels, J.W.S and Fröhlich, A.: Algebraic Number Theory, Academic Press, London 1967. MR 35:6500
- [3] Cornacchia, P.: Anderson's module and ideal class groups of abelian fields, J. Number Theory, to appear.
- [4] Greither, C.: Class groups of abelian fields, and the main conjecture, Ann. de l'Institut Fourier, 42 (1992), 449–499. MR 93j:11071
- [5] Hasse, H.: Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin 1952. MR 14:141a
- [6] Iwasawa, K.: A note on ideal class groups, Nagoya Math. J. 27, (1966), 239–247. MR 33:5603
- [7] Kolyvagin, V.A.: Euler Systems, in: The Grothendieck Festschrift II, Prog. Math. 87, Birkhäuser, Boston 1990, 435–483. MR 92g:11109
- [8] Kummer, E.E.: Collected papers, Vol.I, Springer-Verlag, Berlin 1975. MR 57:5650a
- [9] Kummer, E.E.: Bestimmung der Anzahl nicht äquivalenter Classen für die aus λten Wurzeln der Einheit gebildeten complexen Zahlen und die idealen Factoren derselben, J. für die reine und angewandte Math. 40, (1850), 93–116. (Coll.Papers 299–322)
- [10] Kummer, E.E.: Mémoire sur la théorie des nombres complexes composés de racines de l'unité et de nombres entiers, J. de math. pures et appl. 16, (1851), 377–498. (Coll.Papers 363-484)
- [11] Kummer, E.E.: Über die Irregularität von Determinanten, Monatsberichte der Kön. Preuß. Ak. der Wiss. zu Berlin, (1853), 194–200. (Coll.Papers 539–545)
- [12] Kummer, E.E.: Über die aus 31sten Wurzeln der Einheit gebildeten complexen Zahlen, Monatsberichte der Kön. Preuß. Ak. der Wiss. zu Berlin, (1870), 755-766. (Coll.Papers 907-918)
- [13] Lang, S.: Cyclotomic fields, Graduate Texts in Math. 59, Springer-Verlag, New York 1978. MR 58:5578
- [14] Lehmer, D.H.: Prime factors of cyclotomic class numbers, Math. Comp. 31, (1977), 599–607. MR 55:5576
- [15] Lehmer, D.H. and Masley, J.: Table of the cyclotomic class numbers $h^*(p)$ and their factors for 200 , <math>Math.Comp. **32**, (1978), 577–582, with microfiche supplement. MR **58**:16594a
- [16] Mazur, B. and Wiles, A.: Class fields of abelian extensions of Q, Invent. Math. 76, (1984), 179–330. MR 85m:11069
- [17] Perrin-Riou, B.: Travaux de Kolyvagin et Rubin, Séminaire Bourbaki 1989–1990, Exp. 717, Astérisque, 189-190, 69-106. MR 92f:11085
- [18] Rubin, K.: Kolyvagin's system of Gauss sums, In: Arithmetic Algebraic Geometry, Texel 1989, Prog. Math. 89, Birkhäuser, Boston 1991. MR 92a:11121
- [19] Schoof, R.: Cohomology of class groups of cyclotomic fields; an application to Morse-Smale diffeomorphisms, J. of Pure and Applied Algebra 53, (1988), 125–137. MR 89j:11111
- [20] Schoof; R.: The structure of the minus class groups of abelian number fields, In: Goldstein. C.: Sém. de Théorie de Nombres, Paris 1988–1989, Birkhäuser, Boston 1990, 185–204. MR 92e:11126
- [21] Schoof, R.: Class numbers of $\mathbf{Q}(\cos(2\pi/p))$, in preparation.
- [22] Solomon, D.: On the class groups of imaginary abelian fields, Ann. Institut Fourier 40, (1990), 467–492. MR 92a:11133
- [23] Van der Linden, F.: Class number computations of real abelian number fields, Math. Comp. 39, (1982), 693-707. MR 84e:12005
- [24] Washington, L.C.: Introduction to cyclotomic fields, Graduate Texts in Math. 83, Springer-Verlag, New York 1982. MR 85g:11001

DIPARTIMENTO DI MATEMATICA, 2ª UNIVERSITÀ DI ROMA "TOR VERGATA", I-00133 ROME, ITALY

E-mail address: schoof@wins.uva.nl