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 MINUS CLASS GROUPS OF THE FIELDS

 OF THE 1-TH ROOTS OF UNITY

 RENE SCHOOF

 ABSTRACT. We show that for any prime number 1 > 2 the minus class group

 of the field of the l-th roots of unity Qp(cl) admits a finite free resolution
 of length 1 as a module over the ring Z[G]/(1 + t). Here t denotes complex
 conjugation in G = Gal(Qp((i)/Qp) _ (Z/1Z)*. Moreover, for the primes
 1 < 509 we show that the minus class group is cyclic as a module over this

 ring. For these primes we also determine the structure of the minus class

 group.

 INTRODUCTION

 Let 1 be an odd prime and let (1 denote a primitive 1-th root of unity. In this
 paper we study the cyclotomic fields Q((,) and the class groups Cli of their rings of
 integers Z[(1]. The class group Cl splits in a natural way into two parts: the natural

 map from the class group Ci+ of the ring of integers of the subfield Q((Q + (1 1) to
 Cll is injective [24, p.40]. Its cokernel, the minu's class group of Q((,), is denoted
 by Cl0 . There is an exact sequence

 0 Cl Cit - Ob - 017 -?0.

 About the groups Ci+ little is known. For small primes 1 they are trivial [23].
 See [3], [21] for a numerical study of these groups. In this paper we consider the
 other groups, the minus class groups Cl0, which are easier to handle. There is, first
 of all, an explicit and easily computable formula for their cardinalities h- . See [24,
 p.42]:

 h7 = 21 1I -2Bi,x
 X odd

 where the product runs over the characters X : (Z/lZ)* C8 which are odd, i.e.
 which satisfy X(-l) = -1. The numbers Bi,x are generalized Bernoulli numbers;
 they are defined in section 1.

 Around 1850, E. E. Kummer [9], [10] used this formula to compute the minus
 class numbers h7 for the primes 1 < 100. These calculations were extended by
 D. H. Lehmer and J. M. Masley [15] in 1978 to the primes 1 < 509. The numbers

 h7 grow very rapidly with 1. For instance, h-1 already has 138 decimal digits.
 The class number h7 alone does, of course, not determine the structure of the

 group Cl0. If h7 is squarefree, the group Cl0 is cyclic, but in general h- has
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 1226 RENE SCHOOF

 multiple factors. It is a natural problem to try and determine the structure of the

 minus class groups. Kummer [12] addressed this problem in 1853. He showed, for
 instance, that for 1 = 29 the minus class group is isomorphic to Z/2Z x Z/2Z x Z/2Z.

 He claimed moreover that the minus class group of Q((31) is cyclic of order 9. Only
 in 1870 he gave a rigorous proof of this fact [11]. It involves a lenghty calculation

 in the field Q (31). His claim that the group Cl7 is cyclic of order 72 * 79241 is
 correct, but has, as far as I know, never been justified previously [6].

 In this paper we study the structure of the minus class groups Cl0 as Galois

 modules. Since complex conjugation t acts as -1 on Cl0, it is natural to study Cl0

 as a module over the ring Z[G]/(1 + t) where Z denotes the profinite ring lim Z/nZ

 and G = Gal(Q((l)/Q) - (Z/lZ)*. We prove the following:

 Theorem I. Let 1 be an odd prime. Then there exist an exact sequence of

 Z[G]/(1 + t)-modules

 0 L L - Cl0 0

 where L is free of finite rank over Z[G]/(1 + l).

 Theorem I is an immediate consequence of Theorems 2.2(i) and 3.2(i). For small
 1 we can be more precise:

 Theorem II. For 1 < 509 one can take L of rank 1 in Theorem L In other words,

 the minus class group is isomorphic to Z[G]/(1 + t, 0) as a Z[G]/(1 + t)-module.
 Moreover, for E( one can take the modified Stickelberger element introduced in sec-
 tion 1.

 Theorem II is proved in section 4. In the course of the proof we determine

 completely the structure of the minus class groups Cl0 as abelian groups for 1 < 509.

 As an example we mention ClTh, which we show to be isomorphic to a product of
 six cyclic groups:

 Z/2Z x Z/2Z x Z/2Z x Z/982Z x Z/10802Z x Z/18680189262665824155664817/

 /205804054998786681161963704417938182602575815795883211941228272982586/

 /25221939971178506931727800584004906Z.

 Theorem II probably holds for several other primes 1, but is definitely not true in

 general. It does, for instance, not hold for 1 = 3299. This follows from the fact

 that, when 1 _ 3 (mod 4), the minus class group Cl0 is cyclic over Z[G]/(1 + t)

 if and only if the class group of the quadratic subfield Q( -1i) C Q((j) is a cyclic
 group. Since the class group of Q( /-329) is isomorphic to Z/3Z x Z/9Z, the

 group Cl399 is not cyclic as a Z[G]/(1 + t)-module [13, p.80].
 Finally, we single out a particularly simple consequence of our results. Roughly

 speaking, it says that for prime divisors p of 1 - 1, the p-part of Cl0 is cyclic
 whenever it is small.

 Theorem III. Let 1 and p be odd primes and let M denote the p-part of the minus

 class group of Q((1). If #M divides (1 - 1)2, then M is a cyclic group.

 Theorem III is proved in section 2. Applying it with 1 = 31, p = 3 and 1 =
 71, p = 7 respectively we obtain a proof of Kummer's claims. The condition that
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 #M divide (1 - 1)2 cannot be relaxed further: in section 4 we show that the 5-part
 of the minus class group of Q((1o1) is isomorphic to Z/125Z x Z/25Z.

 Our method is, in some sense, a finite version of Iwasawa theory. It is closely
 related to V. A. Kolyvagin's work [7]. In order to obtain information about the

 structure of a certain X-eigenspace of the p-part of a minus class group, we "deform"
 the Dirichlet character x and study the extension L corresponding to xfb, where

 fb is some character of p-power order. The generalized Bernoulli numbers Bl,xp
 contain information about the X-eigenspace of the class group of this extension.
 This information is obtained by viewing the field L as a "truncated" Zp-extension
 and by studying the X-part of the minus class group of L by mimicking techniques
 from Iwasawa theory. The main results are Theorem III and the two criteria for
 cyclicity, Theorems 2.3 and 3.3.

 The main difficulty in extending Theorem II to primes 1 > 509 is the size of

 the class numbers. For larger 1 one is bound to encounter composite numbers that
 cannot be factored within reasonable time. Sooner or later one will also encounter

 X-parts that are not cyclic Galois modules. In these cases the methods of this paper
 do not apply.

 The paper is organized as follows. In section 1 we briefly recall some well known
 facts concerning Z[G]-modules when G is a finite abelian group. In this section we
 also discuss some elementary properties of Stickelberger elements and generalized

 Bernoulli numbers. Even though there are similarities between the structure of the

 odd and even parts of the minus class groups, the differences are sufficiently big

 to merit separate treatment. In section 2 we consider the p-parts of minus class

 groups for odd primes p. In section 3 we do the same for p = 2. Finally, in section

 4, we present the numerical results and prove Theorem II.

 We need to know the complete prime decomposition of the class numbers hT
 for 1 < 509. In the appendix a table of the prime factorizations of these numbers
 is given. This table is complete and supersedes the one computed by Lehmer and

 Masley [15]. The present table contains also the factorizations of the unfactored
 composite numbers in their table. I thank Arjen Lenstra, Peter Montgomery, Bob
 Silverman and Herman te Riele for computing the unknown prime factors, Francois
 Morain for several primality proofs and Pietro Cornacchia for catching an error in
 Table 4.4.

 1. PRELIMINARIES

 In this section we recall some elementary facts concerning modules over group

 rings Z[G] when G is a finite abelian group. In addition we recall some basic
 properties of Stickelberger elements and generalized Bernoulli numbers.

 Let G be a finite abelian group. For a G-module M, we denote by MG the
 subgroup of G-invariant elements of M. Now fix a prime p and let

 G -- r x A,'

 where ir is the p-part of G and i\ is the maximal subgroup of G of order prime to

 p. We write the group ring Zp [G] as Zp [A] [ir]. By the orthogonality relations there
 is an isomorphism of rings

 ZP[A] -- ox
 x
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 1228 RENEt SCHOOF

 Here X runs over the characters X: i\ Qp up to Gal(QP/Qp)-conjugacy. The
 rings Ox are unramified extensions of Zp generated by the values of X. They are
 Zp[A\]-algebras via the rule o- x = x(o-)x for x E Ox and o- E A\. The ring
 isomorphism is given by mapping o E i\ to X(o-) in each component Ox, The
 residue field of Ox is Fp(0d) where d is the order of X.

 Definition. Let M be a Zp[G]-module and let X: i\ Q- be a character.
 Equivalently, X is a character of G of order prime to p. The X-eigenspace M(x) or
 X-part of M is defined by

 M(X) = M ozP [AO Ox
 We have a decomposition into eigenspaces of M:

 M - JlM(x),
 x

 where X runs over the characters X: i\ Qp up to Gal(QP/Qp)-conjugacy. Each
 eigenspace M(x) is a module over the local ring Ox [ir]. The residue field of this
 ring is equal to the residue field of Ox which is Fp((d), where d is the order of X.

 We frequently use the following properties of the Tate cohomology groups [2]. Let
 M be a G-module and let P c ir. The natural action of P on the Tate cohomology
 groups Hq(P, M) is trivial, but i\ acts, in general, in a non-trivial way. Note that

 the groups Hq(P, M) are Zp[A\]-modules, because they are killed by #P.

 Lemma 1.1. Let p be a prime and let G be a finite abelian group. Let ir and i\ be
 as above and let P be a subgroup of ir.

 (i) For every Z[G]-module M we have that Hq(P, MA') r Hq(P M)A' for all
 q E Z.

 (ii) For every Zp [G] -module M and every character X: i\ Qp we have that

 Hq (P, M(x))- Hq (P, M)(X) for all q E Z.

 Proof. (i) Since the actions of i\ and P commute, the inclusion i: MAs )- M and
 the A\-norm map N: M -* MA are P-morphisms. The maps i . N and N . i induce
 multiplication by #i\ on Hq(P, M)i and Hq(P, MA) respectively. Since #i\ and
 #P are coprime, multiplication by #i\ is an isomorphism and (i) follows.

 (ii) Since the actions of i\ and P commute, the eigenspaces M(x) are P-modules.

 Taking the sum over the characters X : - Qp, up to Gal(QP/Qp)-conjugacy,
 of the natural maps Hq(P, M(x)) - Hq(P, M)(x), we obtain precisely the map

 efX Hq(P, M(X)) Hq (P, M) induced by the isomorphism efx M(X) M.
 This proves (ii). D

 The remainder of this section is devoted to properties of Stickelberger elements

 and generalized Bernoulli numbers. Let f 0 2 (mod 4) be a conductor and let
 G = (Z/fZ)*. The Stickelberger element Of of conductor f is given by

 f /
 Of -2) [a]> E Q[G]

 a=1 \J /
 gcd(a,f)=I

 For any prime number p we write G = ir x i\ as above. We have Qp[G] -

 EI)x Kx[7r] where the sum runs over the characters X: i\ Qp up to Gal(Qp/Qp)-
 conjugacy and Kx is the quotient field of Ox. We denote the algebra homomorphism
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 Qp [G] Kx [ir] induced by X again by X. For every character X 4 w, the image

 2 X(Of ) of -Of in Kx [X] is an element of the subring Ox [r] . Here w: (Z/pZ)* Qp
 denotes the Teichmiiller character. It is the character that gives the action of

 Gal(Q/Q) on the group ,p of p-th roots of unity. Note that w = 1 when p = 2. For
 odd p the element Of annihilates the X-part of the p-part of the ideal class group

 of Q((f). This is Stickelberger's Theorem [24, Chpt.6]. For p = 2, C. Greither [4]
 has shown the same when ir is cyclic and the conductor f is odd.

 For any character io of G of conductor f, the generalized Bernoulli number B1,s,
 is simply the value of the algebra homomorphism Qp[G] - Qp induced by io
 evaluated on the Stickelberger element:

 Bl ,p = ?(Of ) - )-1EQp.

 (cd(a,f)=1 Finally we assume that f = l is prime, so that G = (Z/lZ)* and we introduce the modified Stickelberger element ( E Z[G]/(1 + t) that occurs in Theorem II. We

 have that Z[G]/(1 + t) _ Jjp Zp[G]/(1 + t). Moreover, each factor Zp[G]/(1 + t) is
 isomorphic to 7x Ox [7rp], where the X run over all odd characters of order prime
 to p when p is odd and all characters of odd order when p = 2 respectively. Here irp
 denotes the p-part of G. Therefore it suffices to describe the various components

 X(() of e: if p = l and X = w or if p = 2 and X = 1, we let x(() = 1. In all other
 cases X(() = X(ol)

 The modified Stickelberger element ( E Z [G] (1 + t) annihilates Cl0. The order

 of Z[G] (1 + t, 0) is equal to the minus class number h-.

 2. ODD PRIMES p

 In this section we study the p-parts of the minus class groups of complex abelian
 number fields for odd primes p. We show that certain eigenspaces of these groups
 are cohomologically trivial Galois modules. This puts restraints on their structure.

 We derive an easily applicable criterion for these eigenspaces to be cyclic Galois
 modules.

 In this -section p 74 2 is a prime. We fix a complex abelian number K field with

 G = Gal(K/Q). Let ir denote the p-part of G and F = K7 its fixed field. We

 fix an odd character X: G Qp of order prime to p, which is not equal to the
 Teichmiiller character w . Since p -7 2, we have that ClI(X)- ClK(X). Therefore
 we work, in this section, with the class group ClK itself rather than the minus class
 group ClJ.

 Theorem 2.1. Let P C G be a subgroup of ir with fixed field E = Kp. Suppose

 that that for all primes r that are ramified in E-c K we have that x(r) :A 1. Then
 (i) the eigenspace ClK (X) is a cohomologically trivial Ox[P] -module;
 (ii) the natural map ClE(X) - l CK(X)p is bijective and the norm map ClK(X)
 ClE(X) is surjective.

 Proof. (i) It suffices to show that Hq(P, ClK(X)) = 0 for all q E Z. Let OK denote
 the ring of integers of K, let CK denote the idele class group of K and let UK denote
 the group of unit ideles, i.e. the group of K-ideles that have trivial valuation at all

This content downloaded from 212.83.92.165 on Thu, 25 Jun 2020 14:23:49 UTC
All use subject to https://about.jstor.org/terms
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 finite primes. We have the exact sequence of G-modules [2]

 ?O-K *O UK ' CK ClK )0.
 We show that the X-parts of the Tate P-cohomology groups of these modules are
 all zero. For the unit group O we have the following exact sequence [24, p.39]

 0 ) { 1, -1 } UK X OK - O Q ' 0.

 Here OK+ is the ring of integers of the maximal real subfield K+ of K and UK
 denotes the group of roots of unity in K. The group Q has order at most 2.

 Complex conjugation acts trivially on {1, -1}, on Q and on OK+. Since X is an

 odd character, we have, by Lemma 1.1, that Hq(P, OK)(X) -Hq(K, AK)(X) for all
 q E Z. Since X is not the Teichmiiller character, the X-part of UK is zero so that,
 by Lemma 1.1, Hq (P, OK)(X) = 0 for all q E Z.

 By global class field theory there are natural isomorphisms Hq(p, CK) -

 Hq-2(p, Z) for all q E Z. Since G acts trivially on Z, it follows from Lemma 1.1
 that Hq(P, CK)(X) = 0 for all q E Z.

 We use local class field theory to compute the cohomology of UK. See also [20].
 By Shapiro's lemma we have

 Hq (P, UK Hq(pr) w = Hq (PrX?w)
 v r vlr

 where v runs over the prime ideals of E and r runs over ordinary prime numbers.

 The ring Ow is the ring of integers of the completion KW of K at a prime w of
 K over v. We have Qr C EV C KW with Galois groups Gr = Gal(Kw/Qr),
 Pr = Gal(Kw/Ev) and Hr = Gal(Ev/Qr). Since G is abelian, the decomposition
 groups Pr and Hr only depend on the prime r. Since H'(Pr, ?w) vanishes when v
 is unramified in K, it suffices to consider only primes r that are ramified in E C K.
 For each prime ideal v of F dividing a ramified prime r, there is an exact sequence
 of Gr-modules

 -- ? '? 'KW ' Z ' ?

 Consider the long exact sequence of Tate Pr-cohomology groups. By Lemma 1.1,

 the group Hr acts trivially on the cohomology groups H'(Pr, Z). By local class field

 theory there are natural isomorphisms Hq(PrI K*) .Hq-2(PrI Z) for all q E Z, so
 that Hr also acts trivially on the groups Hq (P., KW*). Let A\r denote the maximal
 subgroup of Hr of order prime to p. Then A\r and Pr have coprime orders, so
 that the long cohomology sequence remains exact when we take Ar-invariants. It

 follows that H (Pr, O*) is A\r-invariant. Therefore A\r acts trivially on the sum

 eflvir Hq(Pr, O ?). Since x(r) 74 1 for all ramified primes r, we see that A\r - ker(X).

 This implies that the X-part of evr Hq(Pr, O,) is zero.

 It follows that Hq(G, UK)(x) = 0 for all q E Z. Combining all this and using

 Lemma 1.1 one more time, we deduce that Hq(P,ClK(X)) = 0 for all q E Z. This
 proves (i).

 (ii) It is easy to see that the natural map CE/N(CK) )) ClE/N(ClK) is sur-

 jective. Since X zh 1, the group CE/N(CK) = H ?(P, OK) H2(P, Z) has trivial
 X-part, and it follows that the norm map N: ClK(X) )) ClE(X) is surjective.
 Notice that in order to prove surjectivity of this norm map we have not really used

 the condition on X, but merely the fact that X is not trivial.
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 The P-cohomology groups of each module in the exact sequence 0 OK
 UK -C OK - ClK O- 0 have trivial X-parts. Since the natural maps OE >

 OVP, UE -) UK7 and CE -) CK are all isomorphisms, so is ClE(X) -) ClK(X)P.
 This proves (ii). D

 Theorem 2.2. If for all primes r that are ramified in F C K we have that x(r) 7
 1, then

 (i) there is an exact sequence of Ox [ir] -modules

 0 OXL[7r]d OX[7r] d ClK(X) - 0
 where d is the Ox-rank of ClF(X);

 (ii) we have

 #ClK(X) =#Ox/(r Bl,x-,V,)

 where fb runs over all characters fb 7r - Qp.

 Proof. By Nakayama's lemma there is a surjective Ox[ir] morphism OX [ir]d
 ClK(X). By Theorem 2.1, the class group ClK(X) and hence the kernel of this map
 are cohomologically trivial. Now one copies the proof of [2, p.113, Thm.8] with Z

 replaced by the discrete valuation ring Ox. It follows that the kernel is a projective
 Ox[ir]-module. Since Ox[cr] is local, the kernel is therefore free. It has rank d since
 it is of finite index in OX[7r]d. This proves (i).

 Part (ii) is a generalization of the Theorem of B. Mazur and A. Wiles [7], [16],
 [17], [18]. By D. Solomon's Theorem [22, p.472], we have for every subgroup P C -F
 with cyclic quotient ir/P,

 #CI KP (X) [NpS /NP] = #OX /( I| B1,X- l A)-
 ker b=P

 Here the fb run over the characters of G for which ker = P. Here P' denotes

 the unique subgroup of wF containing P as a subgroup of index p and NP and NP,
 denote the norm maps EfP of and Efp, o- respectively. In the exceptional case
 P -r the group P' is not defined and we simply put NP, 0. By ClP[Np,/Np] we
 denote the kernel of the relative norm map NP, /Np from the class group ClKP (X)
 to itself.

 Put Sx = Hp NpOx [w] /Np/ Ox [w]. Here P runs over the subgroups of ir with
 cyclic quotient 7r/P. The natural map

 g OX[ir] Sx
 becomes an isomorphism when we take the tensor product with the quotient field

 Kx of Ox. Therefore g is injective and has finite cokernel.
 All modules occurring in the exact sequence of part (i) are cohomologically triv-

 ial. Therefore it remains exact when we apply the functor 7Jp Np(-)/Np,(-) to
 it. We obtain the following diagram with exact rows.

 o X [Or]d ? 0X [7r] d d ClK(X) 0

 -? -Sd FJpNPClK(X)/Np'ClK(X) ) 0
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 Theorem 2.1(i) and (ii) and an application of the snake lemma then gives that

 #ClK (X) = rI # (Np ClK (X) /Np' CIK (X)) = ]J # (ClKP (X) [Np, /Np])
 P P

 and the result follows from Solomon's Theorem. D

 It is not difficult to express the order of ClK(X) in terms of the matrix ( of
 Theorem 2.1(i). One has [1, III, sect.9, Prop.6]

 #ClK(X) = #Ox/(fl|b(det(EO))).

 Here fb runs over the characters of ir, and ~b(det(e)) indicates the value of the

 natural extension of fb to an algebra homomorphism Ox[-r] Qp on det(O) E
 Ox [7Q

 Next we deduce a sufficient condition for the eigenspace ClK(x) to be a cyclic

 Ox [7r]-module.

 Theorem 2.3. Suppose that for all primes r that are ramified in F C K we have

 that x(r) :A 1. If one of the following conditions holds:

 - Bl,x-1 = pu for some unit u E ?x;
 - there exists a character (o: Gal(Q/Q) Q Qp of order pk > 1 such that

 Bj,x-i = (1 - (pk)U for so-me unit u in Ox[(pk],
 then there is an isomorphism of Ox [X] -modules

 CIK (X) _- OX [7]1(OX )

 In particular, ClK(X) is a cyclic Ox [7r] -module.

 Proof. We first show that ClF(X) is a cyclic Ox-module. If Bi,x-1 = pu for some
 unit u E 0k, it follows from Theorem 2.2(ii) that #ClF(X) is equal to the order of
 the residue field Ox/(p). Therefore ClF(X) is cyclic over Ox

 In the other case, let E = Qke F and let P = Gal(E/F). Then P is cyclic and
 we let F C E' c E be the unique subfield of E of index p. Since p o& 1, it follows

 from Theorem 2.1(ii) that the norm map NE/E': ClE(X) ) ClEv (X) is surjective.
 To compute the order of the kernel of NE/El, we observe that

 Norm(Bl,x-1w) = Norm( -(pk ) = p

 (here the Norm is the Qp((pk)/Qp-norm). By Solomon's Theorem [22, Thm. II,
 1], we conclude that ClE(X)[NE/El] has the same order as the residue field Ox/(p)
 of Rx. Therefore so does ClE(X)/(NE/E'). By Nakayama's lemma, ClE(X) is
 therefore cyclic over the group ring Ox [P]. It follows that ClF (Xy) is cyclic over Ox
 in this case as well.

 To complete the proof, we observe that, by Theorem 2.1,, ClK(X) is cohomo-
 logically trivial and the 7r-norm map induces an Ox-isomorphism between ClF(X)
 and ClK(X) modulo the augmentation ideal of Ox[7r]. It follows from Nakayama's
 lemma that ClK(X) is cyclic over Ox [7r]. By Stickelberger's theorem there is there-
 fore a surjection Ox[7]/(0x) )) ClK (X), which is an isomorphism because both
 groups have the same order by Theorem 2.2. This proves Theorem 2.3. C]
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 In the case the p-group Xr is cyclic of order pe, say, we can be a little bit more

 explicit. We have the usual isomorphism of local rings, familiar in Iwasawa theory

 OxL7T] - Ox[T] / ((1 + T)P'_ - ) ,

 where 1 + T corresponds to some generator of 7r. The maximal ideal of this local

 ring is (T, p). For i > 0, we let wi(T) = (1 + T)Pi - 1.
 By the Weierstrass Preparation theorem [24], every non-zero f(T) E Ox[[T]]/

 ((1 + T)P - 1) is the residue class of a polynomial of the form p"u(T)h(T) where A,
 is a non-negative integer, u(T) a unit and h(T) = TA + aAIT A-1 + ... + a1T + aO
 is a Weierstrass polynomial of degree A < pe. This means that ai 0 (mod p) for
 i = O, 1, . .. , A - 1.

 Proposition 2.4. Suppose that for all primes r that are ramified in F c K we

 have that x(r) =A 1. Suppose that the Galois group wF is cyclic of order pe and that
 CIF(X) is a cyclic Ox-module. If for some character V9 of wF of order p, for some
 A < p - 1 and for some ztnit u Ox[(p], we have that Bi,xk1V, (1 - (p)Au, then

 ClK(X) - (?x/(p'))'- x Ox/(peB,,x-l)
 as an O-module.

 Proof. We write Ox[7r] = Ox[T]/(we(T)) as above. Since ClF(X) is a cyclic Ox-
 module, it follows from Theorem 2.1 that the eigenspace ClK(X) is a cohomo-
 logically trivial cyclic Ox[7r]-module. Therefore ClK(X) - O;,[7r]/(pAf(T)) for
 some Weierstrass polynomial f(T). Since ClF(X) - Ox[7r]/(T) - 0x_(p"f(0)),
 we have that p4f(0) = Bl,x-1, up to a p-adic unit. Similarly, for the subfield
 F c E c K of degree p over F we have that ClE -Ox[T]/(f(T),wi(T)). Ap-
 plying Solomon's Theorem [22, Thm. II, 1], we find that, up to a p-adic unit,

 f (1 -(P) = Bl,x-l = (1 -(P)/'
 Since A < p - 1, this implies ,u = 0 and deg (f) A. Since Oy[T]/(f (T) we(T))

 is cohomologically trivial, we have the following exact sequence

 0 O Ox [T] / (f (T) I we (T) /T) ?Ox [T] / (f (T), we (T) ) Ox/ (f (f)) 0.

 We analyze the ideal (f(T), we(T)/T). Consider for 0 < i < e the quotient

 wi+l (T) (I + T)Pi(P-1) +... + (I + T)P + 1.
 wi (T))

 Since A < p - 1 we have that TP-1 --Tpg(T) (mod f (T)) for some polynomial
 g(T) E Ox [T]. This implies that w+1 /wi = p + pTh(T) for some h(T) E Ox [T].
 Therefore

 We(T - 7j 2~1 pe u(T) (mod f (T))
 i=0 W

 where u (T) is some unit in Ox [T]/I(we(T)). This shows that the ideals (f (T),
 We (T)/T) and (f(T), pe) are equal and that there is an isomorphism of Ox-modules

 Ox [T] I (f (T), We (T) IT) -_(? X/Pe?X ),

 To complete the proof, we observe that f(0) E Ox[T]/(f(T) we(T)) is the image of

 f( T f(0) E Ox[T]/(f(T),we(T)/T) = Ox[T]/(f(T)Ipe),
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 under the multiplication by T map. Since f is monic, this implies that f (O) has

 order pe. Therefore 1 E Ox[T]/(we(T)I f (T)) has, up to p-adic unit, order f (o)pe.
 This completes the proof O

 The following simple result often suffices to determine the structure of the p-part

 of the minus class group of Q((,) when p divides 1 - 1. Note that the proof does
 not rely on the theorems of Mazur-Wiles, Kolyvagin or Solomon.

 Theorem III. Let 1 and p be odd primes and let M be the p-part of the minus

 class group of Q((1). If #M divides (1- 1)2, then M is a cyclic group.

 Proof. Let Xr denote the p-part of G = Gal(Q((1)/Q); it is a cyclic group of order pe.

 Let F be the fixed field of 7r, let X be a character of G of order prime to p and let
 M(X) be the corresponding eigenspace of M. We assume that M(x) :& 0. Since
 the condition of Theorem 2.1 is satisfied for K = Q(,), there is an exact sequence

 0 O_FHd E)OL. K M~ o ) 0X[T ?[-] d M (x) 0 o

 where d is the Ox-rank of ClF(X). Let q = pa denote the number of elements in
 the residue field of O.x We write det(0)) = pAtu(T)f (T) E Ox[7r] -Ox[T]/ (we(T))
 for some Weierstrass polynomial f (T) = TA + ax_l TAl- +... + a1T + ao and some

 unit u(T). Then #M(x) O#x/(Ipe=ip, - =p f 1)), so that

 #M(x) > qPe+tp+mmn(A,p-l)e+i

 and hence

 2e > a(Qipe + min(A,p - 1)e + 1).

 Since 2e < pe + 1, we have u = 0. Since M(X) :& 0, this implies that A > 0.
 Moreover, since a min(A,p - 1) < 2, we have that A = 1 and a = 1 so that

 Ox = Zp This shows that, up to a unit, f(T) = det (0) = T - 3 for some
 13 E pZp. Since d is the Ox-rank of ClF(X), any surjection Ox[7]d )) Cli(X) is
 an isomorphism modulo the maximal ideal m of the local ring Ox [7r]. This implies
 that all entries of the matrix 0) are contained in m so that det(0)) E md.

 It follows that d = 1, so that M(x) Zp[T]/((1 + T)Pe - 1 T - /3) _ Zp/pe/3Zp
 is a cyclic group. We conclude the proof by observing that #M(X) > pe+', so that
 only one eigenspace M(x) is non-trivial and hence M = M(x). C]

 3. THE 2-PART

 In this section we study the 2-part of the minus class group of a complex abelian
 number field K. We show that certain eigenspaces of the 2-part are cohomologically

 trivial Galois modules. This has consequences for their structure. Finally we prove

 a criterion for cyclicity of these eigenspaces as Galois modules.
 Let G = Gal(K/Q), let t E G denote complex conjugation and let K+ denote

 the fixed field of t. We have inclusions of idele class groups CK+ C CK and of idele

 unit groups UK+ C UK. There is a natural map ClK+ - ClK. We define

 UR- = UK- / UKc+,

 CK =CK /CCK+,

 Cl = ClK/im ClK+,

 ,L = /1K n U~K-
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 Note that UK is isomorphic to the submodule Ujit of UK. The intersection AtKnUK
 is taken inside UK.

 A diagram chase involving the exact sequence 0 - -K UK CK
 CiK - 0 and the analogous sequence for K+ shows that there is an exact se-
 quence [19]

 O /K > K A >CK K O

 It is important to use the definition of the minus class group Clj that we give
 here. Often the minus class group of an abelian number field K is defined to be

 the kernel of the norm map N: CIK - ClK+. The present definition differs at
 most in the 2-part. It has several advantages: as we will see below, it is easy to

 compute the Galois cohomology of Clx; the results for the 2-part are very similar
 to the results for the odd parts. I don't know how to do the calculations using the
 other definition.

 Another advantage over the usual definition is the following. It is easy to deduce

 the following formula for the order of Clj from the usual class number formula:

 #Cl- 2 AtK ]7- Bi,x.
 [AK AK X odd

 This formula does not involve the unit index "QK" of Hasse [5, Ch.20], which is,

 in general, difficult to compute. This time there is the factor 2/ [UK: t- ], which is
 either 1 or 2, but this quantity is easy to compute; it captures, in some sense, only
 the easy aspects of the unit index QK and its calculation is precisely the content
 of Hasse's Satz 22 in [5].

 In this secton we fix a complex abelian number field K with G = Gal(K/Q).
 Let wF be the 2-part of G with fixed field k = K. We fix a non-trivial character

 X of G of odd order. We denote the fixed field of K under t by K+. Note that
 k C K+.

 Theorem 3.1. Let P c wF be a 2-group that does not contain t and let E = Kp.
 Let E+ be the fixed field of E rnder t. If all primes r that ramify irn E+ C K satisfy

 X(r) :7 1, then
 (i) Cl - (X) is a cohomologically trivial Ox [P] -module;
 (ii) the- natural map Cl(X) - ClK(X)p is bijective and the norm map N

 ClT (X) - Cl(X) is surjective.

 Proof. Note that Gal(K/E+) P x {1, t}. The proof follows the pattern of the
 proof of Theorem 2.1.

 (i) It suffices to show that Hq(P, Clj-(X)) = 0 for all q E Z. Consider the exact
 sequence

 O 1K > K K CK >O

 We show that the X-parts of the P-cohomology groups of the first three modules

 are trivial. Lemma 1.1 then implies that Hq(P, Cl-(X)) = 0 for all q E Z.
 Since X has odd order, it acts trivially on the 2-part of pt- and therefore on its

 P-cohomology groups. This shows that Hq (P, AQ) (X) = 0 for all q E Z. By global
 class field theory H C(P,C) and H (P,CK+) are isomorphic to H 2(P,Z) and
 have therefore trivial G-action and, since X :& 1, trivial X-parts. It follows that

 Hq(p, C_K-_ ) (X) = 0 for all q E Z.
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 By local class field theory and the fact that x(r) 1 for the primes r that ramify

 in E c K and E+ C K+ we have that Hq(P, UK) and Hq(P, UK+) have trivial

 X-parts. The proofs are similar to the proof of part (i) of Theorem 2.1.
 (ii) The natural map CQ/N(C7-) Cl-/N(Cl) is surjective. We saw already

 in the proof of part (i) that CQ/N(C.) - H?(P, CK) has trivial X-part. Therefore
 the norm map N: Cl(X) -) Cl(X) is surjective. Note that we only used the
 fact that X :& 1 to prove this.

 To prove the second statement, we consider the following diagram:

 O-* 1E -U CE ) 71E -E O O~~~ 8 , ( P (zp CE.
 O AtK +UK > C CK

 An easy diagram chase shows that the first three vertical arrows are injective and

 have cokernels with trivial X-parts. By the proof of part (i), the P-cohomology

 groups of each of the modules UK, UK, CK and Cl9 have trivial X-parts as well.
 This easily implies that the rightmost map induces an isomorphism Cl (X) -
 Cl (X)P as required. CI

 Theorem 3.2. If all primes r that ramify in k c K satisfy x(r) :& 1, then
 (i) there is an exact sequence

 0 (O ([7 [w]/(I + t)) (OX[7r]/(I + t))d Cl(X) -) 0;
 (ii) If, in addition, the prime 2 is not ramified in the field K, then

 #CiKi(ij) = OX(fJ B12,X1/),

 where the product runs over the odd characters V9 of G of 2-power order.

 Proof. Choose - E Xr so that (u) is a direct summand of Xr containing t. Let 2e
 denote the order of u- and let P be a complement of (u) in 7r: we have r = P x (U).

 The eigenspace Cl-(X) is a Ox[7r]-module on which t = 2e acts as -1. Therefore
 Cl-(X) is a module over the ring Ox[P x (uf)I/(1 + l)- Ox [2e][P]I

 By Theorem 3.1, Cl - (X) is a cohomologically trivial P-module. Let OX [2] [P]]d
 Cl C- (X) be a surjective OX[2e] [P]-homomorphism. The kernel is a cohomolog-

 ically trivial torsion-free Ox[K2e][P]-module. As in the proof of Theorem 2.3, we
 copy the proof of [2, p.113, Thm.8] with Z replaced by the discrete valuation ring

 Ox[02']. It follows that the kernel is projective and hence free over the local ring
 OX[K2e] [P]. Since the quotient is finite, the kernel has rank d. This proves (i).

 (ii) We proceed with induction with respect to the order of 7r. Since 2 is unram-

 ified we may apply C. Greither's Theorem [4, p.453, Thms. A and B] and we see
 that the result holds when wF is cyclic. Suppose wF is not cyclic. Writing wF = (uf) x P
 as in part (i), the group P is not trivial. Let r E P be an element of order 2.
 The fixed fields KT and KTt of r and rL are both complex abelian number fields
 containing k. The set of odd characters of G is the disjoint union of the sets of odd
 characters of Gal(KT/Q) and Gal(KTt/Q).

 By induction, the result holds for the fields KT and KTt. By Theorem 3.1(i),

 M = Cl (X) is cohomologically trivial, both as a {1, T}-module and as a {1, rL}-
 module. Moreover, by part (ii) of that theorem, (1 + r)M and (1 + rL)M are
 isomorphic to the X-part of the 2-part of the minus class group of KT and KTt
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 respectively. Since t acts as -1 on M, it follows from the cohomological triviality

 of M that #M = #(1 + T)M -#( T-)M = #(1 + T)M #(1 + tL)M. This
 proves (ii). DG

 Finally we prove a sufficient condition for the eigenspace Cl (X) to be a cyclic

 Ox[w]/ (I + t)-module.

 Theorem 3.3. Suppose that all primes r that ramify in k c K satisfy x(r) + 1.
 If there exists an odd character (p of odd conductor and of order 2k for which each
 of the following two conditions hold:

 - 1Bj,x-1W =(1 - 2k)U for some unit u E OXK[2e],
 - x(r) =A 1 for all primes r dividing the conductor of op,

 then Cl7-(X) is a cyclic Ox[wF]/(I + t)-module.

 Proof. Let kl, denote the composite field kQker, and let KJ denote KQker w. Both
 fields kl, c K1 are complex. Put F' = Gal(KI?/k) and P = Gal(17/k,k). We have
 that t 0 P.

 Since 2 is not ramified, it follows from Greither's Theorem that the order of

 Cl1 (X) is equal to the order of Ox/(Norm(GBj,x-1p)). Here the Norm is the

 OXK[2k]/Ox-Norm. Since Norm(QBj,x-,w) = Norm(1 -2k) = 2, we see that
 the order of Cl- (X) is equal to the order of the residue field of Ox Therefore

 Cl1 (X) is a cyclic Galois module. By Theorem 3.1, applied to E = k, c K, the

 eigenspace Cl (X) is a cohomologically trivial P-module and the P-norm map in-

 duces an isomorphism between Cl1 (X) and Clj (X) modulo the P-augmentation

 ideal. Therefore another application of Nakayama's Lemma implies that Cl9 (X)

 is a cyclic OX[P]-module and hence a cyclic Ox[7r']/(l + t)-module. Therefore its
 quotient Cl-(X) is a cyclic Ox[wF]/(l + t)-module, as required. C]

 If the group X is cyclic, then OX[wr]/(l + l) v OX [(2e] where #,F = 2e. Since
 the ring Ox [2e] is a discrete valuation ring, the structure of finite modules over
 Ox [w1]/ (I + t) is particularly simple.

 Proposition 3.4. Suppose that wF is cyclic and that Cl (X) is cyclic over O[w].
 If #Cl@ ) = 2ft, where 2f is the order of the residue field Ox/(2), then there is
 an isomorphism of Ox [(2e] -modules

 CIT(X) - OX[(2e]/((l - (2e)t)

 and there is an isomorphism of abelian groups

 CljK(X) - (Z/2rZ)f(2 -s) x (Z/2r?lZ)fs

 where r, s E Z are determined by t = r2e1 + s and 0 < s < 2`-

 Proof. This follows from the fact that Ox [(2e] is a discrete valuation ring with
 uniformizing element 1 - (e D]

 4. TABLES

 In this section we present the proof of Theorem II. An essential ingredient is the

 table of class numbers hT given in the appendix. We briefly explain the notation.
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 TABLE 4.1

 233 P14 P29 PM 419 P16 P30 *p49 PM, HtR
 269 P16 P31 PM 433 P14 *p34 PM

 317 P25 *P49 HtR 439 pll P21 P23 P24 PM, PM, PM

 337 p13 p15 P15 PM, PM 449 P18 * P84 PM
 359 p13 p30 P45 PM, HtR 463 P18 *P21 *P25 PM, BS
 379 P22 P24 BS 467 P19 *P49 P55 PM, AL
 383 p19 p24 P46 PM, HtR 479 P20 P27 P70 PM, AL
 389 p24 p60 AL 487 P30 P49 HtR

 397 P8 *P26 * P27 PM, BS 499 p15 p18 *P47 PM, PM
 401 P16 *P18 *P31 PM, PM 503 P12 * P14 * P112 PM, PM
 409 p12 P p52 PM 509 p16 *P28 PplOl PM, AL

 Let 1 be an odd prime. We have 1 - = 2e m with m odd. For every'divisor d
 of 1 - 1 which itself is divisible by 2" we define

 h- (d)= 171 -Bi,x
 ord(X)=d

 where the product runs over the characters X (Z/lZ)* > C* of order d; except
 when d =1 - 1, in which case we multiply this product by 1, and when d = 2e, in
 which case we multiply it by 2. InJ the rare occasion when 1 - 1 is equal to 2e, the
 only possible value for d is 1 - 1 2- and we put

 hl(d)- 21 fl 2 2Bi,x
 ord(X)=d

 This last case occurs only when 1 is a Fermat prime i.e., when 1 = 3, 5, 17, 257,
 65537 or has more than 2500 000 decimal digits.

 The numbers h7 (d) are listed in the appendix. They are rational integers [5],

 [24] and they are related to the minus class number hT by

 h- = #C1T - 17 h- (d).

 2e ldll-1

 In [15] D. H. Lehmer and J. M. Masley presented a table with the numbers h7 (d)
 for 1 < 509. Of most of these numbers the complete prime factorization was given,
 but their table contains 22 unfactored composite numbers. These were factored by
 Peter Montgomery (PM), Bob Silverman (BS), Herman te Riele (HtR) and Arjen
 Lenstra (AL). The most laborious factorization, for 1 = 467, was performed by
 Arjen Lenstra, who factored a 103 digit factor of h-67 into a product of two primes
 of 49 and 55 digits respectively. We list the various contributions in Table 4.1. By
 pn we denote a prime factor of n decimal digits. The order in which the initials are
 given corresponds to the order of the prime factors. In order to prove Theorem II

 and, at the same time, determine the structure of Cli as an abelian group, we

 study the table of numbers h- (d) of the appendix. Clearly, if a prime p divides the
 class number h- exactly once, the p-part of Cl is cyclic as a group and hence as
 a Galois module. This happens for most large prime divisors. All other cases are
 listed below. Tables 4.2, 4.3 and 4.4 contain the prime pairs (p, 1) with 1 < 509 for
 which p2 divides h-. We discuss each table in some detail.
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 The class group Cl is a product of its p-parts and each p-part is a product of

 eigenspaces Cll(x). The minus class group Cl is a cyclic Galois module if and

 only if for each prime p, each eigenspace Cl (X) is cyclic over the local ring Ox[0rx
 where X is the p-part of G = Gal(Q((4)/Q).

 TABLE 4.2. Primes p not dividing 1 - 1

 1 p d f hi (d) class group
 41 11 40 2 112 11 x 11

 131 3 26 3 33 3x3x3

 139 47 46 1 472 2209 Thm.2.3 with r 283

 277 46 1 277 277

 138 1 277 277

 149 3 4 2 32 3 x 3
 151 11 30 2 112 11 x 11

 157 157 156 1 1572 157 x 157 Thm.2.2

 211 281 14 1 281 281

 70 1 281 281

 227 2939 226 1 29393 2939 x 2939 x 2939 Thm.2.2
 241 47 16 2 472 47 x 47

 277 47 276 2 472 47 x 47

 281 11 40 2 112 11 x 11

 41 40 1 412 1681 Thm.2.3 with r 83
 293 3 4 2 32 3 x 3

 313 37 24 2 372 37 x 37
 337 17 16 1 172 17 x 17 Thm.2.2

 353 353 352 1 3532 353 x 353 Thm.2.2
 379 379 42 1 379 379

 378 1 379 379

 397 23 132 2 232 23 x 23
 401 41 80 2 412 41 x 41

 409 5 24 2 52 5 x 5

 419 3 2 1 32 9 Thm.2.3 with r 7
 443 3 26 3 36 9 x 9 x 9 Thm.2.3 with r =7
 457 5 24 2 52 5 x 5

 467 467 466 1 4672 467 x 467 Thm.2.2
 479 5 2 1 52 25 Thm.2.3 with r 11
 487 7 2 1 7 7

 6 1 7 7

 37 18 1 372 37 x 37 Thm.2.2

 491 3 2 1 32 9 Thm.2.3 with r 7
 11 10 1 113 11 x 121 Thm.2.2, Thm.2.3 with r 23
 491 98 1 491 491

 490 1 4912 491 x 491 Thm.2.2

 In Table 4.2 we have listed all pairs (p, 1) for which p is odd and p2 divides h7,
 but p does not divide 1 - 1. In this case the p-part 7r of the Galois group of Q((i)
 over Q is trivial and an eigenspace Cl, (X) is cyclic as a Galois module if and only
 if it is a cyclic Ox-module. It turns out that in all cases every Cll (x) is cyclic as
 an Ox-module.

 To explain the table, we first note that in the case 1 = p, the Teichmiiller
 eigenspace Cl0 (w) is always trivial. Therefore we only have contributions for the
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 TABLE 4.3. Odd primes p dividing 1 - 1

 f p d ho, h,... group
 31 3 2 3, 3 9

 71 7 2 7,7 49

 101 5 4 5, 25, 25 25 x 125 Prop.2.4, A 2
 131 5 2 5, 5 25

 137 17 8 17, 17 289

 139 3 2 3, 3 9

 157 13 12 13, 13 169

 181 5 4 25, 5 125 Prop.2.4, A= 1
 199 3 2 9,3,3 81

 211 3 2 3, 3 9

 7 6 7,7 49

 283 3 2 3, 3 9

 307 3 2 3, 3, 3 27

 331 3 2 3, 9 3 x 9 Thm.23, 0 = T2 _15T + 3
 3 10 81, 81 9x9x9x9 Prop.2.4, A= 1

 337 7 16 49, 49 49 x 49 Prop.2.4, A = 1
 367 3 2 9, 3 27 Prop.2.4, A= 1
 379 3 2 3, 3, 3,3 81

 409 17 8 17, 17 289
 421 5 4 25, 5 125 Prop.2.4, A = 1
 439 3 2 3, 27 9 x 9 Thm.2.3, 0 = T2 - 3T-3
 461 5 4 25, 25 5 x 125 Thm.2.3 with r = 11; Prop.2.4, A 2
 463 7 2 7, 7 49

 7 6 7,7 49

 499 3 2 3, 3 9

 characters X + w. Let d be a divisor of I-1 for which p divides h7 (d). Then for all
 characters X of order d the ring Ox has a residue field with pf elements where f is
 the order of p modulo d. If pf happens to be the exact power of p dividing h7 (d),
 then it is clear that for exactly one character X of order d the eigenspace Cl0 (X)
 is isomorphic to Ox/(2) while all others are trivial. These cases are listed without
 comment. In the remaining cases we apply the theorem of Mazur and Wiles which
 is the case with trivial 7r of Theorem 2.2. If the precise power of p dividing hT (d)
 is pfa and for precisely a characters X of order d the generalized Bernoulli number
 Bl,x - is divisible by p, then each eigenspace Cl7 (X) is either isomorphic to Ox/(2)
 or is zero. In particular, each Cli (x) is a cyclic Galois module. This happens in
 all but seven cases. In the remaining seven cases we use Theorem 2.3 and show
 that each eigenspace is a cyclic Ox module by computing an additional Bernoulli
 number Bj,x-<,o where So is a suitable even character of order p and conductor r.

 In Table 4.3 we have listed all pairs (p, 1) with p :& 2 dividing 1 - 1. We'll see
 below that in this case the class number h7 is automnatically divisible by p2, so

 that Table 4.3 actually contains all pairs (p, 1) for which p divides gcd(h7, 1 - 1).
 In order to explain the contents of the table, we fix p and 1 and we let pe be the
 exact power of p dividing 1 - 1.

 If d and d' are two divisors of I-1 that only differ by a power of p, then B1,/-l =
 B1 ,, -i modulo (1 -(pe ) for all characters p of order d and so' of order d'. Therefore,
 as Lehmer observed [14, Thm.5], either both h- (d) and h- (d') are divisible by p
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 TABLE 4.4. p = 2

 - d ord(X) 2e f h7 (d) 2-class group r
 29 28 7 4 3 8 2x2x2

 113 112 7 16 3 8 2x2x2

 163 6 3 2 2 4 2x2

 197 28 7 4 3 8 2x2x2

 239 14 7 2 3 82 4x4x4 3
 277 12 3 4 2 42 2x2x2x2 3
 311 62 31 2 5 322 2x2x2x2x2x2x2x2x2x2
 337 336 21 16 6 64 2x2x2x2x2x2

 349 12 3 4 2 42 2x2x2x2 7
 373 124 31 4 5 32 2x2x2x2x2

 397 12 3 4 2 43 4x4x2x2 3
 421 60 15 4 4 16 2x2x2x2

 463 14 7 2 3 8 2x2x2

 491 14 7 2 3 82 2x2x2x2x2x2

 or none is. For this reason we have ordered the class numbers as follows: for each

 divisor d of 1 - 1 which is itself not divisible by p but for which h- (d) is divisible

 by p, we list, for i = 0,1, .. ., e the p-part hi of h- (dpi). By Lehmer's observation,
 each hi is divisible by p. We note in passing that this implies that h- is divisible
 by p2.

 For each character X of order d the residue field of Ox has order pf where f is
 the order of p modulo d. In all but one case either ho = pf or hi = pf . In the latter
 case we have that, up to a unit, B1 -1= 1- (p for the characters 04 of conductor 1
 and order p. In either case Theorem 2.3 applies anad we see that Cl, (X) is cyclic over
 Ox[7r]. The only exception is 1 = 461 with p = 5. In this case ho = hi = 25. In this
 case we have applied Theorem 2.3 with so a character of order 5 and conductor 11.

 It turns out that in this exceptional case Cl (x) is a cyclic Ox [7r]-module as well.
 In most cases we can apply Theorem III and conclude that the eigenspace is a

 cyclic group. These cases are listed without comment. In the cases (1, p) = (101, 5),
 (337, 7), (461, 5) and (331, 3) (the latter for d = 10) an application of Proposition

 2.4 immediately gives the structure of Cli (X). Finally, in the cases (I, p) = (439, 3)
 and (331,3) (the latter for d = 2) we have explicitly computed the Stickelberger
 element 0 and applied Theorem 2.3 directly.

 Finally we discuss the contents of Table 4.4. Let X be a character of (Z/lZ)* of
 odd order. The 2-part of Cl0 is a module over OX[wF]/(l + t) v OyX[2e]. Here 2e
 is the exact power of 2 dividing I - 1. It is well known that Cl0 (X) is trivial when
 X = 1. This implies that the prime p = 2 never divides h- with multiplicity 1.
 Therefore Table 4.4 actually contains all primes 1 < 509 for which h- is even.

 It turns out that Cl (X) is in all cases a cyclic Galois module. This follows from

 several applications of Theorem 3.3. In all but 4.cases we have that ld, 'Bl,x-lV =
 2u for some unit u E xI Here the product runs over the odd characters 04 of 2-
 power order and conductor 1. In this case Cl0(X) - OJx(2) which is a vector
 space of dimension f over F2. Here f is the degree of F2 ((d) over F2 and d is the
 order of X. In the remaining cases we applied Theorem 3.3 with an odd quadratic
 character so of conductor r. Here r _ 3 (mod 4) is a prime for which x(r) # 1.

 The structure of Cl0(X) then follows easily from Theorem 3.4.
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