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MATHEMATICS OF COMPUTATION
Volume 67, Number 223, July 1998, Pages 1225-1245
S 0025-5718(98)00939-9

MINUS CLASS GROUPS OF THE FIELDS
OF THE [-TH ROOTS OF UNITY

RENE SCHOOF

ABSTRACT. We show that for any prime number [ > 2 the minus class group
of the field of the I-th roots of unity Qp({;) admits a finite free resolution
of length 1 as a module over the ring Z[G]/(1 + ¢). Here ¢ denotes complex
conjugation in G = Gal(Qp(¢;)/Qp) = (Z/IZ)*. Moreover, for the primes
1 < 509 we show that the minus class group is cyclic as a module over this
ring. For these primes we also determine the structure of the minus class
group.

INTRODUCTION

Let [ be an odd prime and let (; denote a primitive [-th root of unity. In this
paper we study the cyclotomic fields Q(¢;) and the class groups C1; of their rings of
integers Z[(;]. The class group CI; splits in a natural way into two parts: the natural
map from the class group Cl;" of the ring of integers of the subfield Q(¢; + ¢ ") to
Cl, is injective [24, p.40]. Its cokernel, the minis class group of Q((;), is denoted
by Cl;. There is an exact sequence

O———»Cl;r——%Cll——»C’ll_ — 0.

About the groups Cl little is known. For small primes [ they are trivial [23].
See [3], [21] for a numerical study of these groups. In this paper we consider the
other groups, the minus class groups C1; , which are easier to handle. There is, first
of all, an explicit and easily computable formula for their cardinalities h; . See [24,
p.42]:

=2 ] —%BLX,
x odd
where the product runs over the characters x : (Z/lZ)* — C™* which are odd, i.e.
which satisfy x(—1) = —1. The numbers B , are generalized Bernoulli numbers;
they are defined in section 1.

Around 1850, E. E. Kummer [9], [10] used this formula to compute the minus
class numbers h; for the primes [ < 100. These calculations were extended by
D. H. Lehmer and J. M. Masley [15] in 1978 to the primes [ < 509. The numbers
h; grow very rapidly with [. For instance, hyy, already has 138 decimal digits.

The class number h; alone does, of course, not determine the structure of the
group Cl;". If h; is squarefree, the group CI; is cyclic, but in general h; has
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1226 RENE SCHOOF

multiple factors. It is a natural problem to try and determine the structure of the
minus class groups. Kummer [12] addressed this problem in 1853. He showed, for
instance, that for [ = 29 the minus class group is isomorphic to Z/2ZxZ /2Z x 7 /2Z.
He claimed moreover that the minus class group of Q({z1) is cyclic of order 9. Only
in 1870 he gave a rigorous proof of this fact [11]. It involves a lenghty calculation
in the field Q(¢31). His claim that the group Cl3; is cyclic of order 7% - 79241 is
correct, but has, as far as I know, never been justified previously [6].

In this paper we study the structure of the minus class groups Cl; as Galois
modules. Since complex conjugation ¢ acts as —1 on CI;, it is natural to study CI;°

as a module over the ring Z[G] /(14 ) where Z denotes the profinite ring lim Z/nZ
and G = Gal(Q({;)/Q) = (Z/IZ)*. We prove the following;:

Theorem I. Let | be an odd prime. Then there exist an exact sequence of
Z[G]/(1 + ¢)-modules

0———>L—9—>L———+Cll_———>0

where L is free of finite rank over Z[G]/(1+ ¢).

Theorem I is an immediate consequence of Theorems 2.2(i) and 3.2(i). For small
! we can be more precise:

Theorem II. Forl < 509 one can take /{/ of rank 1 in Theorg\m 1. In other words,
the minus class group is isomorphic to Z[G]/(1 4+ ¢,0) as a Z[G]/(1 + ¢)-module.
Moreover, for © one can take the modified Stickelberger element introduced in sec-
tion 1.

Theorem II is proved in section 4. In the course of the proof we determine
completely the structure of the minus class groups C!;” as abelian groups for I < 509.
As an example we mention Clygy;, which we show to be isomorphic to a product of
six cyclic groups:

Z/27 x Z/27 x Z/2Z x 7Z./9827Z x Z/10802Z x Z/18680189262665824155664817/
/205804054998786681161963704417938182602575815795883211941228272982586 /
/25221939971178506931727800584004906Z.

Theorem II probably holds for several other primes [, but is definitely not true in
general. It does, for instance, not hold for I = 3299. This follows from the fact
that, when [ = 3 (mod 4), the minus class group CI; is cyclic over Z[G)/(1 + 1)
if and only if the class group of the quadratic subfield Q(v/—1) C Q(¢;) is a cyclic
group. Since the class group of Q(1/—3299) is isomorphic to Z/3Z x Z/9Z, the
group Cls,gg is not cyclic as a Z[G]/(1 4 ¢)-module [13, p.80].

Finally, we single out a particularly simple consequence of our results. Roughly
speaking, it says that for prime divisors p of [ — 1, the p-part of Cl; is cyclic
whenever it is small.

Theorem III. Let! and p be odd primes and let M denote the p-part of the minus
class group of Q(¢). If #M divides (I — 1)2, then M is a cyclic group.

Theorem III is proved in section 2. Applying it with [ = 31, p = 3 and [ =
71, p = 7 respectively we obtain a proof of Kummer’s claims. The condition that
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MINUS CLASS GROUPS OF THE FIELDS OF THE [-TH ROOTS OF UNITY 1227

#M divide (I —1)? cannot be relaxed further: in section 4 we show that the 5-part
of the minus class group of Q(¢101) is isomorphic to Z/125Z x Z/25Z.

Our method is, in some sense, a finite version of Iwasawa theory. It is closely
related to V. A. Kolyvagin’s work [7]. In order to obtain information about the
structure of a certain y-eigenspace of the p-part of a minus class group, we “deform”
the Dirichlet character x and study the extension L corresponding to xi, where
1) is some character of p-power order. The generalized Bernoulli numbers Bj yy
contain information about the y-eigenspace of the class group of this extension.
This information is obtained by viewing the field L as a “truncated” Z,-extension
and by studying the y-part of the minus class group of L by mimicking techniques
from Iwasawa theory. The main results are Theorem III and the two criteria for
cyclicity, Theorems 2.3 and 3.3.

The main difficulty in extending Theorem II to primes ! > 509 is the size of
the class numbers. For larger [ one is bound to encounter composite numbers that
cannot be factored within reasonable time. Sooner or later one will also encounter
x-parts that are not cyclic Galois modules. In these cases the methods of this paper
do not apply.

The paper is organized as follows. In section 1 we briefly recall some well known
facts concerning Z[G]-modules when G is a finite abelian group. In this section we
also discuss some elementary properties of Stickelberger elements and generalized
Bernoulli numbers. Even though there are similarities between the structure of the
odd and even parts of the minus class groups, the differences are sufficiently big
to merit separate treatment. In section 2 we consider the p-parts of minus class
groups for odd primes p. In section 3 we do the same for p = 2. Finally, in section
4, we present the numerical results and prove Theorem II.

We need to know the complete prime decomposition of the class numbers h;
for | < 509. In the appendix a table of the prime factorizations of these numbers
is given. This table is complete and supersedes the one computed by Lehmer and
Masley [15]. The present table contains also the factorizations of the unfactored
composite numbers in their table. I thank Arjen Lenstra, Peter Montgomery, Bob
Silverman and Herman te Riele for computing the unknown prime factors, Francois
Morain for several primality proofs and Pietro Cornacchia for catching an error in
Table 4.4.

1. PRELIMINARIES

In this section we recall some elementary facts concerning modules over group
rings Z[G] when G is a finite abelian group. In addition we recall some basic
properties of Stickelberger elements and generalized Bernoulli numbers.

Let G be a finite abelian group. For a G-module M, we denote by MS the
subgroup of G-invariant elements of M. Now fix a prime p and let

G2 x A,

where 7 is the p-part of G and A is the maximal subgroup of G of order prime to
p. We write the group ring Z,[G] as Z,[A][n]. By the orthogonality relations there
is an isomorphism of rings

Zy[A] = [ ] Ox.
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1228 RENE SCHOOF

Here x runs over the characters x : A — Q up to Gal(Q / Q,)-conjugacy. The
rings O, are unramified extensions of Zj, generated by the values of x. They are
Zp[A]-algebras via the rule o -z = x(o)z for x € O, and 0 € A. The ring
isomorphism is given by mapping ¢ € A to x(c¢) in each component O,. The
residue field of O, is F,({q) where d is the order of x.

Definition. Let M be a Z,[G]-module and let x : A — 6; be a character.
Equivalently, x is a character of G of order prime to p. The x-eigenspace M(x) or
x-part of M is defined by

M(x)=M ®Z,(a] Ox-
We have a decomposition into eigenspaces of M:

M=T[Mx),
X

where x runs over the characters x : A — Q up to Gal(Q »/ Qp)-conjugacy. Each
eigenspace M(x) is a module over the local ring Oy[r]. The res1due field of this
ring is equal to the residue field of O,, which is Fp(Cd), where d is the order of x.

We frequently use the following properties of the Tate cohomology groups [2]. Let
M be a G—module and let P C m. The natural action of P on the Tate cohomology
groups H q(P M) is trivial, but A acts, in general, in a non-trivial way. Note that
the groups H(P, M) are Z,[A]-modules, because they are killed by #P.

Lemma 1.1. Let p be a prime and let G be a finite abelian group. Let w and A be
as above and let P be a subgroup of . R R

(i) For every Z[G]-module M we have that HI(P, M) = H(P,M)” for all
qgEZ.

(i) For every Z,|G]-module M and every character x : A — 6; we have that

HY(P,M(x)) = HY(P, M)(x) for all g € Z.
Proof. (i) Since the actions of A and P commute, the inclusion i : M2 — M and
the A-norm map N : M — M* are P-morphisms. The maps i- N and N - induce
multiplication by #A on H 9(P,M)* and H 9(P, M®) respectively. Since #A and
#P are coprime, multiplication by #A is an isomorphism and (i) follows.

(ii) Since the actions of A and P commute, the eigenspaces M (x) are P-modules.
Taking the sum over the characters y : A — 6 up to Gal(Q »/ Qp)-conjugacy,
of the natural maps H 9P, M(x)) — B (P, M)(x), we obtain precisely the map
D, HY(P,M(x)) — H?(P, M) induced by the isomorphism b, Mx) — M.
This proves (ii). O

The remainder of this section is devoted to properties of Stickelberger elements

and generalized Bernoulli numbers. Let f # 2 (mod 4) be a conductor and let
= (Z/fZ)*. The Stickelberger element 6; of conductor f is given by

f
a 1 _
o= > (5-3)lteq
a=1 f 2
ged(a, f)=1
For any prime number p we write G = 7 x A as above. We have Q,[G] =
)-

@D, Kx[r] where the sum runs over the characters x : A — Qp up to Gal(Q,/Q,
conjugacy and K, is the quotient field of O,. We denote the algebra homomorphlsm
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MINUS CLASS GROUPS OF THE FIELDS OF THE [-TH ROOTS OF UNITY 1229

Q, [G] — K, [n] induced by x again by x. For every character y # w, the image
3x(8y) of 10, in K, [r] is an element of the subring O, [r]. Herew : (Z/pZ)* — Q,
denotes the Teichmiiller character. It is the character that gives the action of
Gal(Q/Q) on the group p of p-th roots of unity. Note that w = 1 when p = 2. For
odd p the element %Gf annihilates the x-part of the p-part of the ideal class group
of Q({s). This is Stickelberger’s Theorem [24, Chpt.6]. For p = 2, C. Greither [4]
has shown the same when 7 is cyclic and the conductor f is odd.

For any character ¢ of G of conductor f, the generalized Bernoulli number B
is simply the value of the algebra homomorphism Q,[G] — Q, induced by ¢
evaluated on the Stickelberger element:

f
Bio=v)= Y ($-3)e@cq,
gcd(aaz,})=1

Finally we assume that f = is prime, so that G = (Z/IZ)* and we introduce the
modified Stickelberger element © € Z[G]/(1 + ¢) that occurs in Theorem II. We
have that Z[G]/(1 + 1) = [1,Z,[G]/(1 +¢). Moreover, each factor Z,[G]/(1 +¢) is
isomorphic to Hx Oy [mp), where the x run over all odd characters of order prime
to p when p is odd and all characters of odd order when p = 2 respectively. Here ,
denotes the p-part of G. Therefore it suffices to describe the various components
x(©)of©: ifp=land x =worif p=2and x =1, we let x(©) = 1. In all other
cases x(©) = 1x(6)).

The modified Stickelberger element © € Z[G] (14 .) annihilates Cl; . The order
of Z[G](l +¢,0) is equal to the minus class number h; .

2. ODD PRIMES p

In this section we study the p-parts of the minus class groups of complex abelian
number fields for odd primes p. We show that certain eigenspaces of these groups
are cohomologically trivial Galois modules. This puts restraints on their structure.
We derive an easily applicable criterion for these eigenspaces to be cyclic Galois
modules.

In this section p # 2 is a prime. We fix a complex abelian number K field with
G = Gal(K/Q). Let 7 denote the p-part of G and F = K™ its fixed field. We
fix an odd character x : G — Qp* of order prime to p, which is not equal to the
Teichmiiller character w . Since p # 2, we have that Cl(x) = Clk(x). Therefore
we work, in this section, with the class group Cly itself rather than the minus class
group Cly.

Theorem 2.1. Let P C G be a subgroup of m with fived field E = KT. Suppose
that that for all primes r that are ramified in E-C K we have that x(r) # 1. Then
(i) the eigenspace Cli (x) is a cohomologically trivial O, [P]-module;
(ii) the natural map Clg(x) — Clg (x)F is bijective and the norm map Cly (x)
— Clg(x) is surjective.

Proof. (i) It suffices to show that H9(P,Clg(x)) = 0 for all ¢ € Z. Let O denote
the ring of integers of K, let Cx denote the idele class group of K and let Ui denote
the group of unit ideles, i.e. the group of K-ideéles that have trivial valuation at all
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1230 RENE SCHOOF

finite primes. We have the exact sequence of G-modules [2]
0— O — Ug — Cx — Clg — 0.

We show that the y-parts of the Tate P-cohomology groups of these modules are
all zero. For the unit group O}, we have the following exact sequence [24, p.39]

0 —{1,-1} — prx x O+ — O — Q — 0.
Here O+ is the ring of integers of the maximal real subfield K of K and ux
denotes the group of roots of unity in K. The group () has order at most 2.
Complex conjugation acts trivially on {1,—1}, on @ and on Oj.,. Since x is an
odd character, we have, by Lemma 1.1, that H9(P, O5)(x) = H(K, ux ) (x) for all
q € Z. Since x is not the Teichmiiller character, the y-part of ux is zero so that,
by Lemma 1.1, H9(P, O3)(x) =0 for all ¢ € Z.

By global class field theory there are natural isomorphisms H 1P Ck) =
H- 2(P Z) for all ¢ € Z. Since G acts trivially on Z, it follows from Lemma 1.1
that H(P,Ck)(x) = 0 for all ¢ € Z.

We use local class field theory to compute the cohomology of Uk . See also [20].
By Shapiro’s lemma we have

HY(P,Ug) EBH (P, 0L) = PP EYP,0})
T vlr

where v runs over the prime ideals of E and r runs over ordinary prime numbers.
The ring O,, is the ring of integers of the completion K,, of K at a prime w of
K over v. We have Q, C E, C K, with Galois groups G, = Gal(K,/Q,),

= Gal(K,/E,) and H, = Gal(E,/Q,). Since G is abelian, the decomposition
groups P, and H, only depend on the prime r. Since H 4(P,,Oy) vanishes when v
is unramified in K, it suffices to consider only primes r that are ramified in £ C K.
For each prime ideal v of F' dividing a ramified prime r, there is an exact sequence
of G,-modules

0—O;,, — K, —Z—0.

Consider the long exact sequence of Tate P,.-cohomology groups. By Lemma 1.1,
the group H,. acts trivially on the cohomology groups H 9(P.,Z). By local class field
theory there are natural isomorphisms H 1P, KF) B 9=2(P,,Z) for all q € Z, so
that H, also acts trivially on the groups H (P, K}). Let A, denote the maximal
subgroup of H, of order prime to p. Then A, and P, have coprime orders, so
that the long cohomology sequence remains exact when we take A,-invariants. It
follows that HY (Pr,0%) is A,-invariant. Therefore A, acts trivially on the sum
D, He (Pr, O%). Since x(r) # 1 for all ramified primes r, we see that A, ¢ ker(x).

This implies that the x-part of @vlr H (P, OF) is zero.
It follows that H(G,Ux)(x) = 0 for all g € Z. Combining all this and using
Lemma 1.1 one more time, we deduce that H 9P Clk(x)) =0 for all ¢ € Z. This

proves (i).
(ii) It is easy to see that the natural map CE/N(CK) —> ClE/N(ClK) is sur-
jective. Since x # 1, the group C/N(Cr) = HO(P,Cx) = H%(P,Z) has trivial

x-part, and it follows that the norm map N : Clg(x) — ClE(X) is surjective.
Notice that in order to prove surjectivity of this norm map we have not really used
the condition on x, but merely the fact that x is not trivial.
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MINUS CLASS GROUPS OF THE FIELDS OF THE [-TH ROOTS OF UNITY 1231

The P-cohomology groups of each module in the exact sequence 0 — O3 —
Ug — Cx — Clg — 0 have trivial x-parts. Since the natural maps O} —
0%%, Uy — UE and Cp — CE are all isomorphisms, so is Clp(x) — Clx(x)*.
This proves (ii). O

Theorem 2.2. If for all primes r that are ramified in F C K we have that x(r) #
1, then
(1) there is an exact sequence of Oy [m]-modules

0 — Oy 1] -2 Oy [1]¢ — Cl(x) — 0

where d is the Oy -rank of Clp(x);
(1) we have

#Clic(x) = #O0, /([ Bix-10)
P

—_— ¥
where ¢ runs over all characters ¢ : m — Q,, .

Proof. By Nakayama’s lemma there is a surjective O, [r] morphism O, [r]? —»
Clik(x). By Theorem 2.1, the class group Clg (x) and hence the kernel of this map
are cohomologically trivial. Now one copies the proof of [2, p.113, Thm.8] with Z
replaced by the discrete valuation ring O,. It follows that the kernel is a projective
Oy[r]-module. Since O, [n] is local, the kernel is therefore free. It has rank d since
it is of finite index in O, [r]?. This proves (i).

Part (ii) is a generalization of the Theorem of B. Mazur and A. Wiles [7], [16],
[17], [18]. By D. Solomon’s Theorem [22, p.472], we have for every subgroup P C 7
with cyclic quotient 7 /P,

#Cler () [N /Ne] = #0,/( [  Bix-10)-

ker =P

Here the 9 run over the characters of G for which kery) = P. Here P’ denotes
the unique subgroup of 7 containing P as a subgroup of index p and Np and Np/
denote the norm maps } . po and ) . p o respectively. In the exceptional case
P = 7 the group P’ is not defined and we simply put Np. = 0. By CI1Z[Np//Np| we
denote thé kernel of the relative norm map Np//Np from the class group Clgr(x)
to itself.

Put Sy = [[p NpOy[r]/Np:Oy[n]. Here P runs over the subgroups of 7 with
cyclic quotient 7/P. The natural map

9 : Ox[m] — 5

becomes an isomorphism when we take the tensor product with the quotient field
K, of Oy. Therefore g is injective and has finite cokernel.

All modules occurring in the exact sequence of part (i) are cohomologically triv-
ial. Therefore it remains exact when we apply the functor [, Np(—)/Np/(—) to
it. We obtain the following diagram with exact rows.

0 — OX[TF]d o, OX[ﬂ']d — Clg(x) — 0

2 5

0 — Sd — Sﬁ _— HPNPCZK(X)/NP’CZK(X) — 0
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1232 RENE SCHOOF

Theorem 2.1(i) and (ii) and an application of the snake lemma then gives that

#Clx (x H# (NpCli (x)/Np Cli (x H# Clycr (X)[Np/Np])

and the result follows from Solomon’s Theorem. O

It is not difficult to express thé order of Clk(x) in terms of the matrix © of
Theorem 2.1(i). One has [1, III, sect.9, Prop.6]

#Clic(x) = #0y /([ [ ¥(det(©))).
P

Here 9 runs over the characters of 7, and (det(®)) indicates the value of the
natural extension of ¢ to an algebra homomorphism O,[r] — Q, on det(©) €
Oxm].

Next we deduce a sufficient condition for the eigenspace Clx(x) to be a cyclic
Oy [7]-module.

Theorem 2.3. Suppose that for all primes r that are ramified in F C K we have
that x(r) # 1. If one of the following conditions holds:

— By x-1 = pu for some unit u € O;

— there exists a character ¢ : Gal(Q/Q) — Qp* of order p* > 1 such that
Bi x-14 = (1 = (pr)u for some unit u in Oy [(px],

then there is an isomorphism of Oy[m]-modules

Clk(x) = Oxr]/(6x)-
In particular, Cli(x) is a cyclic Oy[r]-module.

Proof. We first show that Clr(x) is a cyclic Oy-module. If By, -1 = pu for some
unit u € O3, it follows from Theorem 2.2(ii) that #Clr(x) is equal to the order of
the residue field O, /(p). Therefore Clr(x) is cyclic over O,.

In the other case, let E = lewF and let P = Gal(E/F). Then P is cyclic and
we let F' C E’ C E be the unique subfield of E of index p. Since ¢ # 1, it follows
from Theorem 2.1(ii) that the norm map Ng/g : Clg(x) — Clg/(x) is surjective.
To compute the order of the kernel of Ng, g/, we observe that

Norm(By,y-1,) = Norm(1 — (,x) = p

(here the Norm is the Q,({,x)/Q,-norm). By Solomon’s Theorem [22, Thm. IT,
1], we conclude that Clg(x)[Ng,z/] has the same order as the residue field O, /(p)
of Ry. Therefore so does Clg(x)/(Ng/g). By Nakayama’s lemma, Clg(x) is
therefore cyclic over the group ring O, [P]. It follows that Clp(x) is cyclic over Oy
in this case as well.

To complete the proof, we observe that, by Theorem 2.1, Clg(x) is cohomo-
logically trivial and the 7-norm map induces an O,-isomorphism between Clg(x)
and Clk () modulo the augmentation ideal of O, [r]. It follows from Nakayama’s
lemma that Clx(x) is cyclic over O, [n]. By Stickelberger’s theorem there is there-
fore a surjection O, [n]/(8y) — Clx(x), which is an isomorphism because both
groups have the same order by Theorem 2.2. This proves Theorem 2.3. O
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In the case the p-group 7 is cyclic of order p¢, say, we can be a little bit more
explicit. We have the usual isomorphism of local rings, familiar in Iwasawa theory

Oxlm] 2 O\ [T]/ (L + T — 1),

where 1 + T corresponds to some generator of 7. The maximal ideal of this local
ring is (T, p). For i > 0, we let w;(T) = (1+T)?" — 1.

By the Weierstrass Preparation theorem [24], every non-zero f(T) € O,[[T]]/
((1+T)?" —1) is the residue class of a polynomial of the form p“u(T)h(T) where u
is a non-negative integer, u(T) a unit and A(T) = T* +ax 1T '+ ...+ a1T + ag
is a Weierstrass polynomial of degree A < p°®. This means that a; = 0 (mod p) for
i=0,1,...,A— 1.

Proposition 2.4. Suppose that for all primes r that are ramified in F' C K we
have that x(r) # 1. Suppose that the Galois group  is cyclic of order p® and that
Clr(x) is a cyclic Oy-module. If for some character v of = of order p, for some
A <p—1 and for some unit u € Oy[(y], we have that By -1y = (1 — (p)*u, then

Clic(X) = (05 /() ! x Oy /(p°B1,x—1)
as an Oy-module.

Proof. We write Oy [n] = Oy[T]/(we(T)) as above. Since Clp(x) is a cyclic O,-
module, it follows from Theorem 2.1 that the eigenspace Cli(x) is a cohomo-
logically trivial cyclic O,[n]-module. Therefore Clx(x) = O,[n]/(p*f(T)) for
some Weierstrass polynomial f(T). Since Clp(x) = O, [n]/(T) = O, /(p* f(0)),
we have that p*f(0) = Bj,-1, up to a p-adic unit. Similarly, for the subfield
F C E C K of degree p over F' we have that Clg = O,[T]/(f(T),w:1(T)). Ap-
plying Solomon’s Theorem [22, Thm. II, 1], wé find that, up to a p-adic unit,
F(1=G) = Bryry = (1= ).

Since A < p — 1, this implies © = 0 and deg(f) = A. Since O, [T]/(f(T),we(T))
is cohomologically trivial, we have the following exact sequence

0 — Oy[T)/((T),we(T)/T) == O[T/ (f(T),we(T)) — Oy /(£(0)) — 0.
We analyze the ideal (f(T),we(T)/T). Consider for 0 < i < e the quotient
wir1(T) _ p'(p—1) P
T =(1+T) +o AT 41
Since A < p — 1 we have that TP~! = Tpg(T) (mod f(T)) for some polynomial
g9(T) € O4[T]. This implies that w;1/w; = p+ pTh(T) for some h(T) € O,[T).
Therefore

we(T o Wi41 e
} - E)_Lf =p° - w(T) (mod f(T))

where u(T)) is some unit in Oy[T]/(we(T)). This shows that the ideals (f(T),
we(T)/T) and (f(T), p°) are equal and that there is an isomorphism of O, -modules

Ox[T/(£(T),we(T)/T) = (Ox /p°Ox)*.
To complete the proof, we observe that f(0) € Oy [T]/(f(T),we(T)) is the image of

“fm} 1O ¢ 0,111/ (F(T), we(T)/T) = O (T (F(T), 1),
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under the multiplication by 7' map. Since f is monic, this implies that f(0) has
order p°. Therefore 1 € O, [T]/(we(T), f(T)) has, up to p-adic unit, order f(0)p®.
This completes the proof O

The following simple result often suffices to determine the structure of the p-part
of the minus class group of Q({;) when p divides [ — 1. Note that the proof does
not rely on the theorems of Mazur-Wiles, Kolyvagin or Solomon.

Theorem III. Let [ and p be odd primes and let M be the p-part of the minus
class group of Q((;). If #M divides (I — 1)%, then M is a cyclic group.

Proof. Let 7 denote the p-part of G = Gal(Q({;)/Q); it is a cyclic group of order p®.
Let F' be the fixed field of 7, let x be a character of G of order prime to p and let
M (x) be the corresponding eigenspace of M. We assume that M(x) # 0. Since
the condition of Theorem 2.1 is satisfied for K = Q((;), there is an exact sequence

0 — Ox[n]* =% Oy fm]* — M(x) — 0,
where d is the O,-rank of Clp(x). Let ¢ = p® denote the number of elements in
the residue field of O,. We write det(0) = p*u(T) f(T) € Oy[n] = Oy [T/ (we(T))

for some Weierstrass polynomial f(T) = T* +ayx_1T* 1 +...4+a;T +ap and some
unit u(T'). Then #M(x) = #O0,/([1¢oe -y P* f({ — 1)), so that

#M(x) > q/.l,pe—i—nlin(/\,p—l)e—l—l
and hence
2e > a(up® + min(A,p — 1)e + 1).

Since 2e < p® + 1, we have p = 0. Since M(x) # 0, this implies that A > 0.
Moreover, since a - min(A,p — 1) < 2, we have that A = 1 and a = 1 so that
Oy = Z,. This shows that, up to a unit, f(T) = det(©) = T — [ for some
B € pZ,. Since d is the O,-rank of Clp(x), any surjection Oy [r]¢ —» Cli(x) is
an isomorphism modulo the maximal ideal m of the local ring O, [r]. This implies
that all entries of the matrix © are contained in m so that det(©) € m?.

It follows that d = 1, so that M(x) = Z,[T]/((1 + T)*" —1,T — B) = Z,/p*BZ,
is a cyclic group. We conclude the proof by observing that #M(x) > p**!, so that
only one eigenspace M () is non-trivial and hence M = M (x). - O

3. THE 2-PART

In this section we study the 2-part of the minus class group of a complex abelian
number field K. We show that certain eigenspaces of the 2-part are cohomologically
trivial Galois modules. This has consequences for their structure. Finally we prove
a criterion for cyclicity of these eigenspaces as Galois modules.

Let G = Gal(K/Q), let « € G denote complex conjugation and let K+ denote
the fixed field of ¢. We have inclusions of idele class groups Cx+ C Ck and of idéle
unit groups Ug+ C Ug. There is a natural map Clg+ — Cli. We define

Ug =Uk/Uk+,
Cx = Ck/Ck+,
Ol = Cly /im Clye+,
P = tr NUg.
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Note that Uy, is isomorphic to the submodule U}(_‘ of Uk. The intersection pxNUy
is taken inside Ug.

A diagram chase involving the exact sequence 0 — O} — Ug — Cxg —
Clg — 0 and the analogous sequence for K+ shows that there is an exact se-
quence [19]

0 — pp —Ug — Cxg — Cly — 0.

It is important to use the definition of the minus class group Cly; that we give
here. Often the minus class group of an abelian number field K is defined to be
the kernel of the norm map N : Clxy — Clg+. The present definition differs at
most in the 2-part. It has several advantages: as we will see below, it is easy to
compute the Galois cohomology of Cly; the results for the 2-part are very similar
to the results for the odd parts. I don’t know how to do the calculations using the
other definition.

Another advantage over the usual definition is the following. It is easy to deduce
the following formula for the order of Cl from the usual class number formula:

2 1
Cly = —— ——Bi -
PO = T - ] 1 ng 27X
This formula does not involve the unit index “Qg” of Hasse [5, Ch.20], which is,
in general, difficult to compute. This time there is the factor 2/[px : 1)), which is
either 1 or 2, but this quantity is easy to compute; it captures, in some sense, only
the easy aspects of the unit index @k and its calculation is precisely the content
of Hasse’s Satz 22 in [5].

In this secton we fix a complex abelian number field K with G = Gal(K/Q).
Let 7 be the 2-part of G with fixed field k = K™. We fix a non-trivial character
x of G of odd order. We denote the fixed field of K under ¢ by K. Note that
kc K.

Theorem 3.1. Let P C 7 be a 2-group that does not contain v and let E = K.
Let E* be the fized field of E under . If all primes r that ramify in ET C K satisfy
x(r) # 1, then

(i) Cl(x) is a cohomologically trivial Oy [P]-module;

(i3) the natural map Cly(x) — Clx(x)¥ is bijective and the norm map N :
Clg(x) — Clg(x) is surjective.

Proof. Note that Gal(K/E*t) = P x {1,:}. The proof follows the pattern of the
proof of Theorem 2.1.

(i) It suffices to show that H7(P, Clx(x)) = 0 for all ¢ € Z. Consider the exact
sequence

0 — pr — U — Cp — Clyy — 0.
We show that the x-parts of the P-cohomology groups of the first three modules
are trivial. Lemma 1.1 then implies that H(P, Clr(x)) =0 for all ¢ € Z.

Since x has odd order, it acts trivially on the 2-part of u and therefore on its
P-cohomology groups. This shows that H (P, px)(x) = 0 for all ¢ € Z. By global
class field theory H9(P,Cy) and H7(P,Cy+) are isomorphic to H4~2(P,Z) and
have therefore trivial G-action and, since x # 1, trivial y-parts. It follows that
H(P,Cy-)(x) =0 for all ¢ € Z.
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By local class field theory and the fact that x(r) # 1 for the primes 7 that ramify
in EC K and E* C K we have that HY(P,Ux) and H(P,Ug-+) have trivial
x-parts. The proofs are similar to the proof of part (i) of Theorem 2.1.

(i) The natural map C /N (Cy) — Cl/N(Cly) is surjective. We saw already
in the proof of part (i) that Cz/N(Cy) = HO(P, C) has trivial x-part. Therefore
the norm map N : Clx(x) — Clg(x) is surjective. Note that we only used the
fact that x # 1 to prove this.

To prove the second statement, we consider the following diagram:

0 — pug — Uy — Cp — Clg —0

R

0 — pup — Uy — Cp — Clp —0
An easy diagram chase shows that the first three vertical arrows are injective and
have cokernels with trivial y-parts. By the proof of part (i), the P-cohomology
groups of each of the modules uy, Uy, Cp and Cly have trivial x-parts as well.
This easily implies that the rightmost map induces an isomorphism Clg(x) —
Cli(x)T as required. O

Theorem 3.2. If all primes r that ramify in k C K satisfy x(r) # 1, then
(i) there is an exact sequence

0 — (Ox[]/(1 + )* (O []/(1 + )* — Cli(x) — 0
(%) If, in addition, the prime 2 is not ramified in the field K, then

1
#Cl () = Ox/(H §Bl,x‘1¢)’
P

where the product runs over the odd characters ¥ of G of 2-power order.

Proof. Choose o € 7 so that (o) is a direct summand of 7 containing ¢. Let 2°
denote the order of o and let P be a complement of (o) in 7: we have 7 = P X (o).
The eigenspace Cly(x) is a Oy [r]-module on which ¢ = 02" acts as —1. Therefore
Cly(x) is a module over the ring O, [P x (0)]/(1 + t) = O, [(2<][P].

By Theorem 3.1, Cly(x) is a cohomologically trivial P-module. Let O, [¢o¢][P]?
— Clg(x) be a surjective Oy [(2¢|[P]-homomorphism. The kernel is a cohomolog-
ically trivial torsion-free O, [(2¢][P]-module. As in the proof of Theorem 2.3, we
copy the proof of [2, p.113, Thm.8] with Z replaced by the discrete valuation ring
Oy[¢2¢]. It follows that the kernel is projective and hence free over the local ring
Oy [¢2¢][P]. Since the quotient is finite, the kernel has rank d. This proves (i).

(ii) We proceed with induction with respect to the order of . Since 2 is unram-
ified we may apply C. Greither’s Theorem [4, p.453, Thms. A and B] and we see
that the result holds when = is cyclic. Suppose 7 is not cyclic. Writing 7 = (o) x P
as in part (i), the group P is not trivial. Let 7 € P be an element of order 2.
The fixed fields K™ and K™ of 7 and 7t are both complex abelian number fields
containing k. The set of odd characters of G is the disjoint union of the sets of odd
characters of Gal(K7/Q) and Gal(K™/Q).

By induction, the result holds for the fields K™ and K™. By Theorem 3.1(i),
M = Clg(x) is cohomologically trivial, both as a {1,7}-module and as a {1,7¢}-
module. Moreover, by part (ii) of that theorem, (1 + 7)M and (1 + 7¢)M are
isomorphic to the x-part of the 2-part of the minus class group of K™ and K™
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respectively. Since ¢ acts as —1 on M, it follows from the cohomological triviality
of M that #M = #(1 +7)M - #(1 — )M = #(1 + 7)M - #(1 + 7¢)M. This
proves (ii). O

Finally we prove a sufficient condition for the eigenspace Cly(x) to be a cyclic
Ox[7]/(1 + ¢)-module.

Theorem 3.3. Suppose that all primes r that ramify in k C K satisfy x(r) # 1.
If there exists an odd character ¢ of odd conductor and of order 2% for which each
of the following two conditions hold:

— 3B1 -1, = (1 = Gor)u for some unit u € Oy [(ae]*,

— x(r) #£ 1 for all primes r dividing the conductor of @,
then Clg(x) is a cyclic Oy[r]/(1 + ¢)-module.

Proof. Let k, denote the composite field kQ"*" ¥ and let K, denote K Qkr?. Both
fields k, C K, are complex. Put 7’ = Gal(K,/k) and P = Gal(K,/k,). We have
that « & P.

Since 2 is not ramified, it follows from Greither’s Theorem that the order of
Cl; (x) is equal to the order of Oy /(Norm(% By y-1,,)). Here the Norm is the

Oy[¢2+]/Ox-Norm. Since Norm(3B; ,-1,) = Norm(l — (x) = 2, we see that
the order of Cl; (x) is equal to the order of the residue field of Oy. Therefore
Cl,;a(x) is a cyclic Galois module. By Theorem 3.1, applied to £ =k, C K, the
eigenspace Cly (x) is a cohomologically trivial P-module and the P-norm map in-
duces an isomorphism between Cl (x) and Cl;w(x) modulo the P-augmentation
ideal. Therefore another application of Nakayama’s Lemma implies that C’l;(v(x)
is a cyclic O, [P]-module and hence a cyclic O, [7']/(1 4 ¢)-module. Therefore its
quotient Cly(x) is a cyclic Oy [n]/(1 + ¢)-module, as required. g

If the group 7 is cyclic, then Oy[n]/(1 + ¢) = Oy[(2:] where #m = 2°. Since
the ring O, [{2¢] is a discrete valuation ring, the structure of finite modules over
Oy [7]/(1 + ) is particularly simple.

Proposition 3.4. Suppose that 7 is cyclic and that Clg(x) is cyclic over Oy[r].
If #Cly (x) = 27, where 27 is the order of the residue field O, /(2), then there is
an isomorphism of Oy [C2¢]-modules

Clig(x) = Ox[Gae] /(1 = G2¢)")
and there is an isomorphism of abelian groups
Clip(x) 2 (Z/272) =) x (Z/27 1 Z)*
where r,5 € 7. are determined byt =r2°"1 +s and 0 < s < 2°71.
Proof. This follows from the fact that Oy[(z¢] is a discrete valuation ring with

uniformizing element 1 — (se. O

4. TABLES

In this section we present the proof of Theorem II. An essential ingredient is the
table of class numbers h; given in the appendix. We briefly explain the notation.
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TABLE 4.1
l l
233 D14 - P29 PM 419 P16 * P30 * P49 PM, HtR
269 P16 - P31 PM 433 P14 * P34 PM
317 P25 * P49 HtR 439 P11 - P21 " P23 - P24 PM, PM, PM
337 | p13 - p15-p1s | PM, PM | 449 | p1s - pss PM
359 | p13 - pso - pas | PM, HtR | 463 | pis - p21 * P25 PM, BS
379 | pa2 - p2a BS 467 | p1o - pao - P55 PM, AL
383 P19 - P24 - P46 PM, HtR 479 P20 " P27 ' P70 PM, AL
389 | p24 - P60 AL 487 | p3o - pao HtR
397 | ps - D26 - P27 PM, BS 499 | pis - P18 - Pa7 PM, PM
401 P16 * Pig * P31 PM, PM 503 P12 - P14 - P112 PM, PM
409 P12 - Ps2 PM 509 P16 - P28 * Pio1 PM, AL

Let [ be an odd prime. We have [ — 1 = 2¢ - m with m odd. For every divisor d
of [ — 1 which itself is divisible by 2¢ we define

— 1
hl (d) = H _§B1,X

ord(x)=d

where the product runs over the characters x : (Z/lZ)* — C* of order d; except
when d = [ — 1, in which case we multiply this product by I, and when d = 2¢, in
which case we multiply it by 2. In the rare occasion when [ — 1 is equal to 2°, the
only possible value for d is [ — 1 = 2¢ and we put

_ 1
ho(d)=20 ] —5Bix.
ord(x)=d

This last case occurs only when [ is a Fermat prime i.e., when [ = 3, 5, 17, 257,
65537 or has more than 2500000 decimal digits.

The numbers h, (d) are listed in the appendix. They are rational integers [5],
[24] and they are related to the minus class number h; by

hy=#C = [ h ().
2¢|d|i—1

In [15] D. H. Lehmer and J. M. Masley presented a table with the numbers h; (d)
for I < 509. Of most of these numbers the complete prime factorization was given,
but their table contains 22 unfactored composite numbers. These were factored by
Peter Montgomery (PM), Bob Silverman (BS), Herman te Riele (HtR) and Arjen
Lenstra (AL). The most laborious factorization, for [ = 467, was performed by
Arjen Lenstra, who factored a 103 digit factor of Ay, into a product of two primes
of 49 and 55 digits respectively. We list the various contributions in Table 4.1. By
pn we denote a prime factor of n decimal digits. The order in which the initials are
given corresponds to the order of the prime factors. In order to prove Theorem II
and, at the same time, determine the structure of Cl; as an abelian group, we
study the table of numbers h; (d) of the appendix. Clearly, if a prime p divides the
class number h; exactly once, the p-part of Cl;” is cyclic as a group and hence as
a Galois module. This happens for most large prime divisors. All other cases are
listed below. Tables 4.2, 4.3 and 4.4 contain the prime pairs (p,!) with { < 509 for
which p? divides h;". We discuss each table in some detail.
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The class group CI; is a product of its p-parts and each p-part is a product of
eigenspaces Cl;(x). The minus class group CI; is a cyclic Galois module if and

only if for each prime p, each eigenspace C!; (x) is cyclic over the local ring Oy [n],
where 7 is the p-part of G = Gal(Q(¢)/Q).

TABLE 4.2. Primes p not dividing [ — 1

l p d f | h(d) | class group
41 |11 40 [2 ] 112 11 x 11
131 | 3 26 |3 |3® 3x3x3
139 | 47 46 |1 | 472 2209 Thm.2.3 with r = 283
277 |46 |1 | 277 277
138 | 1 | 277 277
149 | 3 4 2|32 3x3
151 | 11 30 | 2| 112 11 x 11
157 | 157 | 156 | 1 | 157% | 157 x 157 Thm.2.2
211 | 281 |14 |1 | 281 281
70 |1 | 281 281
227 | 2939 | 226 | 1 | 2939° | 2939 x 2939 x 2939 | Thm.2.2
241 | 47 16 |2 | 472 47 x 47
277 | 47 276 | 2 | 47° 47 x 47
281 | 11 40 |2 | 112 11 x 11
41 40 |1 | 412 1681 Thm.2.3 with r = 83
203 | 3 4 2| 32 3x3
313 | 37 24 |2 |37? 37 x 37
337 | 17 16 | 1172 17 x 17 Thm.2.2
353|353 |352(1]|353% |353x353 Thm.2.2
379|379 |42 |1 |379 379
378 | 1 | 379 379
397 | 23 132 | 2 | 232 23 x 23
401 | 41 80 |2 | 417 41 x 41
409 | 5 24 |2 |52 5%5
419 | 3 2 1132 9 Thm.2.3 with 7 =7
443 | 3 2 |3 |3° 9x9x9 Thm.2.3 with r =7
457 | 5 24 | 2|52 5% 5
467 | 467 | 466 | 1 | 4677 | 467 x 467 Thm.2.2
479 | 5 2 1]|5° 25 Thm.2.3 with r = 11
487 | 7 2 17 7
6 17 7
37 18 |1 372 37 x 37 Thm.2.2
491 | 3 2 1|32 9 Thm.2.3 with r =7
11 10 |1|118 11 x 121 Thm.2.2, Thm.2.3 with r = 23
491 |98 |1 |491 491
490 | 1 | 4912 | 491 x 491 Thm.2.2

In Table 4.2 we have listed all pairs (p,!) for which p is odd and p? divides h,
but p does not divide [ — 1. In this case the p-part m of the Galois group of Q(¢;)
over Q is trivial and an eigenspace Cl;(x) is cyclic as a Galois module if and only
if it is a cyclic Oy-module. It turns out that in all cases every CI;(x) is cyclic as
an Oy-module.

To explain the table, we first note that in the case [ = p, the Teichmiiller
eigenspace Cl; (w) is always trivial. Therefore we only have contributions for the

This content downloaded from 212.83.92.165 on Thu, 25 Jun 2020 14:23:49 UTC
All use subject to https://about.jstor.org/terms



1240 RENE SCHOOF

TABLE 4.3. Odd primes p dividing [ — 1

l p | d | ho,h1,... | group
31 |3 |2 |3,3 9
7107 (2 | 7,7 49
101 |5 |4 |5,25,25 | 25x125 Prop.2.4, A\ =2
13115 |2 |5,5 25
137 |17 |8 | 17,17 289
13913 (2 |33 9
157 | 13 | 12 | 13, 13 169
181 |5 |4 |[25,5 125 Prop.2.4, A =1
19913 (2 19,3,3 81
21113 |2 |3,3 9
716 |77 49
28313 |2 |33 9
30713 |2 (3,33 27
33113 |2 |3,9 3x9 Thm.2.3, 0 =T? — 15T + 3
3 |10 81,381 I9x9x9x9 | Prop24,A=1
337 |7 |16 | 49,49 49 x 49 Prop.2.4, A =1
36713 |2 |93 27 Prop.2.4, A =1
37913 |2 |3,33,3 |81
409 | 17| 8 | 17,17 289
421 |5 |4 |25,5 125 Prop.2.4, A =1
439 13 |2 | 3,27 9x9 Thm.2.3,0 =T2 —3T -3
461 |5 |4 | 25,25 5 x 125 Thm.2.3 with r = 11; Prop.2.4, A =2
463 |7 |2 | 7,7 49
716 |77 49
49913 |2 |3,3 9

characters x # w. Let d be a divisor of [ — 1 for which p divides h; (d). Then for all
characters x of order d the ring O, has a residue field with p! elements where f is
the order of p modulo d. If p/ happens to be the exact power of p dividing h; (d),
then it is clear that for exactly one character x of order d the eigenspace Cl; (x)
is isomorphic to O, /(2) while all others are trivial. These cases are listed without
comment. In the remaining cases we apply the theorem of Mazur and Wiles which
is the case with trivial = of Theorem 2.2. If the precise power of p dividing h; (d)
is p/® and for precisely a characters x of order d the generalized Bernoulli number
By y-1 is divisible by p, then each eigenspace Cl;” () is either isomorphic to Oy /(2)
or is zero. In particular, each CI;(x) is a cyclic Galois module. This happens in
all but seven cases. In the remaining seven cases we use Theorem 2.3 and show
that each eigenspace is a cyclic O, module by computing an additional Bernoulli
number Bj -1, where ¢ is a suitable even character of order p and conductor 7.

In Table 4.3 we have listed all pairs (p,!) with p # 2 dividing [ — 1. We’ll see
below that in this case the class number h; is automatically divisible by p?, S0
that Table 4.3 actually contains all pairs (p,!) for which p divides ged(h; ,1 —1).
In order to explain the contents of the table, we fix p and ! and we let p® be the
exact power of p dividing [ — 1.

If d and d’ are two divisors of [ —1 that only differ by a power of p, then By ,-1 =
By -1 modulo (1 — (,e) for all characters ¢ of order d and ¢’ of order d'. Therefore,
as Lehmer observed [14, Thm.5], either both h; (d) and h; (d’) are divisible by p
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TABLE 4.4. p=2

L d ord(x) | 2° | f | hy (d) | 2—class group r
20 |28 |7 4 [3]8 2x2xX2

113 | 112 | 7 16 | 3|8 2x2x2

163 | 6 3 2 1214 2x2

197 | 28 7 4 3|8 2X2x%X2

239 |14 |7 2 3|82 4x4x4 3
277112 |3 4 |2 |42 2X2X2x2 3
311 | 62 31 2 5 | 322 2X2X2X2X2X2X2X2Xx2X2
337 1 336 | 21 16 | 6 | 64 2X2X2x2%x2x2

349 (12 |3 4 | 2142 2x2x2x2 7
373 | 124 | 31 4 5| 32 2X2X2x%x2x2

397 |12 |3 4 |24 4x4x2x%x2 3
421 |60 | 15 4 |4]16 2X2X2x2

463 |14 |7 2 3|8 2x2x2

491 |14 |7 2 | 3|8 2X2X2X2%X2x%x2

or none is. For this reason we have ordered the class numbers as follows: for each
divisor d of [ — 1 which is itself not divisible by p but for which h; (d) is divisible
by p, we list, for i = 0,1,... , e the p-part h; of h; (dp'). By Lehmer’s observation,
each h; is divisible by p. We note in passing that this implies that A, is divisible
by p2.

For each character x of order d the residue field of O, has order p! where f is
the order of p modulo d. In all but one case eithet hg = p/ or hy = pf. In the latter
case we have that, up to a unit, By , -1, = 1, for the characters 9 of conductor [
and order p. In either case Theorem 2.3 applies and we see that Cl;(x) is cyclic over
Oy [7]. The only exception is [ = 461 with p = 5. In this case hg = h; = 25. In this
case we have applied Theorem 2.3 with ¢ a character of order 5 and conductor 11.
It turns out that in this exceptional case Cl;(x) is a cyclic Oy[n]-module as well.

In most cases we can apply Theorem III and conclude that the eigenspace is a
cyclic group. These cases are listed without comment. In the cases ({,p) = (101, 5),
(337,7), (461,5) and (331,3) (the latter for d = 10) an application of Proposition
2.4 immediately gives the structure of Cl;(x). Finally, in the cases (I,p) = (439, 3)
and (331, 3) (the latter for d = 2) we have explicitly computed the Stickelberger
element 6 and applied Theorem 2.3 directly.

Finally we discuss the contents of Table 4.4. Let x be a character of (Z/IZ)* of
odd order. The 2-part of Cl;” is a module over Oy[n]/(1 +¢) & Oy[C2¢]. Here 2¢
is the exact power of 2 dividing ! — 1. It is well known that C; (x) is trivial when
x = 1. This implies that the prime p = 2 never divides h;” with multiplicity 1.
Therefore Table 4.4 actually contains all primes [ < 509 for which h; is even.

It turns out that CI; () is in all cases a cyclic Galois module. This follows from
several applications of Theorem 3.3. In all but 4.cases we have that Hw %Bl,x‘lw =
2y for some unit u € O,. Here the product runs over the odd characters v of 2-
power order and conductor [. In this case Cl; (x) = O,/(2) which is a vector
space of dimension f over Fy. Here f is the degree of Fy((y) over Fy and d is the
order of x. In the remaining cases we applied Theorem 3.3 with an odd quadratic
character ¢ of conductor r. Here 7 = 3 (mod 4) is a prime for which x(r) # 1.

The structure of CI;”(x) then follows easily from Theorem 3.4.
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