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MODULAR FORMS INVARIANT UNDER

NON-SPLIT CARTAN SUBGROUPS

PIETRO MERCURI AND RENÉ SCHOOF

Abstract. In this paper we describe a method for computing a basis for the
space of weight 2 cusp forms invariant under a non-split Cartan subgroup
of prime level p. As an application we compute, for certain small values of
p, explicit equations over Q for the canonical embeddings of the associated
modular curves.

1. Introduction

It is well known how to compute bases for the spaces of cusp forms that are in-
variant under the modular groups Γ0(N) or Γ1(N). Indeed, efficient algorithms to
compute q-expansions of eigenforms exist [18], [22], and extensive tables are avail-
able online [7], [17], [25]. For other congruence subgroups of SL2(Z) the situation
is different. While for some groups, like split Cartan subgroups, there are efficient
algorithms [22] and it is easy to obtain q-expansions from the existing tables for
Γ0(N), for other subgroups this is not so immediate [3], [4].

In this paper we describe a method to compute q-expansions of a basis for the
space S2(Γns(p)) of weight 2 cusp forms invariant under a non-split Cartan subgroup
Γns(p) of prime level p. As in the computation for p = 13 by B. Baran [5], we obtain
a basis of S2(Γns(p)) by applying trace maps to certain normalized eigenforms in
S2(Γ0(p

2)) and S2(Γ1(p)). In Baran’s computation for p = 13, this involves only
one eigenform. It generates a cuspidal GL2(Fp)-representation. For larger primes p,
several non-isomorphic irreducible representations such as cuspidal, twisted Stein-
berg and principal series, are involved. This complicates matters, since in each case
the trace map is different. Our main tools are the formulas of Propositions 6.2
and 6.3.

As an application we are able to compute explicit equations for the canonical
embeddings of the modular curves Xns(p) associated to the non-split Cartan sub-
groups and the curves X+

ns(p) associated to their normalizers. Since our method
allows us to compute a basis that is defined over Q, the equations that we compute
have coefficients in Q. We work this out for the modular curves X+

ns(p) for p = 17,
19, and 23. In principle, we could also deal with larger p, but the genus and the
number of equations grow rapidly with p.

In the remainder of this introduction, we provide some context for our computa-
tional results. The curves Xns(p) and X+

ns(p) are defined over Q. Their genera grow
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rapidly with p. See [4]. This may explain why thus far not many computations
have been done with these curves.

The curves Xns(p) have no real and hence no rational points. For p ≤ 5 the
genus of Xns(p) is zero. The curve Xns(7) has genus 1 and, for the record, is given
by the equation −y2 = 2x4−14x3+21x2+28x+7. Equations for the genus 4 curve
Xns(11) are given in [11]. Using the methods explained in this paper, equations for
the genus 8 curve Xns(13) are determined in [13]. No explicit equations have been
computed for the curves Xns(p) for primes p > 13.

The curves X+
ns(p) are quotients of Xns(p) by a modular involution. The ratio-

nal points of the curves X+
ns(p) are relevant in connection with Serre’s Uniformity

Conjecture [24]. Indeed, after Mazur’s 1978 result [19] and the 2013 paper by
Bilu, Parent, and Rebolledo [6], the conjecture would follow, if for sufficiently large
primes p, the only rational points of the curves X+

ns(p) are CM-points.
For p ≤ 7 the curves X+

ns(p) have genus 0 and have infinitely many rational
points. For p = 11 the genus is 1 and there are also infinitely many rational
points. An explicit equation was computed in 1976 by Ligozat [16]. For p > 11
the genus exceeds 2 and hence there are only finitely many rational points. An
equation for the genus 3 curve X+

ns(13) was computed in 2014 by B. Baran [5].
In this paper we present equations for X+

ns(p) for the primes p = 17, 19, and 23.
Recently J. Balakrishnan and her coauthors [2] used the Chabauty-Kim method to
show that the curve X+

ns(13) has precisely seven rational points. All these points
are CM-points. For p > 13 it is at present not known whether or not X+

ns(p) admits
any rational points that are not CM. For p = 17, 19, and 23 a quick computer
calculation shows that these curves do not admit any non-CM rational points that
have small coordinates in our models. There may very well not be any. See sections
7 and 8.

In section 2 we fix our notation and recall some of the basic properties of repre-
sentations of GL2(Fp). In section 3 we determine our trace map for the principal
series and the twisted Steinberg representations. In section 4 we do the same for the
cuspidal representations. In section 5 we recall some of the basic properties of the
various modular curves that play a role. In section 6 we use the results of sections
3 and 4 and derive formulas for the q-expansions of weight 2 cusp forms invariant
under a non-split Cartan subgroup. In section 7 we describe in some detail the
actual computations for the curve X+

ns(17). In section 8 we present the numerical
results for X+

ns(19) and X+
ns(23).

2. Representations of GL2(Fp)

Let p > 2 be a prime. In this section we fix notation and recall the basic
properties of the representation theory of the group G = GL2(Fp), on which our
computations are based.

The group G acts on the p + 1 points of the projective line P1(Fp) via linear
fractional transformations. A Borel subgroup is the stabilizer of a point. It is
conjugate to the subgroup B of upper triangular matrices and has order p(p− 1)2.
A split Cartan subgroup of G is the stabilizer of two points. It is conjugate to
the subgroup T of diagonal matrices. It has order (p − 1)2 and index 2 in its
normalizer N . The group G also acts on the p2 + 1 points of P1(Fp2). A non-split
Cartan subgroup of G is the stabilizer of two points of P1(Fp2) that are conjugate
over Fp. Any such group is conjugate to the subgroup T ′ of matrices that fixes the
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points ±√
u, where u denotes a non-square in Fp. Explicitly, we have

T ′ =

{(
a bu
b a

)
∈ G : a, b ∈ Fp with a2 − ub2 �= 0

}
.

The group T ′ is cyclic of order p2 − 1 and has index 2 in its normalizer N ′.
In this paper we mostly deal with representations V of G for which the subgroup

of scalar matrices Z acts trivially. These are representations of G/Z = PGL2(Fp).
The complex irreducible representations of PGL2(Fp) are left modules and come
in four types [8], [14]. There are two 1-dimensional representations: the trivial
character and the quadratic character ω. Both factor through the determinant.
There are also two irreducible p-dimensional representations. To define them, we
consider the natural action of PGL2(Fp) on the ring A of functions φ : P1(Fp) → C

given by σφ(P ) = φ(σ−1(P )) for P ∈ P1(Fp) and σ ∈ PGL2(Fp). Since the
subspace C of constant functions is preserved by this action, PGL2(Fp) acts on the
p-dimensional quotient space Vst = A/C. This representation is irreducible, has
dimension p, and is called the Steinberg representation. Its twist by ω is denoted
by Vω.

The irreducible representations of the third type are the principal series rep-
resentations Vμ. These are the inductions of characters μ : B/Z → C∗ for which
μ2 �= 1. The representations Vμ have dimension p + 1. Two representations Vμ

and Vμ′ are isomorphic if and only if μ′ = μ±1. There are (p − 3)/2 mutually
non-isomorphic representations of this type. The irreducible representations of the
fourth type are the cuspidal ones. They are associated to characters θ : T ′/Z → C∗

for which θ2 �= 1. These representations have dimension p− 1 and are denoted by
Vθ. Two representations Vθ and Vθ′ are isomorphic if and only if θ′ = θ±1. There
are (p− 1)/2 mutually non-isomorphic representations of this type. See [8], [14] for
all this. In section 4 we describe explicit models for the representations Vθ.

Since the characters μ are trivial on the unipotent subgroup

U =

{(
1 x
0 1

)
: x ∈ Fp

}
,

they can be viewed as characters of the cyclic group T/Z. A character μ : T/Z → C∗

is called even or odd, depending on whether it is 1 on the unique element of order 2
in T/Z or not. Similarly, a character θ : T ′/Z → C∗ is called even or odd, depending
on whether it is 1 on the unique element of order 2 in T ′/Z or not. Note that the
restriction of the quadratic character ω to T/Z is even if and only if its restriction
to T ′/Z is odd. This happens if and only if p ≡ 1 (mod 4).

The following proposition gives the dimensions of the T -invariant and T ′-invar-
iant subspaces V T and V T ′

of the irreducible representations V of PGL2(Fp).

Proposition 2.1. Let V be an irreducible complex representation of PGL2(Fp) that
is not 1-dimensional. If V = Vst, then

dimV T = 2, dimV N = 1, and dimV T ′
= dimV N ′

= 0.

In all other cases we have

dimV T = dimV T ′
= 1 and dimV N = dimV N ′ ≤ 1.
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Moreover, we have

dimV N = dimV N ′
= 1 if and only if

⎧⎪⎨
⎪⎩
V = Vμ with μ even,

V = Vθ with θ odd,

V = Vω and p ≡ 1 (mod 4).

Proof. We recall the remarkable isomorphisms of rational G-representations

Q[G/T ] ∼= Q[G/T ′]× Vst × Vst and Q[G/N ] ∼= Q[G/N ′]× Vst,

described by de Smit and Edixhoven in [10, Formulas (3) and (4)].
When V �= Vst, the fact that the vector spaces V H and HomG(Q[G/H], V ) are

naturally isomorphic for every subgroup H of G, implies that dimV T = dimV T ′

and dimV N = dimV N ′
. To show that dimV T = 1, we observe that dimV T is

equal to the scalar product 〈ResT (χV ), 1T 〉T . Here χV denotes the character of V
and 1T is the trivial character on T . A standard character computation shows this
to be equal to 1 in all cases. A similar computation shows that 〈ResN (χV ), 1N 〉N
is 0 or 1 depending on the parity of the relevant character μ, θ, or ω. These
computations are particularly straightforward when V = Vμ or Vω. For the cuspidal
representations V = Vθ, everything can be computed using the description of Vθ

as a virtual representation as in [8], [14]. Alternatively, one may use the explicit
models for Vμ and Vθ given in sections 3 and 4.

For the Steinberg representation, i.e., V = Vst, an explicit calculation shows
that dimV T

st = 2 and dimV N
st = 1. The result by de Smit and Edixhoven implies

therefore that V T ′

st and V N ′

st vanish.
This proves the proposition. �

In the next sections we construct T ′-invariant elements in G-representations V
by applying the T ′-trace

∑
t∈T ′

t =
∑

a,b∈Fp, a2−ub2 �=0

(
a bu
b a

)
in Q[G]

to suitable vectors v ∈ V . Since we have the Bruhat decomposition G = B ∪BwB,
where

w =

(
0 1
−1 0

)
,

every non-scalar element in T ′ can be written as an element in BwB. This leads
to the following formula for a projective version of the T ′-trace.

Proposition 2.2. The T ′-trace element
∑

M∈T ′/Z M of the group ring Q[PGL2(Fp)]

is given by

id +
∑
r∈Fp

(
1 r
0 1

)
w

(
1 r
0 r2 − u

)
.

Proof. Representatives in T ′ of the quotient group T ′/Z are the identity matrix and

the matrices − ( r u
1 r ) with r ∈ Fp. Since − ( r u

1 r ) = ( 1 r
0 1 )w

(
1 r
0 r2−u

)
0, the result

follows. �
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3. Principal series and twisted Steinberg representations

Let p > 2 be prime and as before put G = GL2(Fp). We let Z,B, T, T ′, N,N ′,
and U be the subgroups of G defined in section 2.

In this section we explain how to compute elements that are invariant under
a non-split Cartan subgroup in a principal series representation Vμ or a twisted
Steinberg representation Vω of G = GL2(Fp) on which the center Z acts trivially.

The 1-dimensional characters of the Borel subgroup B that are trivial on the
center Z form a cyclic group of order p − 1. Given such a character μ, we write
Q(μ) for the number field generated by the values of μ. An explicit model for the

induced representation IndGB(μ) of G is

{φ : G → Q(μ) : φ(gb) = μ−1(b)φ(g) for all g ∈ G and b ∈ B}.

The group G acts on this Q(μ)-vector space as follows:

(σφ)(x) = φ(σ−1x) for σ, x ∈ G and φ ∈ IndGB(μ).

A basis of IndGB(μ) is given by the functions er with r ∈ P1(Fp) = Fp ∪ {∞}. Here
e∞ is equal to μ−1 on B and zero elsewhere, while for r ∈ Fp, the function er is
defined as follows: on the B-coset {σ ∈ G : σ(∞) = r} it is given by er(σ) = μ−1(y),
where y =

(
0 1
−1 r

)
σ, while it is zero elsewhere. For every r ∈ P1(Fp) the G-action

on er can easily be computed: for r ∈ Fp and k ∈ Fp we have

(3.1)

(
1 k
0 1

)
er = er+k for r ∈ Fp, while

(
1 k
0 1

)
e∞ = e∞.

For every a ∈ F∗
p we have

(3.2)

(
a 0
0 1

)
er = μ

(
1 0
0 a

)
ear for r ∈ Fp, while

(
a 0
0 1

)
e∞ = μ

(
a 0
0 1

)
e∞.

The action of the matrix w =

(
0 1
−1 0

)
is given by

(3.3) wer = μ

(
r 0
0 1/r

)
e−1/r for r ∈ F∗

p,

while w switches e0 and e∞. Since G = B ∪ BwB, these formulas determine the
action of G.

If μ2 �= 1, we recover the irreducible complex representation Vμ of section 2 as

IndGB(μ) ⊗Q(μ) C. The values of the character of Vμ generate the maximal real

subfield Q(μ)+ of the cyclotomic field Q(μ). Since the subspace of T -invariants is
1-dimensional, it follows from [26, Lemma 1.1] that the representation Vμ itself can
actually be defined over Q(μ)+. We do not make use of this.

If μ2 = 1, the character μ is the restriction of 1 or ω, so that Q(μ) = Q. In this

case e∞+
∑

r∈Fp
er is equal to 1 or ω in IndGB(μ). The subspace L generated by this

element is preserved by G and the representation (IndGB(μ)/L)⊗Q C is irreducible.
In fact, we recover the complex Steinberg representation Vst and its quadratic twist
Vω. See [8].
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It is convenient to view μ as a character of F∗
p. For this reason we put

μ(r) = μ

(
r 0
0 1

)
for r ∈ F∗

p.

Proposition 3.1. Let μ : B/Z → C∗ be a character satisfying μ2 �= 1 and let Vμ

be the principal series representation associated to μ.

(a) The subspace of Vμ of U-invariants has dimension 2 and is generated by e∞
and by

∑
r∈Fp

er. The subgroup B acts via μ on the line generated by e∞
and via μ−1 on the line generated by

∑
r∈Fp

er.

(b) The subspace of T -invariants of Vμ is generated by∑
r∈F∗

p

μ(r)er.

It is invariant under the action of the normalizer N if and only if μ is an
even character of B/ZU = T/Z.

(c) The subspace of T ′-invariants of Vμ is generated by

e∞ +
∑
r∈Fp

μ−1(r2 − u)er.

It is invariant under the action of the normalizer N ′ if and only if μ is
even.

Proof. Parts (a) and (b) easily follow from the formulas given above. The com-
putations are easy and left to the reader. By Proposition 2.1, the subspaces of
T -invariants and of T ′-invariants have dimension 1. The element listed in (c) is the
T ′-trace of Proposition 2.2 applied to e∞. �

For the character μ = ω, the result is similar.

Proposition 3.2. Let ω be the quadratic character of G and let Vω be the twisted
Steinberg representation.

(a) The subspace of Vω of U-invariants has dimension 1 and is generated by e∞.
The subgroup B acts on it via ω.

(b) The subspace of T -invariants of Vω is generated by∑
r∈F∗

p

ω(r)er.

It is invariant under the action of the normalizer N of T if and only if
p ≡ 1 (mod 4).

(c) The subspace of T ′-invariants of Vω is generated by

e∞ +
∑
r∈Fp

ω(r2 − u)er.

It is invariant under the action of the normalizer N ′ of T ′ if and only if
p ≡ 1 (mod 4).

Proof. Note that in Vω we have the relation e∞ = −
∑

r∈Fp
er. The proof is similar

to the proof of Proposition 3.1. �
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4. Cuspidal representations

Let p > 2 be prime and put G = GL2(Fp). In this section we explain how to
find elements in cuspidal representations Vθ, that are invariant under a non-split
Cartan subgroup of G.

Let u ∈ F∗
p be a non-square, let T ′ denote the non-split torus in G introduced in

section 2, and let θ : T ′ → Q(θ)∗ be a character that is trivial on the subgroup Z
of scalar matrices. We have θp+1 = 1 and assume that θ2 �= 1. By Q(θ) we denote
the field generated by the image of θ.

In order to describe our model Vθ for the cuspidal representation associated to
θ, we first consider the quotient of the Q-vector space V of functions φ : Fp → Q

by the 1-dimensional subspace of constant functions. The standard Borel subgroup
B ⊂ G acts by fractional linear transformations on Fp = P1(Fp)− {∞} and hence
on the space of functions φ : Fp → Q: we have σφ(x) = φ(σ−1x) for σ ∈ B and any
function φ. Since B preserves the constant functions, it acts on V . It is easy to
see that V is an irreducible (p− 1)-dimensional representation of B, on which the
scalar matrices act trivially.

Next we turn Vθ = V ⊗Q(θ) into an irreducible representation of PGL2(Fp). Let

w =

(
0 1
−1 0

)

be the usual involution. Since G = B∪BwB, it suffices to describe the action of w.
It is given by

wφ = −1

p

∑
y∈F∗

p2

θ(y)

(
N(y) Tr(y)
0 1

)
φ for all φ ∈ Vθ.

Here Fp2 denotes T ′ ∪ {( 0 0
0 0 )}. It is a subfield of the ring of 2× 2 matrices over Fp.

By N and Tr we denote the norm and trace maps from Fp2 to Fp, respectively.
Proving that the formula for the action of w gives rise to a well defined action

of G on Vθ is straightforward, but somewhat cumbersome. Alternatively, one can
relate Vθ to the representation space described by Bump [8, 4.1] as follows. Let ζp
denote a pth root of unity. To every φ ∈ Vθ we associate the function φ̃ : F∗

p2 → Q(θ)

given by φ̃(y) = θ−1(y)
∑

r∈Fp
φ(r)ζ

rN(y)
p . This gives an isomorphism of Vθ ⊗Q(θ) C

with Bump’s model. Our model has the advantage that it can be defined over Q(θ),
rather than over a field that contains the pth roots of unity. The character values
of Vθ generate the maximal real subfield Q(θ)+ of Q(θ). As in the principal series
case, it follows from [26, Lemma 1.1] that Vθ can actually be defined over Q(θ)+.
We do not make use of this.

Let e0 : Fp → Q(θ) be the characteristic function of 0 and let er = ( 1 r
0 1 ) e0 for

r ∈ Fp. It is the characteristic function of the element r ∈ Fp. The functions er,
r ∈ F∗

p form a basis for the Vθ. Since
∑

r∈Fp
er is the constant function 1, we have

the relation
∑

r∈Fp
er = 0 in Vθ.

Proposition 4.1. Let θ : T ′/Z → Q(θ)∗ be a character satisfying θ2 �= 1 and let
Vθ be the cuspidal representation of G associated to the character θ. Then

(a) the subspace of U-invariants is zero;
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(b) the subspace of T -invariants is generated by e0; it is invariant under the
action of the normalizer N of T if and only if θ is an odd character of the
cyclic group T ′/Z;

(c) there is an r ∈ F∗
p for which the element

per −
∑
m∈Fp

∑
y∈F∗

p2

θ(y)e (m+r)N(y)

m2−u
+Tr(y)+m

generates the 1-dimensional subspace of T ′-invariants. The space of T ′-
invariants is also N ′-invariant if and only if θ is odd.

Proof. Part (a) and the first statement of (b) easily follow from the formulas given
above. The statement about the normalizer N can be proved with a short compu-
tation [5, Prop. 2.1]. To prove (c), we combine the formula for the action of w with
Proposition 2.2. It follows that the T ′-trace is equal to

id− 1

p

∑
y∈F∗

p2

θ(y)
∑
m∈Fp

(
N(y) mN(y) + (m2 − u)(Tr(y) +m)
0 m2 − u

)
.

Applying it to per gives the element of part (c). Since the elements er, with r ∈ Fp,
generate Vθ, their T ′-traces generate the 1-dimensional space of T ′-invariants. In
other words, the T ′-trace of at least one of the elements er is not zero and hence
generates the subspace of T ′-invariants. �

5. Modular curves

Let p > 2 be prime and put G = GL2(Fp). The modular curve X(p) is an
algebraic curve that parametrizes elliptic curves with full level p structure. The
field of constants of its function field is the cyclotomic field Q(ζp). The curve X(p)
admits a natural morphism to the j-line X(1) over Q. The Galois group of X(p)
over X(1) is naturally isomorphic to G/{±id}. Restriction of automorphisms in
Gal(X(p)/X(1)) to the Galois group of Q(ζp) over Q coincides with the determinant
map GL2(Fp)/{±id} → F∗

p.
For every subgroup H of GL2(Fp) containing {±id} we write X(p)H for the

quotient of X(p) by H. The field of constants of its function field is the subfield of
Q(ζp) that is invariant under the subgroup det(H) of F∗

p. We put

ΓH = {A ∈ SL2(Z) : A (mod p) ∈ H}.

Then the non-cuspidal complex points of any base change of X(p)H from its field of
constants to C, form the Riemann surface ΓH\H. Here H denotes the usual upper
half-plane.

Taking for H the subgroup Z of scalar matrices of G, we obtain the curve
X(p)Z . We denote it by X(p)′. Its field of constants is the quadratic subfield of
Q(ζp). This is Q(

√
p) or Q(

√−p) depending on whether p ≡ 1 or 3 (mod 4). Since
Z ∩SL2(Fp) = {±id}, the base change of X(p)′ from Q(

√±p) to Q(ζp) is the curve
X(p). The curves X(p)T and X(p)N associated to the split Cartan subgroup T
and its normalizer N and the curves X(p)T ′ and X(p)N ′ associated to the non-
split Cartan subgroup T ′ and its normalizer N ′ are quotients of X(p)′. These are
the curves Xs(p), X

+
s (p), Xns(p), and X+

ns(p), respectively, that were mentioned in
the introduction. Since the determinant maps from the subgroups T,N, T ′, and N ′
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to F∗
p are all surjective, the curves are all defined over Q, in the sense that their

fields of constants are equal to Q.
The group G = GL2(Fp) acts naturally and linearly on the Q-vector space

Ω1(X(p)) of Kähler differentials. Therefore its quotient G/Z = PGL2(Fp) acts
on the Q-vector space Ω1(X(p))Z of Z-invariants. On the other hand, the index 2
subgroup PSL2(Fp) of PGL2(Fp) is isomorphic to the quotient group SL2(Z)/ΓZ .
Therefore it acts naturally on the complex vector space S2(ΓZ) of weight 2 cusp
forms for the congruence subgroup ΓZ . The two actions are related by the fact
that Ω1(X(p)′) ⊗Q C is isomorphic to the induction from PSL2(Fp) to PGL2(Fp)
of S2(ΓZ). See [5, p. 279]. So we can write

Ω1(X(p)′)⊗Q C = S2(ΓZ) + [R]S2(ΓZ)

for some fixed respresentative R of the non-trivial coset of the normal subgroup
PSL2(Fp) of PGL2(Fp). Following [5], we call the first coordinate f1 of an element
f1 + [R]f2 of S2(ΓZ) + [R]S2(ΓZ), its classical coordinate.

Proposition 5.1. Let H be a subgroup of GL2(Fp) containing Z.

(a) The natural maps

Ω1(X(p)H)
∼=−→ Ω1(X(p))H = Ω1(X(p)′)H

′
,

are isomorphisms. Here H ′ denotes the subgroup H/Z of PGL2(Fp).
(b) If H has the property that det(H) = F∗

p, then projection on the classical
coordinate induces an isomorphism

Ω1(X(p)H)⊗Q C
∼=−→ S2(ΓH)

of SL2(Fp)-representations.
(c) Let H be the standard Borel subgroup B. It acts on Ω1(XU ) ⊗Q C and

for any character μ of B, projection on the classical coordinate induces an
isomorphism

(Ω1(XZU )⊗Q C)(μ)
∼=−→ S2(Γ1(p), μ

2).

Here the left hand side denotes the subspace of Ω1(XZU )⊗Q C on which B
acts via the character μ. The right hand side is the subspace of S2(Γ1(p))
on which the diamond operators act through the character μ2.

Proof. Part (a) is well known. Part (b) follows from the fact that H-invariant
elements in Ω1(X(p)′)⊗QC = S2(ΓZ)+[R]S2(ΓZ) are determined by their classical
coordinates. Indeed, we may choose the representative R inside H. Then the two
coordinates must be equal.

(c) The two coordinates of an element of Ω1(XZU ) are cusp forms in S2(Γ1(p)).
The diamond operators in Γ0(p)/ ± Γ1(p) are congruent modulo p to matrices of
the form (

a 0
0 a−1

)
with a ∈ F∗

p.

It follows that, if b ∈ B acts as multiplication by μ(b) on an element of Ω1(XZU ),
the two coordinates are in S2(Γ1(p), μ

2). The second coordinate is determined by
the classical one. Indeed, we can choose R ∈ B and then the second coordinate is
equal to the first multiplied by μ−1(R).

This proves the proposition. �
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Of special interest is the standard split Cartan subgroup T of G. Since the
subgroup ΓT of SL2(R) is conjugate to Γ0(p

2), there is a natural Hecke compat-
ible isomorphism S2(Γ0(p

2)) → S2(ΓT ). In terms of q-expansions at infinity, the
isomorphism is given by ∑

n≥1

anq
pn �→

∑
n≥1

anq
n,

where q denotes exp(2πiτ/p) with τ ∈ H. Since, the Fourier coefficients of Γ0(p
2)-

invariant normalized eigenforms are totally real algebraic integers, so are those of
T -invariant normalized eigenforms.

We denote the subspace of newforms of S2(Γ0(p
2)) by S2(Γ0(p

2))new. Abusing
notation somewhat, we denote the corresponding subspace of S2(ΓT ) by S2(ΓT )

new.
Note however, that all forms in S2(ΓT ) are of level p. See [5, (3.4)]. By Propo-
sition 5.1(b) applied to H = T , we may identify S2(ΓT ) with the subspace of
T -invariants of Ω1(X(p)) ⊗Q C. By Vf we denote the Q[G]-subrepresentation of
Ω1(X(p)) generated by a normalized eigenform f in S2(ΓT )

new. It is a vector space
over the number field Kf ⊂ C generated by the Fourier coefficients of f .

Proposition 5.2. Let f be a normalized eigenform in S2(ΓT )
new. Then the sub-

group Z of scalar matrices acts trivially on the C[G]-module Vf ⊗Kf
C. Moreover,

Vf⊗Kf
C is an irreducible representation of dimension �= 1, which is not isomorphic

to the Steinberg representation.

Proof. See [5, Prop. 3.6]. Let V be an irreducible constituent of Vf ⊗Kf
C. By

semi-simplicity we have that V T �= 0. The G-action and the Hecke action on
Ω1(X(p)) commute. Therefore, for a prime number l �= p the Hecke operator Tl

acts on V as multiplication by the Fourier coefficient al. Then it also acts this way
on the subspace V T of S2(ΓT ). Since f corresponds to a newform in S2(Γ0(p

2)),
strong multiplicity one implies that V T is the 1-dimensional complex vector space
generated by f . It follows that f ∈ V , so that V is equal to the irreducible
representation Vf ⊗Kf

C. The group Z acts trivially on Vf , since it is contained
in T .

If Vf had dimension 1, it would be invariant under PSL2(Fp). Since the quotient
of X(p)′ by PSL2(Fp) is a genus 0 curve over Q(

√±p), the SL2(Fp)-invariants of
Ω1(X(p)′) are zero and Vf must be zero as well. Contradiction. Since the subspace
of T -invariant elements of Vf has dimension 1, Proposition 2.1 implies that Vf

cannot be the Steinberg representation either.
This proves the proposition. �

6. q-expansions

Let T, T ′ denote the standard split and non-split Cartan subgroups of GL2(Fp),
respectively. Suppose that f is a normalized eigenform in the space S2(ΓT )

new that
was defined in the previous section. Since f is ΓT -invariant, Proposition 5.1(a) and
(b) imply that we can identify S2(ΓT )

new with a subspace of Ω1(X(p))⊗Q C. By
Proposition 5.2, the newform f generates an absolutely irreducible G-representation
Vf , defined over the number field Kf generated by the Fourier coefficients of f . By
Proposition 2.1, the subspace of T ′-invariants of Vf is 1-dimensional. In this section
we compute the q-expansion of a generator.
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We first consider the case where Vf is a principal series or twisted Steinberg
representation. In other words, we have an isomorphism

Vμ
∼= Vf ⊗Kf

C for some non-trivial character μ : B/Z → C∗.

Note that Kf contains the field Q(μ)+ of character values. By Propositions 3.1(a)
and 3.2(a), the representation Vμ admits a unique 1-dimensional U -invariant sub-
space W on which the Borel subgroup B acts via μ. It is generated by the ele-
ment e∞. Proposition 5.1(c) implies then that in Vf , there is a unique element
whose classical coordinate is a Γ1(p)-invariant normalized eigenform h on which
Γ0(p) acts via the character μ2. In the twisted Steinberg case, we have μ = ω and
hence μ2 = 1. In this case h is a Γ0(p)-invariant normalized eigenform.

Any G-equivariant linear map Vμ → Vf ⊗Kf
C, must map e∞ into the 1-

dimensional space generated by h. Schur’s Lemma implies that for each c ∈ C∗

there is a unique G-equivariant isomorphism

jc : Vμ

∼=−→Vf ⊗Kf
C

for which jc(e∞) = ch.

Let q = e
2πiτ

p . Since h is Γ1(p)-invariant, its Fourier expansion is of the form

h =
∑
n≥1

anq
pn.

Note that there is also a unique element in Vf ⊗Kf
C whose classical coordinate is

the “complex conjugate” normalized eigenform h =
∑

n≥1 anq
pn ∈ S2(Γ1(p), μ

−2).

The isomorphism jc maps the element −
∑

r∈Fp
er to a multiple of h.

The following proposition relates the Fourier expansion of f to the one of h.

Proposition 6.1. Let μ �= 1 and let f and h be the normalized eigenforms described

above. Put ζp = e
2πi
p .

(a) Then the q-expansion of f is given by

f =
∑
n≥1

μ(n)anq
n

with the convention that μ(n) = 0, whenever n is divisible by p.

(b) The eigenform h is in the Q(μ)[G]-span of τ(μ)τ(μ2)
ap

f . Here τ (μ) and τ (μ2)

denote the Gaussian sums
∑

x∈Fp
μ(x)ζxp and

∑
x∈Fp

μ2(x)ζxp , respectively.

When μ = ω we have μ2 = 1 and we put τ (μ2) = −1.

Proof. By Proposition 3.1(b), the subspace of T -invariant elements of Vμ is the 1-
dimensional subspace generated by

∑
r∈F∗

p
μ(r)er. The isomorphism jc introduced

above, maps it to a ΓT -invariant eigenform in Vf ⊗Kf
C. For a suitable choice of c

we obtain f itself.
We compute jc(

∑
r∈F∗

p
μ(r)er). The formula (3.1) given above and the fact that

w switches 0 and ∞, imply that

er =

(
1 r
0 1

)
we∞ for r ∈ Fp.

It follows that

jc(er) = c

(
1 r
0 1

)
wh.
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By Atkin-Li [1], the modular involution wp transforms h into the “complex conju-

gate” form h multiplied by the so-called pseudo-eigenvalue ε, which is a complex
number of absolute value 1. To be precise, ε is equal to τ (μ2)/ap and we have

1

pτ2
h(− 1

pτ
) = εh(τ ) for τ ∈ H.

This implies that wh is the element of Vμ whose classical coordinate is equal to the
Fourier series

wh(τ ) =
ε

p
h(τ/p) =

ε

p

∑
n≥1

anq
n.

It follows that for r ∈ Fp we have

jc(er) = c

(
1 r
0 1

)
wh(τ ) = c

ε

p

∑
n≥1

anζ
−rn
p qn.

Therefore the classical coordinate of jc(
∑

r∈F∗
p
μ(r)er) is

c
ε

p

∑
n≥1

∑
r �=0

anμ(r)ζ
−nr
p qn = c

εμ(−1)τ (μ)

p

∑
n≥1

μ−1(n)anq
n

= c
εμ(−1)τ (μ)

p

∑
n≥1

μ(n)anq
n.

The last equality follows from the fact that μ−1(n)an is real and hence equal to
μ(n)an for all n ∈ Z. Since f is a normalized eigenform, part (a) follows.

When we choose c = p/εμ(−1)τ (μ), we have that jc(
∑

r∈F∗
p
μ(r)er) = f . In

particular, f is in the Q(μ)[G]-span of jc(e∞) = ch. Since Vf is irreducible, this is
the same as saying that h is in the Q(μ)[G]-span of ετ (μ)f .

This proves the proposition. �

We now turn to the computation of the Fourier series of the T ′-invariant eigen-
form in Vμ. See also [15]. Recall that u ∈ F∗

p is a fixed non-square. We put

λn =
∑
r∈Fp

μ−1(r2 − u)ζ−rn
p for n ∈ Z.

Proposition 6.2. Let f ∈ S2(ΓT )
new be the T -invariant eigenform discussed above

and let h =
∑

n≥1 anq
pn be the corresponding Γ1(p)-invariant eigenform. Then the

element of Vf with classical coordinate equal to

1

μ(−1)τ (μ)

⎛
⎝ p

τ (μ2)

∑
n, p|n

anq
n +

∑
n≥1

λnanq
n

⎞
⎠

is a generator for the subspace of T ′-invariant forms. Moreover, it is in the Q(μ)[G]-
span of the ΓT -invariant eigenform f .

Proof. Propositions 3.1(c) and 3.2(c) give an explicit generator of the 1-dimensional
subspace of T ′-invariants of Vμ. We apply the isomorphism jc with c=p/εμ(−1)τ (μ)
as we did in the proof of Proposition 6.1. Since

er =

(
1 r
0 1

)
we∞ for r ∈ Fp,
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we get

p

εμ(−1)τ (μ)

⎛
⎝∑

n≥1

anq
pn +

ε

p

∑
r∈Fp

μ−1(r2 − u)
∑
n≥1

anζ
−rn
p qn

⎞
⎠ .

Since apn = apan for every n ≥ 1, this is equal to

p

μ(−1)τ (μ)τ (μ2)

∑
n, p|n

anq
n +

1

μ(−1)τ (μ)

∑
n≥1

⎛
⎝∑

r∈Fp

μ−1(r2 − u)ζ−rn
p

⎞
⎠ anq

n,

which is easily seen to give the result. By Proposition 6.1(b) the series is contained
in the Q(μ)[G]-span of f . �

The numbers λn =
∑

r∈Fp
μ−1(r2 − u)ζ−rn

p are so-called Salié sums. They are

related to Kloosterman sums. See [9] and the references therein.
Next we consider the case where the normalized ΓT -invariant weight 2 eigenform

f generates a cuspidal irreducible representations Vf ⊂ Ω1(X(p)).

As before, let q = e
2πiτ

p , let ζp = e
2πi
p , and let

f =
∑
n≥1

anq
n

be a ΓT -invariant normalized weight 2 eigenform. By Proposition 5.1(a) and (b) we
may identify S2(ΓT ) with the subspace of T -invariant elements in Ω1(X(p))⊗Q C.
Then f generates an absolutely irreducible G-representation Vf that is defined over
the number fieldKf generated by the Fourier coefficients of f . Since Vf is a cuspidal
representation, we have

Vθ
∼= Vf ⊗Kf

C for some character θ : T ′/Z → Q(θ)∗ with θ2 �= 1.

Note that Kf contains the values of the character of Vθ. This means that Q(θ)+ is
a subfield of Kf .

By Proposition 4.1(b), the element f ∈ Vf corresponds to the vector e0 ∈ Vθ or
a multiple thereof. More generally, for any r ∈ Fp the elements in Vf with classical
coordinate equal to

fr =

(
1 r
0 1

)
f =

∑
n≥1

anζ
−nr
p qn,

correspond to multiples of er.

Proposition 6.3. The elements in Vf with classical coordinate equal to

pfr −
∑
m∈Fp

∑
y∈F∗

p2

θ(y)f (m+r)N(y)

m2−u
+Tr(y)+m

for r ∈ Fp

are all T ′-invariant. They are all in the Q(θ)[G]-span of f and at least one of them
generates the subspace of T ′-invariants of Vf .

Proof. By Proposition 4.1(c) this follows from the fact that the vectors er are in
the Z[G]-span of e0 and the fact that the T ′-trace is an element of Q(θ)[G]. �
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7. Level 17

In this section we explain how to compute equations over Q for the canonically
embedded genus 6 curve X+

ns(17). We follow the method in [21]. We exhibit six lin-
early independent weight 2 cusp forms that are invariant under the normalizer N ′ of
the standard non-split Cartan subgroup T ′. We find these forms inside the six rep-
resentation spaces Vf , generated by six normalized eigenforms f ∈ S2(ΓT (17))

new,
that are invariant under the normalizer N of the standard split Cartan subgroup
T . Since the space S2(ΓT (17))

new is naturally isomorphic to the classical space
S2(Γ0(17

2))new, we start from there. We can find the Fourier expansions of the
normalized eigenforms in William Stein’s [25], for instance.

In Stein’s table we find, up to Galois conjugation and twists by the quadratic
character ω, four normalized weight 2 eigenforms invariant under Γ0(17

2). Two of
these are twists of normalized eigenforms in S2(Γ1(17)). They give rise to principal
series and twisted Steinberg representations. The other two eigenforms generate
cuspidal representations.

There is a unique Γ0(17)-invariant normalized eigenform f0 =
∑

n anq
17n. Its

17th Fourier coefficient a17 is equal to +1. Its quadratic twist
∑

n ω(n)anq
17n is

a normalized Γ0(17
2)-invariant eigenform. Here we put q = e

2πiτ
17 for τ ∈ H. By

convention ω(n) = 0 whenever n is divisible by 17. The corresponding ΓT -invariant
form is

∑
n ω(n)anq

n. The first few terms of its Fourier expansion are

f1 = q − q2 − q4 + 2q5 − 4q7 + 3q8 − 3q9 − 2q10 − 2q13 + 4q14 − q16 + 3q18 + . . . .

The irreducible subrepresentation Vf1 of Ω1(X(p)′) is isomorphic to the twisted
Steinberg representation. The form f1 is also invariant under the normalizer N of
T because 17 ≡ 1 (mod 4). See Proposition 3.2(b).

One finds in Stein’s tables that the space S2(Γ1(17)) is the direct product of
the 1-dimensional space of Γ0(17)-invariant forms that we considered just now, and
a 4-dimensional subspace W spanned by the Galois conjugates of an eigenform h
on which the diamond operators act through a character of order 8 of (Z/17Z)∗.
Any such character is of the form μ2, where μ has order 16. Since μ is an odd
character of T/Z, Proposition 3.1 implies that the normalizer N acts as −1 on the
T -invariants. Therefore the twist by μ of h as described in section 3, is a Γ0(17

2)-
invariant normalized weight 2 eigenform, corresponding to a ΓT -invariant form that
is not N -invariant. It plays no role in our computation of the canonical embedding
of X+

ns(17).
Since the normalized eigenforms f ∈ S2(ΓT (17))

new for which Vf is a principal
series or twisted Steinberg representation, all arise in this way from eigenforms in
S2(Γ1(17)), the remaining normalized eigenforms in S2(Γ0(17

2)) give rise to cuspidal
representations. There are two of them.

Put a = −1+
√
13

2 . Then the modular form

f2=q−(a+1)q2+aq3+(a+2)q4−(a+1)q5−3q6+(a−1)q7−3q8−aq9

+(a+4)q10−3q11+(a+3)q12−(a+2)q13+(a−2)q14−3q15+(a−1)q16+ . . .

is the ΓT -invariant form associated to a newform in Γ0(17
2). The representation

Vf2 is cuspidal with respect to some character θ of order dividing 18. The field

Kf2 generated by the Fourier coefficients is Q(
√
13). Since it contains Q(θ)+, we

actually must have that θ6 = 1. Figuring out what character θ of T ′/Z is involved,
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can be done by numerically computing the action of w on f2 for every possible θ in
a suitable τ ∈ H as in Baran’s paper [5, Section 6]. It turns out that in this case θ
has order 6. The twist of f2 by ω is cuspidal with character θω, which has order 3.
By Proposition 4.1 the form f2 is N -invariant, while its twist is anti-invariant.

The fourth normalized eigenform is the ΓT -invariant form associated to one of
the Γ0(17

2)-invariant eigenforms in Stein’s table with Fourier coefficients in Q(ζ9)
+.

The first few terms of its Fourier expansion are

f3=q−(b2+b−2)q2−(b+1)q3+bq4+(b2+b−4)q5+(2b2+2b−3)q6+bq7

+(b2+ b−3)q8+(b2+2b−2)q9+(2b2+b−6)q10−(2b2−2)q11−(b2+b)q12+ . . . .

Here b = ζ9+ζ−1
9 . It is a zero of x3−3x+1. The representation Vf3 is cuspidal with

character θ of order 18. The twist by ω is cuspidal with character θω of order 9.
By Proposition 4.1(b) the form f3 is N -invariant, while its twist is anti-invariant.

At this point we have six T -invariant eigenforms: f1, f2 and its Galois conjugate
and f3 with its two Galois conjugates. To f1 we apply the T ′-trace fomula in
Proposition 6.2. This gives us a T ′-invariant form g1 with Fourier coefficients
in Q(ζ17)

+. Applying the formula of Proposition 6.3 to f2 and its conjugate over

Kf2 = Q(
√
13), we obtain the T ′-invariant form f ′

2 and its conjugate. Their Fourier

coefficients are in Kf2(ζ17)
+. We put g2 = Tr(f ′

2) and g3 = Tr(
√
13f ′

2). Here Tr

denotes the trace map from Q(ζ17)
+(

√
13) to Q(ζ17)

+. Then g2 and g3 are T ′-
invariant forms with Fourier coefficients in Q(ζ17)

+. Similarly, we apply the T ′-trace
map given in Proposition 6.3 to f3 and its conjugates over Kf3 = Q(ζ9)

+ and obtain
the T ′-invariant form f ′

3. Its Fourier coefficients are in Kf3(ζ17)
+. For i = 1, 2, 3,

we put g3+i = Tr(eif
′
3), where e1, e2, e3 denotes the basis of Kf3(ζ17)

+ over Q(ζ17)
+

given by 1, α, α2, where α is a zero of the defining polynomial x3 + 3x2 − 3 used in
Stein’s table. Then g4, g5, and g6 are T ′-invariant forms with Fourier coefficients
in Q(ζ17)

+.
We list the first few Fourier coefficients of the T ′-invariant forms g1, . . . , g6. By

an 8-tuple [x1, . . . , x8] ∈ Z8 we denote the element
∑8

j=1 xj(ζ
j
17 + ζ−j

17 ). For every
i we have divided the coefficients of gi by a common divisor in Z

g1=[7,1,2,5,4,5,4,6]q−[6,7,4,1,5,2,4,5]q2+[−5,6,4,7,2,4,5,1]q4 . . .

g2=[4,16,2,−4,−2,8,−8,18]q+[9,2,−4,8,4,1,−1,−2]q2−[4,−1,2,−4,−2,8,9,1]q3 . . .

g3=[9,2,−4,8,4,1,−1,−2]q2−[4,−1,2,−4,−2,8,9,1]q3−[−2,9,−1,2,1,−4,4,8]q4 . . .

g4=[8,8,−2,4,5,−2,−1,−3]q−[3,2,−1,2,−2,7,−4,10]q2−[12,9,12,6,18,12,9,24]q3 . . .

g5=−[4,4,8,6,3,4,2,3]q+[1,4,−1,4,−2,4,−1,8]q2+[2,5,10,1,12,10,2,9]q3 . . .

g6=[10,10,9,12,5,2,1,2]q−[5,12,0,12,0,16,1,22]q2−[8,10,22,4,32,22,9,29]q3 . . . .

By [23] the canonical embedding of a genus 6 curve is typically cut out by six
quadrics. See also [12, Thm. 1.1] and [21]. We compute six quadrics that vanish on
the canonically embedded curve X+

ns(17) and then use MAGMA to check that the
intersection of the quadrics is a curve of genus 6. Then we know that the quadrics
are indeed equations for X+

ns(17).
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To do this, we compute Fourier series of the 21 products gigj with 1 ≤ i ≤ j ≤ 6.
Even though the Fourier coefficients of the forms gi are in Q(ζ17)

+ and are usually
not rational, the corresponding Kähler differentials are rational. This is explained
by the fact that the cusps of X+

ns(17) are not rational, but conjugate over Q(ζ17)
+.

Since the curve X+
ns(17) is defined over Q, we search for quadrics∑

1≤i≤j≤6

aijxixj

with coefficients aij in Q. From the equation
∑

1≤i≤j≤6 aijgigj = 0 we obtain

infinitely many equations with coefficients in Q(ζ17)
+, one for every term qn in the

Fourier expansion. Since the coefficients are in the degree 8 number field Q(ζ17)
+,

each equation gives rise to eight equations with coefficients in Z. For instance,
a consideration of the Fourier coefficients of q2 and q3 gives rise to the following
16 equations in Table 7.1. Here the columns correspond to the coefficients aij in
lexicographic order.

Table 7.1

6 0 0 3 −2 5 −3840 0 0 −2 2 0 0 0 0 15 2 7 3 −3 10

3 0 0 3 1 1 10620 0 6 −2 4 0 0 0 0 18 2 8 4 −5 14

4 −2 0 −1 0 −1 −5256 0 −4 0 2 0 0 0 0 7 0 4 6 −9 17

5 2 0 1 0 1 2820 0 −14 0 −8 0 0 0 0 20 0 14 6 −9 24

3 0 0 0 1 −2 −3948 0 12 10 −8 0 0 0 0 24 −1 17 4 −6 20

6 6 0 −3 −1 0 9972 0 6 2 0 0 0 0 0 18 −2 15 4 −7 21

4 −8 0 −1 1 −2 −3018 0 −16 −2 −8 0 0 0 0 25 −1 20 3 −5 23

5 2 0 −2 0 −2 852 0 10 −6 16 0 0 0 0 26 0 17 4 −7 24

−2 −12 8 −10 2 −8 8 −4 −51 26 −76 0 13 0 10 4 4 −7 −2 7 −20

0 −24 6 −9 2 −8 24 −12 −45 17 −56 0 15 3 6 0 1 −4 −2 5 −12

0 −9 3 −3 1 −2 24 −12 −30 23 −54 0 6 1 2 6 −4 8 0 1 −2

0 −12 6 −9 3 −12 36 −18 −54 23 −64 0 18 −1 14 18 −3 15 −2 3 2

−4 −15 1 −8 −1 −3 4 −2 −51 25 −71 0 17 −1 13 2 −5 9 8 −14 26

2 −12 4 −14 5 −16 −8 4 −39 22 −61 0 11 −4 15 8 −2 10 0 0 8

0 −3 3 −3 1 −4 48 −24 −39 11 −43 0 21 1 15 24 −7 28 2 −7 30

0 −15 3 −12 4 −15 0 0 −48 23 −68 0 18 1 10 6 −1 9 −4 5 2

Rather than two, we use the first 10 Fourier coefficients and hence obtain a
grossly overdetermined linear system of 80 equations in 21 unknowns. As expected,
the solution space has dimension 6. In this way we obtain six independent quadrics∑

1≤i≤j≤6 aijxixj with coefficients in Q. By means of a linear change of variables
and by replacing the quadrics by suitable linear combinations, we obtain equations
that have very small coefficients and have good reduction modulo primes different
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from 17. Here we use the LLL-algorithm as in [21]. The independent quadrics
q1, . . . , q6 we obtained, are listed below. They cut out a genus 6 curve, which must
be X+

ns(17)

q1 =− 3x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + 2x2x4 + x2x5 − x2x6 − 2x2
3

+ 2x3x4 + 2x3x5 + x3x6 + x4x5 − x4x6 + x2
5 − x5x6,

q2 = x1x2 − 2x1x3 − 2x1x4 + x1x6 + x2x5 + 2x2x6 − x3x4 − 2x3x5 + x2
4

− x4x5 + x4x6 − 2x2
5 + x2

6,

q3 = 3x2
1 + 3x1x2 + x1x3 − x1x4 + x1x6 + x2x3 − x2x4 + x2x5 + 2x2x6 + x2

3

− x3x4 − x2
4 − x4x5 − x4x6 + x2

5 + 2x5x6,

q4 = 2x2
1 + 2x1x2 − 2x1x3 + x1x4 − 2x1x5 + x1x6 − x2x3 − x2x5 + 3x2x6 − x2

3

+ 3x3x4 − 3x3x5 − x2
4 − x4x5 + 2x2

5 − x5x6 + x2
6,

q5 = x1x2 + 5x1x3 + 2x1x4 − x1x5 + x2
2 + 3x2x3 + 2x2x4 − x2x5 − x2

3 + 2x3x4

− 3x3x5 + x2
4 + 3x4x6 − x2

5 − 2x5x6 − x2
6,

q6 =− 3x1x2 + x1x3 − 2x1x4 + 4x1x5 − 3x1x6 − 3x2
2 − 2x2x3 − 5x2x4 + x2x5

− x2x6 + x2
3 + x3x4 − 3x3x5 + x2

4 − 2x4x5 − 2x4x6 + x2
5 + 3x5x6 − x2

6.

CM-points or Heegner points are points on modular curves parametrizing elliptic
curves with complex multiplication by imaginary quadratic orders O ⊂ C. Only
if O is one of the thirteen quadratic orders of class number 1, the CM-points
may give rise to rational points. Since the prime 17 is inert in the orders O of
discriminant −3,−7,−11,−12, −27, −28, and −163, there is for each of these
orders O, a unique rational CM-point on the curve X+

ns(17). We have determined
the projective coordinates of these CM-points by evaluating the Fourier series of
the modular forms gi numerically in suitable τ ∈ H for which 17τ ∈ O.

A short computer calculation revealed that there are no rational points (x1 : x2 :
x3 : x4 : x5 : x6) on X+

ns(17) with xi ∈ Z and |xi| < 10 000, other than the seven
CM-points listed in Table 7.2.

Table 7.2. CM-points on X+
ns(17).

discriminant CM-point
−3 (2 : −2 : −1 : 3 : −2 : 1)
−7 (−6 : −2 : −4 : 1 : −3 : 13)
−11 (3 : 1 : 2 : −9 : −7 : 2)
−12 (−4 : 10 : 3 : −5 : −2 : 3)
−27 (2 : −5 : −10 : −6 : 1 : 7)
−28 (0 : 0 : 0 : 1 : 1 : 1)
−163 (−7 : 9 : 35 : 21 : 5 : 1)
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8. Levels 19 and 23

In this section we present quadrics that cut out the modular curves X+
ns(19) and

X+
ns(23). They were obtained by the method explained in the previous section.
The modular curve X+

ns(19) has genus 8. Its canonical embedding in P7 is cut
out by fifteen quadrics. These are listed in Table 8.2. Here the rows contain the
coefficients of the 36 monomials xixj with 1 ≤ i ≤ j ≤ 8 in lexicographic order.
Each column corresponds to the equation of a quadric in P7. The prime 19 is inert
in the imaginary quadratic orders O of discriminant −4, −7, −11, −16, −28, −43,
and −163. For each order O there is a rational CM-point on X+

ns(19), corresponding
to an elliptic curve with complex multiplication by O. As in the previous section,
the CM-points in Table 8.1 have been computed numerically. They are the only
rational points (x1 : x2 : x3 : x4 : x5 : x6 : x7 : x8) with xi ∈ Z satisfying
|xi| ≤ 10 000.

The modular curve X+
ns(23) has genus 13. Its canonical embedding in P12 is

cut out by 55 quadrics. These are listed in Table 8.4. Here the rows contain
the coefficients of the 78 monomials xixj with 1 ≤ i ≤ j ≤ 13 in lexicographic
order. Each column corresponds to the equation of a quadric in P12. The prime
23 is inert in the imaginary quadratic orders O of discriminant −3,−4,−8, −12,
−16, −27, and −163. For each order O there is a rational CM-point on X+

ns(23),
corresponding to an elliptic curve with complex multiplication by O. The CM-
points in Table 8.3 have been computed numerically. They are the only rational
points (x1 : x2 : x3 : x4 : x5 : x6 : x7 : x8 : x9 : x10 : x11 : x12 : x13) with xi ∈ Z

satisfying |xi| ≤ 10 000.

Table 8.1. CM-points on X+
ns(19)

discriminant CM-point
−4 (0 : 0 : −1 : 1 : 0 : −1 : 1 : 0)
−7 (2 : 7 : −12 : −4 : 3 : 3 : 10 : −4)
−11 (3 : 1 : 1 : −6 : −5 : −5 : −4 : 13)
−16 (−2 : 12 : 7 : −15 : 16 : −3 : 9 : 4)
−28 (0 : 1 : 0 : 0 : 1 : −1 : 0 : 0)
−43 (−10 : 3 : 3 : 1 : 4 : −15 : 7 : 1)
−163 (2 : 0 : 0 : −3 : −1 : 0 : 0 : 3)
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Table 8.2. Coefficients of quadrics defining X+
ns(19)

−1 1 0 0 −1 0 0 −1 1 1 0 2 0 1 0
1 0 0 0 1 0 0 −1 −2 −1 1 0 3 −2 4
0 −1 −1 0 1 0 1 2 −1 0 1 −3 1 0 1
0 1 −1 0 −1 1 0 1 −2 0 1 2 1 0 0
−1 −1 1 −2 1 0 0 −1 1 −1 0 1 1 2 2
0 0 0 −1 2 0 −1 0 −1 −1 0 −2 0 0 1
0 1 0 −1 0 0 0 0 −1 −1 −1 −1 0 0 −1
0 0 0 0 1 −1 1 −1 0 0 0 1 2 −1 −1
0 0 1 1 0 0 0 0 0 0 −1 0 0 0 1
1 −1 1 0 −1 0 −1 2 1 −1 0 0 −1 0 0
0 −1 1 0 1 0 0 0 −1 1 0 −1 2 −1 0
0 1 −1 0 0 1 0 −1 0 1 0 0 1 −1 −1
0 0 0 0 0 2 −1 0 1 2 −1 0 2 −1 −1
1 0 −1 −1 −1 1 1 1 −1 0 0 0 0 1 −2
0 0 1 1 0 0 0 0 0 −1 1 1 0 1 −1
0 −2 0 0 0 0 0 2 0 0 −1 −1 −1 0 0
0 1 1 0 −1 −1 0 −2 2 −1 0 0 0 1 −1
1 −1 0 −2 1 −1 0 1 1 1 2 −1 0 0 −1
1 −1 1 −1 0 −1 −1 −2 2 0 −1 0 0 0 −1
1 −1 0 −1 −1 1 0 1 −1 0 −1 0 0 0 0
1 0 1 0 −2 2 −2 1 −1 0 0 −1 0 −1 0
1 0 1 0 0 1 0 1 −2 −1 1 1 1 −1 1
0 0 −1 0 −1 0 0 −1 0 −1 0 2 −1 −1 −3
1 −1 1 0 0 1 0 0 0 0 −1 0 0 −3 0
−1 2 0 0 −1 1 0 0 0 1 −1 −1 −2 0 −1
1 0 1 0 1 0 0 −1 0 −1 0 1 1 −1 1
−1 0 −1 −1 0 0 0 −1 1 0 0 0 −1 0 −2
−1 1 −1 0 0 −1 2 −2 0 −1 0 0 −2 −1 −1
0 −2 1 −1 1 −2 −1 1 0 1 −1 −1 −2 −1 −1
−1 0 0 1 1 −1 −1 0 −1 1 1 −1 0 −3 −1
0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0
0 0 0 −1 0 0 0 2 0 1 1 0 −2 0 0
0 0 0 0 1 0 −1 0 0 0 0 −1 −3 −1 1
1 0 0 −1 −1 0 0 0 1 0 1 1 0 0 0
0 0 −1 −1 −2 1 1 1 1 0 −1 0 −1 1 1
0 0 0 0 1 0 −1 0 0 0 0 −1 0 0 2

Table 8.3. CM-points on X+
ns(23)

discriminant CM-point
−3 (−3 : 4 : 0 : 1 : 0 : 6 : −1 : 6 : −6 : −6 : 0 : −6 : −12)
−4 (1 : −2 : 0 : −2 : −1 : 0 : 1 : −2 : −1 : 0 : −1 : 0 : 0)
−8 (3 : 13 : −19 : −4 : 16 : 8 : −11 : 10 : 1 : −7 : −12 : 18 : −5)
−12 (−15 : 4 : −20 : −3 : 12 : 6 : 9 : −4 : 18 : 12 : 14 : 2 : 2)
−16 (3 : −10 : 4 : −4 : −7 : 8 : −11 : 10 : 1 : 16 : 11 : 18 : 18)
−27 (0 : 1 : 0 : 1 : 0 : 0 : −1 : 0 : 0 : 0 : 0 : 0 : 0)
−163 (0 : −1 : 0 : −1 : 0 : −2 : 1 : −2 : −4 : 0 : 4 : −2 : 2)
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