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Class Groups of Complex Quadratic Fields

By R. J. Schoof

Abstract. We present 75 new examples of complex quadratic fields that have 5-rank of their

class groups 5» 3. Only one of these fields has 5-rank of its class group > 3: The field

Q(\/-25855935I511807) has a class group ¡somorphic to

C(5) X C(5) x C(5) X C(5) X (7(2) X (7(11828).

The fields were obtained by applying ideas of J. F. Mestre to the 5-isogeny ^,(11) -» Xn(\ 1).

1. Introduction. For any, multiplicatively written, finite abelian group A and any

prime p, we define thep-rank of A, dpA = dimF A/Ap: the number of generators of

the p-primary part of A. For any number field K, we denote by A(A") its absolute

discriminant and by C\K) its ideal class group: a finite abelian group. The cyclic

group of order n is denoted by C(«), In the past decade some effort has been made

to construct complex quadratic fields K with large d CliK) for odd prime p. Many

examples of class groups with 3-rank = 3 and 3-rank = 4 have been found by

Shanks and others [2], [3], [9] and, fairly recently, Solderitsch [10] gave examples of

complex quadratic fields K with d5 CliK) = 3, and one example with d7CliK) = 3.

Also, in [4] Diaz y Diaz gave an example of a complex quadratic field K with

d5CliK) = 3, that has a comparatively small discriminant. In this paper we present

74 complex quadratic fields K with 5-rank of their class groups equal to 3 and one

example with 5-rank of its class group equal to 4. We obtained these examples by

computing the class groups of 356 complex quadratic fields; the discriminants of

these fields are parametrized by an 8th-degree polynomial Mit) E Z[r].

2. The Polynomials Mit). In this section we will explain the construction of

polynomials, Mit) E Z[t], that we use to parametrize a series of complex quadratic

fields with class groups having p-rank > 2, for some prime p. The ideas involved are

due to J. F. Mestre and are in [5]; here we only give the formulae to compute the

polynomials Mit).

Let p he a prime and F an elliptic curve defined over Q with a Q-rational point P

of order p on it. By E we denote the elliptic curve F/(P), which is, again, defined

over Q. We denote the isogeny F -* E by <p. Let g be a point on E with coordinates

in some algebraic number field K. Then the coordinates of the points in <p"'(<2)

generate an extension of K that is unramified over K and cyclic of degree p, provided

that Q is submitted to certain conditions, cf. [5, Proposition II. 1.3 and Proposition

II.3.3], To obtain quadratic fields with class groups having a p-rank > 2, one tries to

find two distinct points Qx and Q2 on E with coordinates in a quadratic number
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296 R. J. SCHOOF

field K; under certain conditions, the points in the fibres <p~\Q\) and <p"'(£?->)

generate two independent unramified cyclic extensions of degree p of K, which, by

class field theory, implies that Cip) X C(p) is a quotient of Cl(/i), whence

dpC\K)^2.
Assume that the curve E is given by an equation:

'2  —   v3 C4
x-sh,     c4,C(Sez.

48 864 '

Let <2i = (£i> V) and Q2 — (£2- 7l) be two distinct points on the curve E with £x,

£2 E Q and, as a consequence, tj in some quadratic number field. We wish to

compute the field Q(r/), which will play the role of the field K from above. We have

that

2=¿3_£4_¿    __^_ = ¿3_£i¿    __^6_
'      €|      48€|      864     €2     48?2     864'

so

(1) Ê? + i.È2 + €! = ^.

Let f denote a primitive sixth root of unity. Then f satisfies f2 — f + 1 = 0. Put

12

i +r
Then Norm(0) = c4, and one easily computes

03 + iP= I2%£2i£x + £2).

It follows that

» = TT7a, + y)eQa).

2 _ ¿3 _ £±£ c6 ¿   *   /*      ,    *   v  _      C6 O'   + 6
V    — «| .o?l oÄ/1 «l«2\«l  "•" «2^ OA/1

-6

48%l      864        *'»2v*i     »z;      864 123 864-

So

(2) (72r,)2 = -3(03 + rJ3 + 2c6),

and the field Q(tj) can be written as

QO) = Q(/-3Trace(ö3 + C6)).

From this representation of Q(tj) it is plain that the numbers 6, f2f?, Ç~26, 6, f20,

f ~26 all give the same field Q(tj).

Next we parametrize the conic (1), and we obtain a parametrization of the family

of fields Q(r/). To make sure that the equation (1) describes a nonempty curve over

Q, we will make the assumption that c4 is a norm of an element of Q(0- The

numbers 6 with Norm(0) = c4 can be parametrized, e.g., by

(3) H,} = {a + H)(-±±±- + -Jl^-{),       ,6QU(M),

where a, b E Z and a + bÇ is a fixed number such that Norm(»7 + ¿f ) = c4, i.e.,

a2 + ab + b2 = c4.
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Substituting (3) in (2) eventually gives us that Q(r/) = Q(//¥(*)) with Mit) E Z[t]

of degree 8. The polynomial Mit) can be computed as follows: Let

a - -a + b, n0 = vx- 2c6,

ß — -a — 2b, p, = -2v3 — 6c6,

y — 2a + b, p2 = 5v4 — I2c6,

vx = aßy, p3 = -2v2 — 14p, — 14c6,

v2 = a3 + ß3 + y3, p4 = 5p3 - 12c6,

Aß -L  «2», -I- -,,2„63 = a2ß + ßly + y2a, p5 = -2vA - 6c6,

v4 = a2y + ß2a + y2ß, p6 = vx - 2c6.

Then

6

M(.) = 3(?2 + . + 1) 2 P,í'GZ[í].
i=0

Of course, M(i) depends upon the choice of the number a + 6f. If / £ Q U {oo},

then the rational numbers (or oo)

_1_ 1 -bt + a at + ja + b)       ja + b)t + b

t ' ~t+ 1'   (a + b)t + b'        bt - a      ' ~ at + (a + b)

all give, up to a square, the same value for M(t), i.e. these numbers give the same

field Q(tj).

In order to insure that the class group of Q(tj) has p-rank s* 2, one submits the

points öi and Q2 t0 certain conditions (cf. [5, Proposition II.2.2]). Numerical

experience suggests that we should only bother about one of these:

(4)    " the points g, and Q2 should not become singular modulo any prime of K."

This condition boils down to simple congruence conditions on / modulo primes that

divide the conductor of E.

In the next section we use the formulae given above to obtain quadratic fields

having class groups with p-rank > 3, for p = 5. At present, it seems unclear why

such a large fraction of the computed class groups has a 5-rank greater than 2.

3. The Computations. We apply the formulae from Section 2 to the 5-isogeny

Xxil 1) ^ X0il 1). An equation for A^l 1) can be found in [6, p. 82]:

Y2 + Y = X3 - X2 - 10X - 20.

So, in the notation of [6, p. 36], we have that

iax,a2,a3,a4,a6) = (0,-1,1,-10,-20),

whence (in the notation of [6, p. 36]) c4 = 496 and c6 = 20008. Now c4 is a norm

from Q(f )> e-g- Norm (20 + 4f ) = c4, and we take

a = 20   and   b = 4.

A straightforward computation, using the formulae given in the previous section,

gives us that, up to a square,

Mit) = -it2 + t+l)- (47i6 + 21i5 + 598i4 + 1561.3 + 1198.2 + 261i + 47),

which is, up to a linear transformation, Mestre's polynomial m(i) in his Proposition

II.2.2 in [5],
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The conductor of A^l 1) equals 11 and condition (4) here boils down to

(5) (2 2,-4.4    (mod 11).

(i.e. if t - p/q E Q U {oo} with p, q G Z, gcd(p,q) - 1, then p Z 2q, -4q, 4q

(mod 11)).

We computed the class groups of the fields Q(y'M(') ) for t E P,(Q) with:

(i) t satisfies (5).

(ii) t = p/q; p, q E Z with \p | , | q \ , \p + q |< 40.
This comprised 356 nonisomorphic complex quadratic fields, and we obtained the

following distribution of the 5-primary parts of their class groups:

5-primary part frcq. 5-primary part frcq.

<7(5)

(7(5) X C(5)

(7(5) X C(25)

C(5) X CO25)

C(5) X C(625)

C(5)X 03125)

total

C(5) x C(5) x C(5)
C(5) X C(5) x C(25)

C(5) x C(5) x C(125)

C(5) x C(5) x C(625)

C(5) x C(5) x C(5) x C(5)

total

For the following 75  values of t,  the field Q(y'A/(f)) has 5-rank of its class

group > 3:

1 172771       11      3257      11      2        5

4'     5*    2'    7'    4'    5'    IT   3 '   11
11      16     11     17     14     7      10     5       6

13'   11'   33'    6
15      1       2      23

7 '     3 '   26'    2 '    5 '   IV    9 '   14'   13'    7 '   21'   21'    1
17       7      20     11      16     11     20     17     20     27      1       18      9

9 '    18'    7 '   15'   IV   16'   17'   IV    9 '    2 '   27'   11 '   19
3      24     5      19     11      8      9       1      28    21      1      20    32

26' 7

_2_ 33
31 '     1

24'
33
2 '

11 '
23

12'

18'
U

23'

21
29

8

20'
27

10'

29

]2
23

5
35
3

II '

34
5 '

31'   13'    1

JL    J_    Ü
35'   38'   25

15
19

12
12

7 '
16

13
25

13
19 17

14'    16
39     J2
1 '    29

(The values of. are listed according to the size of the discriminants of the associated

fields. Of course, every field occurs for at least six different values of /; we picked

t = p/q ^ 0 with \p 4 q\ minimal.) We list all 75 fields with their class groups in

the table and single out 16 fields for special mention.

The following is a list of all complex quadratic fields K, with d^C\(K) = 3 and

I A(K)|- 10"', known to us:

A(K)

18397407

77778287

205996583

1156599359

2048074559

7558314879

factorization

3.7.876067

31.103.24359

13.73.131.1657

47.67.311.1181

67.3323.9199
3.31.883.92041

1/4

1/5

7/2

2/7
7/4

2000

6000

10000

34(XX)

525(H)
6(HXK)

5-parl

5X5X5

5X5X5

5 x 5 x 25

5X5X5

5X5X5

5 x 5 X 25

rest

2X8

2 x 24

2X2X4

2 X 2 x 68

2 X 210
2 x 4 x 12

•-(l.X)

1.465

2.137

2.189

3.141

3.644
2.168

(Here and in the next table we denote by «, X n2 X ■ ■ ■ Xnr the abelian group

C(n,) X C(«2) X ■ • • XC(«r).) Diaz y Diaz was the first to compute the class

group of the fields 1, 2, and 3. The field 3 was found by him by an entirely different

method [4].
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-A(/0 factorization 5-part ¿(l.X)

7.

8.
9.

10.

I I .

L2.

13.

]4.

_15.

16.

47

11199

258559351511807

222637549223

3513582927119

37262495315279

10368869999

1449192975839

4574009420324

51887726858696

prime

3.3733
1171.1439.153441403

prime

487.7214749337

13.61.46989275303

97.106895567

7.61.163.20821439

22.97.2297.5132209

276485965857337

0

1

14/25

7/33

2/21

21/11

3/8

19/3

5
100

1478500

434625

2178000

7749000

118750

1000000

1088000

4492500

5
5 X 5

5X5X5X5

5X5X5

5X5X5

5X5X5

5 X 625

5 x 3125

5X5X5

5X5X5

1

4

2 X 11828

3477

3 X 5808

6 X 10332

38

2X2X16

2 X 4 X 1088

2 X 215252

2.291

2.969
2.889

2.894

3.650

3.988

3.664

2.610

1.598

1.959

The field 7: Q(i/-47 ) occurs for . = 0 (and / = -1, oo, 5, - §, ¿); in the range of our

computations it is the only value of t, satisfying the condition (5), for which the

corresponding field has a class group with 5-rank < 2. The field 8: Q(v/-11199 ) is

the smallest field A" (small with respect to | A( AT ) |) that has a class group whose

5-rank equals 2, cf. [1], The next entry in our table, field 9, is the only example we

found of a complex quadratic number field K with c/5 Cl( K ) — 4. At present it is the

only known example of a complex quadratic field possessing this property. We give

four independent ideal classes of order 5 of this field K by giving the associated

reduced binary quadratic forms of discriminant A(A"). Recall that a reduced binary

quadratic form aX2 + bXY + cY2 of discriminant A = b2 — 4ac corresponds to the

ideal class

f        b + {K
z + ̂ —z

2a
a: a E Ky

ofK=Qix[K).

The four ideal classes correspond to:

179988A"2 +     55577AT + 359138443T2,

7536956 A"2 + 1954041 AT +     8703037T2,

535437A2 +   408245AT + 120801334y2,

4413782A2 + 1926753ÀT +   1485527271

It is not difficult to check that these forms are actually of order 5 and independent,

e.g. by using the formulae for composition of quadratic forms as given by Shanks in

[8].
Example 10 is, apart from example 7, the only field with prime discriminant that

we encountered in our search; it occurred for t = 7/33 (note that 72 + 7.33 + 332
= 372).

The fields 11 and 12 are listed since they are "irregular" for both 3 and 5: the

5-rank of their class groups equals 3, while the 3-rank equals 2. The fields 13 and 14

have class groups with unusual 5-primary parts; these groups are isomorphic to

C(5) X C(54) and C(5) X C(55), respectively. We encountered these types of class

groups only once.
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300 R. J. SCHOOF

Finally two of the fields that Solderitsch found [10] are listed. These two fields

have discriminants in the range of our computations; the absolute values of the

discriminants of the other fields he found are much larger.

It is possible to do computations like these using other elliptic curves. However, if

one uses elliptic curves that are defined over Q, one cannot apply this method for

p s* 11, since rational p-torsion points on elliptic curves do not exist if p > 11. We

did some computations for p = 7, but did not succeed in finding new 7-rank = 3

examples.

The computations of the class groups have been done using Shanks's algorithm as

described in [8]. A feature of this algorithm is that it is theoretically possible that one

does not compute the full class group, but that one only finds a subgroup of the

class group; it is extremely unlikely that this occurred in our computations, but,

strictly speaking, all the values of the 5-ranks we found are, in fact, lower bounds.

-Ml»)

18397407

77778287

1156599359

2048074559

7558314879

16704202367

19283393759

39246913919

69971761919

116734226447

208703173647

222637549223

240820329839

315633202367

338605831007

407654485199

440024496719

472440264519

477720858639

488591920767

526789501199

719058505007

819641901567

825270838559

1764613514207

2474580780719

3513582927119

4025744542799

6078086981679

6822526267487

3.7.876067

31.103.24359

47.67.311.1181

67.3323.9199

3.31.883.92041

47.109.3260629

7.19.683.21201

163.240778613

53.163.8099521

199.586604153

3.67.1038324247

prime

223.2897.372769

7.37.1218661013

229.1478628083

13.19.199.1021.8123

313.1405829063

3.199.257.311.9901

3.109.863.1692839

3.97.269.6241673

13.19.2132751017

271.5527.480071

3.53.97.401.132529

199.283.1123.13049

379.3463.1344491

463.1109.4819357

487.7214749337

7.79.401.18154183

3.161.269.41611637

7.67.14546964323

1/4

1/5

7/2

2/7

7/4

7/5

1/11

11/3

3/11

2/13

5/11

7/33

11/6

2/15

5/12

11/7

16/3

11/26

17/2

14/5

7/11

10/9

5/14

6/13

15/7

1/21

2/21

23/1

19/7

12/13

2000

6000

34000

52500

60000

125000

173000

219250

345000

305000

211000

434625

579500

579500

552500

848000

756000

634000

700000

357000

991500

801000

570000

1207000

1004000

1884000

2178000

1779000

1751000

2362500

5»5»5

5»5x5

5x5x5

5x5x25

5x5x25

5x5*625

5x5x5

5x5x5

5x5x25

5x5x25

5x5x5

5x5x5

5x5x5

5x5x5

5x5x25

5x5x5

5x5x5

5x5x5

5x5x125

5x5x5

5x5x5

5x5x5

5x5x25

5x5x5

5x5x5

5x5x5

5x5x5

5x5x5

5x5x5

5x5x125

2x8

2x24

2x2x68

2x42

2x4x12

2x4

2x2x346

1754

2x276

488

2x844

3477

2x2318

2x2318

884

2x2x2x848

6048

2x2x2x634

2x2x56

2x2x714

2x3966

2x3204

2x2x2x114

2x2x2414

2x4016

2x7536

3x5808

2x2x3558

2x2x3502

2x378
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-MK)

7111644846239

7391579442047

8065721968127

9795957818927

10799568953999

13375918976399

13598357713967

14077525107999

15826902503327

16009647635519

17124593400479

18178141409279

18355577207519

20434497658959

22226379018527

22526019100319

23031374411279

23234046745007

23271228811967

24008715204479

24213534365039

24307482796127

29784718976207

36573526186847

37262495315279

49985970332079

52508111150207

54805390012079

55329101911439

60410353317359

63123375138239

69948783320639

76087582641167

76178156852447

86754370349199

93633351110319

102440524590047

109165179721247

133514240116127

143095169224847

523.13597791293

499.14812784453

19.31.13693925243

7.73.1873.10235009

7.79.4093.4771331

7.79.103.3613.64997

13.43.24326221313

3.53.199.444914039

661.7789.3074063

419.787.6917.7019

757.8363.2704969

643.883.32016791

613.2994 3845363

3.53.211.609094091

53.811.14851.34819

7.109.199.419.354073

13.61.46817.620359

7.103.115663.278609

691.33677610437

643.37338592853

53.103.673.6590677

499.661.73694993

13.67.160009.213713

13.73.163.199.499.2381

13.61.46989275303

3.331.50338338703

829.63339096683

7.151.7517.6897691

103.823.4723.138197

19.43.53629.1378763

13.79.103.269.2218351

1123.62287429493

19.61.1699.38639987

13.73.103.9227.84463

3.7.43.269.357150557

3.379.82351232287

7.157.93212488253

13.53.73.883.2457997

13.103.18329.5440117

7.53.193.1998452149

17/9

7/18

20/7

11/15

16/11

11/16

10/17

17/11

20/9

27/2

1/27

18/11

9/19

16/13

25/6

3/26

24/7

5/24

19/11

11/18

8/21

9/20

1/29

28/5

21/11

1/31

20/13

32/1

19/14

17/16

2/31

33/1

33/2

23/12

11/23

29/8

27/10

12/23

35/3

34/5

3797500

2030500

2720000

2146000

4326000

3392000

3069000

3237000

2877500

5085000

4022000

5274000

6477750

3525000

3834000

4190000

6926000

4260000

2965250

5808000

6842000

5068500

5702000

5264000

7749000

6374000

4877500

7497000

9997000

10724000

9944000

9438250

8228000

8884000

6098000

7569000

8060500

8250000

11046000

7972000
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-A(K)

157897435920447

244367110736159

258559351511807

263424263462927

317159735746287

3.47.433.2586235499

1483.164778901373

1171.1439.153441403

7.47.223.10993.326617

3.7.61.199.1244158873

2/35

1/38

14/25

39/1

11/29

5090000

19072750

14785000

13962000

7008000

5x5x25

5x5x5

5x5x5x5

5x5x5

5x5x5

2x2x2036

152582

2x11828

2x2x2x13962

2x2x2x7008

Ml.X)

1.273

3.833

2.889

2.703

1.236

Two computer programs were used: one computes class groups of complex

quadratic fields K given their discriminants A(/C) > -2.51014; the other is a double

length version of this program [7]. All computations have been done on the

CDC-computer system of SARA in Amsterdam.
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