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Abstract. Let p be an odd prime and let X denote the projective limit of the p-parts of the ideal class
groups of the fields in the cyclotomic Z,-extension of a real quadratic number field . We present
a method to compute the structure of X. As an illustration of the method we compute X for p = 3
and all real quadratic fields Q(+/F) of conductor f < 10000 and f % 1 (mod 3). For all fields we
find that X is finite. In other words, Iwasawa’s A-invariant is zero in these cases, which confirms a
conjecture of Greenberg’s.

1. Introduction

Let F' be a number field and let p be an odd prime. Let
F=FCcFCFC---

denote the cyclotomic Z,-extension of F'. In other words, F,, = FQ, where Q,,
is the unique subfield of degree p™ of the field of p"*'th roots of unity Q(Cp,,+1).
We let Foo = UpF,.

The p-parts A, of the class groups of the rings of integers of the fields F,, form
a projective system

N N N
Ape— A — Ay —---,

where NV denotes the norm map. By K. Iwasawa’s theorem [12], there exist three
integers u, A, v € Z, which depend on the number field F' and the prime p, such
that

#A, = p"P" T for n sufficiently large.

For abelian number fields F, the p-invariant is zero by the Ferrero-Washington
theorem [12]. Moreover, the Qp-vector space

V= (lim 4,) ® Q
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has finite dimension A.

If F is a complex abelian field, the Main Conjecture [7] implies that the char-
acteristic polynomial of a topological generator of Gal(F,,/F) acting on V is
closely related to the p-adic L-functions L,(s,wx™!) associated to the characters
x of Gal( F/ Q). Here w denotes the Teichmiiller character.

When Y is an odd character, the characterwy ~! is even and the p-adic L-function
L,(s,wx1) is related to the x~!-eigenspace of V. When Y is even however, the
p-adic L-function is identically zero [12]. One expects that the corresponding
eigenspace is trivial in this case. In other words, Iwasawa’s A-invariant should be
zero for real abelian number fields F'. This means that the projective limit lim Ay

is finite. Equivalently, the sequence of class groups Ao, A1, 43, ..., stabilizes, i.e.,
there is an index ng such that the norm map N: A, — A, is an isomorphism for
all n > ny.

In his thesis [4], R. Greenberg has studied this question. He gave a sufficient
criterion for ) to be zero. Using his criterion the A-invariant has been shown to be
zero in a handful of examples [1, 6]. In this paper we present an efficient algorithm
to compute the groups A, in the cyclotomic Z,-extension of an abelian number
field. The method is based on properties of cyclotomic units and exploits the fact
that certain group rings are Gorenstein rings. The algorithm not only enables us to
verify in any given case that A = 0, but it also gives the structure of li_r_n A, as a

Galois module. This is a consequence of our Proposition 2.6 which says that, when
A = 0, the group of units modulo cyclotomic units becomes actually isomorphic
to A, when n is sufficiently large .

Although our method applies in greater generality, we restrict our attention to
the simplest non-trivial case: F’ is a real quadratic field and p = 3. The algorithm is
inspired by the one used in [8]. As an illustration of the method we have computed
the groups A,, for the fields Q(+/f) of conductor f < 10000 with f # 1 (mod 3).
We know of only one non-trivial case where the structure of the groups A, had
been computed previously: for Q(\/25—7 ) and p = 3, Greenberg [5] has shown that
A, = Z/3Z for all n. It is not difficult to extend our computations much further.

For the case f = 1 (mod 3) see the papers by T. Fukuda, K. Komatsu and
H. Taya (see [11] and the references there). We will apply our methods to this
somewhat different case in a separate paper.

The results of the calculations are presented in Table 5.2. It turns out that the
sequence of groups Ag, Ay, A2,..., stabilizes in all cases. As a consequence we
can confirm Greenberg’s conjecture in all cases:

THEOREM. The Iwasawa A-invariants associated to the Zs-extension of the real
quadratic fields Q(+/f) of conductor f < 10000 with f # 1 (mod 3) are all equal
to zero.

In Section 2 we discuss some properties of cyclotomic units. In Sections 3 and 4
we present our algorithm and in Section 5 we give the results of our computations.
For the cohomology and class field theory that we use, see [2].
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2. Cyclotomic units

In this section we study the cyclotomic units in the Z,-extension of a real quadratic
field in some detail. First we introduce some notation.

Let F = Q(+/f) be a real quadratic field of conductor f. Let o denote the non-
trivial automorphism of F and let x(z) = (£) be the Dirichlet character associated
to F. Let p be an odd prime and let

F=FRcFkhcCc---CF,C---

be the cyclotomic Z,, extension of F': every F}, is of the form F'Q,, where Q,, is
the nth layer in the cyclotomic Z,-extension of Q. The field F, is contained in
Q({yn+17) and is abelian over Q. Let G, = Gal(F,/Fy); it is a cyclic group of
order p™.

For any n > 0, let O, denote the unit group of the ring of integers O,, of F,, let
Cyc,, denote the subgroup of O}, of cyclotomic units and Cl,, the ideal class group
of O,,. We use the definition of Cyc,, as in Sinnott’s paper [10, Sect. 4].

All these groups admit an action by the Galois group Gal( F,/Q,) = Gal(F/Q) =
{o,id}. We use this action to split the modules into an invariant and anti-invariant
piece. The anti-invariant pieces are important for us. They are defined as fol-
lows: O%(x) = (0% ® Z,)°~! and similarly Cyc,(x) = (Cyc, ® Z,)°! and
Cla(x) = (Cl, ® Z,)° 1.

DEFINITION. The nth cyclotomic unit 7, € F, is defined by

N (1= ) ™75

=  Norm

Q(Cflpn+l)/Fn
here f' = f/p when p divides f (or equivalently: when x(p) = 0) and f' = f
otherwise.

From now on we assume that
.)
x(p) = (— # 1.
(p) p

It follows from [10, Thm. 4.1 and Thm. 5.3] that in this case the index [0}, : Cyc, ] is,
up to a p-adic unit, equal to the class number #C1,,. It follows from the distribution
relations for the cyclotomic units, that, up to exponents of the form x(p) — 1, the
cyclotomic units 7, for k£ < n and the cyclotomic unit Normg¢,)/r,(1 — ¢ )
are all norms of 7,,. Therefore 7,, generates Cyc,, (x) as a Z,[G,]-module. In other
words, the map

Z,[Gn] — Cycn(x)

givenby z — 7Z is surjective. Since both Z,[G ] and Cyc,, () are free Z,-modules
of rank p™, the map is an isomorphism and we see that Cyc,, (x) is free of rank 1
over Z,[G,] generated by 7,,.
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For convenience sake we let

An = Cln(X)7
= 0.(x)/Cycn(x),
C, = Hom(B,,Q/Z).

The groups B,, and C), have the same order as A,,:

h, = #A, = #B, = #C,,.

&
3
I

This follows from the decomposition of the zeta-function of F;, into a product of
L-series [12]. In general, the groups A,, and B, are not isomorphic. Recall that the
action of the Galois group G, on C), is given by

v(f)(w) = f(r7'(w)), 7€ Gn,u€ B

In order to study the growth of the class groups A, in the Z,-extension, we may
as well study the groups B,,, which are easier to compute. It turns out to be even
more convenient to study the dual groups C,,.

Forany n > m > 0let G, ,,, denote the group Gal( F,,/ F,,,). It is a cyclic group
of order p"~™.

LEMMA 2.1. Let n > m > 0. Then the natural map
By, —s BGmm

is an isomorphism.

Proof. Since Cyc,(x) is a free Z,[G,]-module, the cohomology group
HY(Gym,Cyc,(x)) is trivial. Now apply the snake lemma to the following dia-
gram.

0 Cyc,.(x) O (x) B, 0
0 Cye, ()%™ — OR ()%™ — B 0
This proves the lemma. o

The following proposition enables us to decide whether the sequence of groups
Bo‘—>BlHBz‘—>“'

stabilizes.

PROPOSITION 2.2. (Stabilization.) If #B,, = #B,,+1 for some m > O, then the
natural map B,, — B, is an isomorphism for all n > m.
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Proof. Letn > m + 1 and let vy denote a generator of G, »,. The group ring
Z,(G, ] is a local ring with maximal ideal m = (y — 1,p). By Lemma 2.1
the groups B,, and B, are precisely the invariants of G, ,,, and its subgroup
Gr,m+1 respectively. In other words B,,, = ker(y — 1) and B,,,41 = ker(y? — 1).
Since these groups have the same cardinality, the same is true for (y — 1)B,, and
(y? — 1) B,,. This implies that

(7 - I)Bn
=(Y"-1)By=("""+--+7+1)(y-1)B, Cm(y - 1)B.

By Nakayama’s Lemma we therefore have that (y — 1) B, = 0. This implies that
B, is G m-invariant and hence equal to By, as required. a

In the computations we will use the following, obviously equivalent, form of
Proposition 2.2:

COROLLARY 23. If #C,, = #Cyp+1 for some m > O, then the norm map
A, — Ay, is an isomorphism for all n > m.

We now study the structure of the groups C', in some more detail. It is convenient
to introduce the projective limit

C= lilnCn.

Here the transition maps C,, — C,, (for n > m) are the duals of the natural maps
B, — B,. The group C is a module over the projective limit of the rings Z,[G ],
which is isomorphic to the Iwasawa algebra A = Z,[[T]]. Here 1 + T corresponds
to the topological generator 1 + p of the projective limit 1 + pZ,, of the groups
Gn =14 pZ/p™*t'Z. One has that

Z,(G,] = A/(w,) foreachn >0,
where w,, denotes (1 + T)P" — 1.
THEOREM 2.4.
(i) There is an isomorphism of A-modules
C 2 A/I forsome A-ideal I.
Moreover, for each n > 0 we have
Cn 2 A/(wn, I).
(ii) For every k,n > O, there is a canonical G,,-isomorphism

Cn/P*Cr 2 Z/p*Z[G,)/{f(1) : f € Homg, (05(x), Z/p*Z[G))}.
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Proof. (i) Since C/TC is dual to the cyclic group By, it follows from Nakaya-
ma’s Lemma that C is a cyclic A-module. The fact that C,, = A/(wn, I) follows

by dualizing from Lemma 2.1.
(ii) Let » > 0 and let p* be a power of p. Consider the diagram
0 Cyc,(x) — On(x) By, 0
pk pk pk
0 Cycn(x) — On(x) - By, 0

By the snake lemma this gives an exact sequence
0 — By[p*] — Cyc,(x)/{p*th powers} — O};(x)/{p*th powers}.

All Galois modules in this sequence are killed by p*. Therefore they are Z /p*Z[G,]-
modules. The finite ring R, = Z/p*Z[G,] is a Gorenstein ring (see appendix
of [7] for definition and basic properties). This means that Homz(R,,Q/Z)
is a free Rp-module of rank 1. Therefore the canonical isomorphism
Homg, (M,Homz(R,,Q/Z)) = Homgz(M, Q/Z) givesrise to an isomorphism

Homg, (M, R,,) — Homz(M,Q/Z),

for every finite R,,-module M. The isomorphism is given by f — 1 o f for some
chosen R,-generator ¢: R, — Q/Z. This shows that the contravariant functor
Homg, (—, R,) is exact. Applying it to the exact sequence above gives us the exact
sequence

Homg, (0}(x), Rn) —Homg, (Cyc, (), Rn) = Cn/p*Cr — 0.

Since Cyc,,(x) is free with generator 7,, we can identify Homg, (Cyc,(x), Rn)
with the ring R, itself via f — f(n,). We obtain

Cn/pkcn = R./{f(m) : f € Homg, (O} (x), Rn)}

as required. a

For computational purposes, it is convenient to make part (ii) of this theorem
more explicit. We can exhibit many G,,-homomorphisms f: O%(x) — Z/p*Z[G})
as follows: let r be a prime number which is split in F,, and which is 1 (mod p*).
We have the reduction modulo v map

fr: O} = (On/T0R)* = @P(On/p)*.
plr

For every p, raising to the power (r — 1)/p* gives a surjective homomorphism
(O/p)* — Z/p*Z. Since all primes p over r are permuted by the Galois group G-,
we obtain, by taking x-parts, a G,,-homomorphism

fr: Oh(x) = Z/p*Z|Gy)
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which we also denote by f,.

PROPOSITION 2.5. Letk > 1andn > 0. Every G,-homomorphism f: O (x) —
Z/p*Z[G,) is of the form f, for some prime T which is split in Fy,((yx )

Proof. Let k = max(k — 1,n). Then both O;; and (, are contained in Fic((p)-
By Kummer theory we have the following diagram:

¢r € Gal(Fe(Cp "/ O5(x))/Fe($p))

=

4

Hom(0}(X)/ 04 (x) N (O 6"+ pt)

=

Hom(O%(x)/ 0% ()", ttph)

y
Hom(O}, (x)/ 0% (x)"", Q/Z)

=]

4

fr € Homg, (03 (x), Z/p*Z(Gh))

Here the Frobenius element ¢, of r is mapped to the homomorphism f;.
The second isomorphism follows from the fact that the map F/(Fy )1"’c —
F((p)*/ (F,C(Cp)*)f’k is injective, because its kernel, which is isomorphic to
HY(Gal(F((p), Frn), ppr) is trivial. This follows from the exact restriction-inflation
sequence

0— Hl(Gn,m /—"ﬁc) - Hl(Gal(FN(Cp)aFn)aﬂpk) - HI(A,/,ka)

and the fact that A = Gal(F,({p), Fi) has order prime to p and that uﬁk = {1}.

By the Cebotarev density theorem, every element in Hom(O}(x), Z/p*Z[G,))
is of the form f,. This proves the proposition. ]

This gives us an explicit description of the modules Cy,/p*Ch:

Cn/P*Cn =2 Z/p*Z[Gn]/{fr(na) : 7 is split in Fr(C6)}.
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Next we explain how to recover the structure of the class groups A, and the maps
A,, — A, from the structure of the A-module C. First we establish the following
remarkable relation between the class groups A,, and the groups of units modulo
cyclotomic units By, :

PROPOSITION 2.6. Suppose that the sequence of modules C,, stabilizes: C = C,,
ifforn > ng (i.e. “A = 07”). Then there is an isomorphism of G,,-modules

A, & B, forn > nyg.

Proof. Letn > m > 0. Let G, , = Gal(F,/Fy,). Since x # 1, the x-part
of the G, y,-cohomology groups of the idele class group of F, is trivial. Since
x(p) # 1, the x-part of the G, , -cohomology groups of the group of unit ideles of
F, is also trivial [9, Sect. 4]. This implies that there is a canonical isomorphism

HY(Gpom, 05(x)) 2 HX(Gpmy An), forallg € Z.

Since the group Cyc, (x) is cohomologically trivial and since G,, is cyclic this
implies that there is a G, -isomorphism

HY(Gpm,Bn) = H(Gpm,Ay), forallge Z.

Since A = 0, the groups A,, and B,, stabilize. Therefore there is an integer N such
that NV'th power of the maximal ideal m = (p, T') of A kills both A, and B,, for all
n. Take m > N and n = 2m. Then both w,,, and the G, ,,-norm are contained in
mV. Therefore I?O(Gn,m, B,) = B, and fIO(Gn,m, Ap) = A,

This implies that A,, = B,, as G,,-modules for large n and therefore for each
n > no. This proves the proposition. m]

PROPOSITION 2.7. Suppose that the sequence of modules C,, stabilizes: C = C,
if forn > ng. Then
(i) there is for each m > 0 an exact sequence
0— Ad _, ¢c2m - Bl .

(ii) For every 0 < m < m/ there is a commutative diagram:
o
A%l =, Clwm]

ydual N

Jm,m’ m/,m

Al 2 Clw,]

Here j, ' denotes the natural map Ay, — Apy.
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Proof. Suppose that N > ng is so large that m" kills C. Letn > m + N.
Then the norm map norm N, ., is contained in m" and the kemel of the map
wm: C — Cis the zeroth G, n,-Tate cohomology group of C;,. By cohomological
duality, this group is dual to H(Gp m, Bn) = H'(Gn m, O%(x)). Since x(p) # 1
the x-part of the cohomology groups of the idele units of F;, is trivial. This implies
that

ker(Am — An) = HY(Gn,m, O4(X))-

Therefore C|wy,] is dual to ker(A,, — A,), which is just A, if n is sufficiently
large. This proves part (i).
To prove (ii) it suffices to observe that the following diagram is commutative

0 Adual ~Cc—m_.C B — 0
.’if,":]m, Nt m id Res

0 Adul c—=2r . C ~ pdual -0

We leave this straightforward verification to the reader. m]

It is well known that A,, is in general not isomorphic to By,. Therefore Propo-
sition 2.6 does not hold for every n > 0. By Proposition 2.7 the group Ay is dual to
the kermel of T': C — C while By is dual to the cokernel C/T'C. Note that ker(T')
can be non-cyclic even though cok(T') is always cyclic. For instance, if I = m/,
then

coker(T

) /P'Z,
ker(T')

Z
Z/pZ x --- X Z[pZ.

J times

=)
(=4

Two explicit examples of such ideals I are provided by f = 32009 and
f = 62501. In both cases I = m? and the sequence of class groups stabilizes
at level 1.

3. Upper bounds

In this section and the next we explain how we compute the groups C,,. In this
section we discuss our method to obtain upper bounds for the modules C,,. In
practice these upper bounds are actually sharp, but this is only verified by means
of the calculations explained in Section 4 where we discuss our method to obtain
rigorous lower bounds for the C,,.
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By Proposition 2.5 we have the following explicit expression:
Cn/P"Crn = Z/p*Z[G,])/{f, : r is split in Fo(Gr)},

where we have written f;. for f.(7, ). This result enables us to compute the modules
C, atevery level n: to calculate C,, /p*C,, for a given prime power p¥, we compute
many elements f;,, fr,,... . If we have computed “enough” of them, we have
found the full ideal {f. : r is splitin F;,((,x)} and hence, by Proposition 2.5, we
know C,/p*Ch. If C,/p*C,, is already killed by p*~!, then apparently C, =
C,/p*C, and we have found C,, itself. In practice we can rarely be sure to have
computed sufficiently many elements f,, but, in any case, C,,/p*C,, is a quotient
of Z/p*Z[Gr]/{frys frys---). If in addition p*~! annihilates C,,/p*C,, we have
therefore rigorously computed an “upper bound” for C,, = C,,/p*C,,.

To investigate the behaviour in the Z,-extension, we compute the modules
Co,C1,C,. .., as explained above. If one finds that C,, = C,4; for a certain n,
then by Corollary 2.3 the modules C,, stabilize at this point: C,,, = C,, for each
m>nandC = C,.

In practice, one simply computes the groups C,,/p*C,, for some reason-
ably large k£ at some moderately high levels m = n and m = n + 1. When
Cn+1 /ka'n+1 = Cn/ p*C,, and this group is killed by p*~! one knows that
C, = C,/p*C, and that, most likely, C = C,,. One can recover the structure of
the groups A,, and B, at every level, by applying Proposition 2.7.

What do the f, look like on a computer? Identifying the generator p + 1 of G,
with X, we write

Z/p*Z]G,) 2 Z/p*Z[X]/(XP" - 1).

In this way the elements f, become polynomials in X. The “logarithmic map”
log,: (On/p)" — Z/ p*Z can be computed as follows: we choose (once and for

all) a generator ( for the subgroup of p*th roots of unity in Z/rZ. Then log,(z)

is the discrete logarithm with respect to ¢ of =D/, Finally, rather than fixing
a cyclotomic unit 1 — (,+1(y and permuting the prime ideals p with the Galois
group, we fix one prime ideal p over r and permute the cyclotomic units with the
Galois group. The choices of { and p are not important; they only change f, by a
unit.

We only give the formula for p = 3. The condition x(p) # 1 means that
f # 1 (mod 3). When f = 2 (mod 3) we get

(1-¢¥¢H-¢*¢p)
fr(77n) = Z Z logr ((1 _ C4y<gz)(1 _ C_4ych) 'Xy' (1)
yEZ[3nZ =€(2/f2)* f f
(f)=1
Here g € (Z/fZ)* satisfies (f) = —1 and ( is a primitive 3"*!th root of 1
modulo 7. We have written log,. for log,; the summation over z corresponds to the

norm to F,((3) = Q(¢, V).
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The four factors inside the logarithm are projections into the correct x-
eigenspace: the factors in the numerator correspond to the norm to F, =
Q.. (v/f). The denominator is just o applied to the numerator, where o gener-
ates Gal(Q(+/f)/Q). In other words, the quantity in the log is just (1 4+ 7)(1 — o)
applied to (1 — ¢¥¢ %). Here 7 is the non-trivial automorphism of Q(¢3). For com-
putational purposes, the formulas should be modified a little. It is not difficult to
see that, up to a 3-adic unit, we have

frmm)= ¥ logr( II (c“”—Cf)(ﬁ))-XyGZ/3’°Z[X1/(X3"—1). @

yEZ/3"Z z€(Z/ fL)*

When f = 0 (mod 3), the resulting formulas are practically the same as the ones
for the case f = 2 (mod 3). There are slight differences because of the definition
of the cyclotomic units. The analogue of formula (1) of the previous section is:

Y : gy
f= TS 1 ((1 ¢* ¢ < )

yEZ/3"Z =€(2/FT)* ¢ ™)1 = ¢*¢F)
=1

) XY, (1)

Here f' denotes f /3. Since Q(+/F) is areal quadratic field, Q(+/—f7) is complex

and (-}11-) = —1. So, in terms of the formula in the case f = 2 (mod 3), we
have taken ¢ = —1 in this case. The sum over x corresponds to the norm to

Q(¢,VF) = Fn(¢3, VF7). The products within the numerator and denominator
correspond to the norm from F,, ({3, v/f7) to Qn(+/377) = F,. Finally we project
the unit into the x-eigenspace by applying 1 — o.

As in the case f = 2 (mod 3), we modify the formula a little bit. Proceeding
as before, we find the following expression:

y€EZ/3"L z€(Z/f'T)*

frlm) =3 logr( 11 (c“”—c}”:>(f=‘)) XY

€ Z/3*Z[X]/(X¥" - 1). 2"

Notice that this time (L) is an odd character.

When f is large, computing the product in (2) and (2') is a lot of work. It is
important to first compute the products and then take their logarithms (only 3" of
them). Usually, it is not necessary to take n large than O or 1, because the class
groups are all trivial or stabilize immediately. Occasionally, however, one may
wish to consider n = 2,3,4,...: In these cases it might be useful to have a table
of the quadratic residue symbols modulo f. So far, we have always recomputed
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all of them for each new auxiliary prime r. The choice of k hardly effects the
running times when 7 is small: computing modulo 30 is as efficient as computing
modulo 3; only computing the few discrete logarithms is a lot slower when £ is
large.

In order to compute the ideal generated by the f, in the ring Z/p*Z[X]/
(XP" — 1) it is convenient to convert everything to the parameter T = X — 1.
Then the ring becomes isomorphic to Z/p*Z[T]/(wy) where w, = (1+T)P" —1.
This is a finite local ring with maximal ideal (p, T'). It is a Gorenstein ring and its
unique minimal ideal is generated by p*—17P" -1,

In our case

fr € Z/3°Z[T) /(1 +T) - 1).

In practice, we apply the WeierstraB-Preparation Theorem and compute the “distin-
guished parts” of f,, i.e. we compute a Weierstrall polynomial f- such that fr=F
up to a unit.

EXAMPLE 3.1. This is an example of what usually happens: let f = 761. In
this case ho = 3. We take, somewhat arbitrarily, p* = 27 and n = 1. So, the
coefficients of the f, are computed modulo 27 and the f, are elements of the ring
Z/27Z[T)/(T3 + 3T% + 37T)).

T fr

82189 |3T%2+4+9T+9
164377 | T + 12

328753 | T2 + 12T +9
575317 | T

616411 | T + 21

739693 | 3T2 + 18T
904069 | T2 + 21T + 21
986257 | T

It is easily seen that the f, generate the maximal ideal m of A/(w) in this case.
Therefore

Ci = A/m=Z/3Z = C,.

By Proposition 2.2, this implies that C = C; = Cy. Note that, since A /( frl yeens f;t)
is certainly an upper bound for C, we have a complete proof in this case: the tower
of class groups stabilizes immediately at level 0. All the norm maps in the towers
are isomorphisms and all the maps jm m': Am — Apy are zero (m < m’).

EXAMPLE 3.2. f = 4749. Here’s an example where the class groups grow a little
bit in the Z3-extension. The class group of Q(1/f) is cyclic of order 3. We compute
the following elements at level 1 modulo 27:
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r fr
683857 [T +6
769339 | T +24
1282231 | 3T+ 18
1367713 [ T+ 6
1624159 | T + 24
2222533 | T +6
2393497 | T+ 15

All polynomials have 3 as a zero modulo 9. We move to level 2 and compute the
following elements modulo the ideal (w, 81):

T fr

769339 | T +24

1282231 | T + 60T* + 63T3 + 372 + 39T + 45
3846691 | T + 51

4359583 | T + 24

5898259 | T + 24

6667597 | T + 51

7180489 | T + 51

Once more, all polynomials fr have 3 as a zero; this time modulo 27. Once more,
we move up one level in the Z3-extension. At level 3, modulo the ideal (w3, 243)
we find

T fr

769339 | T + 186
3846691 | T + 240
16925437 | T + 240
22310803 | T? 4+ 102T + 36
23849479 | T +78
27696169 | T + 240
36158887 | T + 105

This time the polynomials again generate the ideal (T — 3, 27). Since the computa-
tions were done modulo 3°, we conclude that the module C3/3°Cj is equal to Cj.
Since we tried so many primes r we are actually led to believe that the class groups
stabilize at this point and that

C=Cy2A/(T -3,27) = Z/27Z.
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Taking covariants we see that Cy = C/TC = Z/3Z. Similarly Cy = C/w;C =
Z/9Z and C, = C = Z/27Z. Using Proposition 2.7 one easily sees that Ag, Ay,
A, are cyclic of order 3, 9 and 27 respectively. The maps 49 — A; — A; are
injective. It is not difficult to see that, in general, all ideal classes in Ax become
only trivial in Ag43.

EXAMPLE 3.3. f = 6396. This is a somewhat “exotic” example. We computed
the following polynomials modulo 27 at level 1.

r f?’

230257 | T?+21T+3
287821 | T? 4 24T + 21
462949 | T? 4 24T + 21
1036153 | T2 4+ 21T + 12
1093717 | T? + 6T + 21
1266409 | 9T

1381537 | T2 + 3T + 21

The polynomials f, generate the A-ideal (T2 + 3,3T,9). At level 2 we find,
computing modulo 27,

r fr

230257 | T2 + 12T + 12
287821 | T2 + 15T + 21
462949 | T2 4+ 24T + 21
1036153 | T2 + 21T + 12
1093717 | T2 + 6T + 12
1266409 | T3 + 372 + 21T
1381537 | T2+ 12T + 3

The f, generate the same ideal as before. This proves that C' is isomorphic to a
quotient of A/(T? + 3,3T,9). In the next section we describe the computations
that prove that actually C = A/(T? + 3,3T,9).

4. Lower bounds

Our method to prove that the A-modules A/( f,, ..., fr,) that we have computed
using the method of Section 3 are actually equal to the module C, is similar to
the one employed by G. Gras and M.-N. Gras in [3]. It is based on very accurate
approximations of the cyclotomic units in R. If one only wants to show that A = 0,
one can avoid the computations of this section as follows. If A > 0, then by



COMPUTING IWASAWA MODULES OF REAL QUADRATIC NUMBER FIELDS 149

Proposition 2.2 we have that #C,, > p™*! for every n > 0. Therefore it suffices
to show that #C,, < p™ for some 7 and this can be done using the method of the
previous section.

Let p* be a power of p and let n > 0. We let
R, = Z/p*Z[G,).

We saw in the proof of Theorem 2.4 that this ring is a Gorenstein ring and that the
R,-module Homz(R,,Q/Z) is free over R,, of rank 1. For every finite R,-module
M there is an isomorphism Homz(M, Q/Z) = Homg,, (M, Homz(R,,Q/Z)) =
Hompg, (M, R,,). Because of our identification of Homgz(R,, Q/Z) with R,, this
is, in general, not an isomorphism of R,-modules. For instance, when M is an R,,-
ideal I, we have that Hom(I,Q/Z) = Hompg,, (I, R,) = Ann(I), but the natural
actions of G,, on Hom(I,Q/Z) and Ann(I) do not agree. One is the inverse of the
other.

Let ": R, — R, denote the involution of R, induced by ¢ — o~ ! for
o € Gp.If A C R, is any subset, then A denotes the subset {Z : z € A}.

Our method is based on the following proposition.

PROPOSITION 4.1. Letn > 0 and let p* be a power of p that annihilates Cy, (and
hence By,,). Let Ry, denote the group ring Z/p*Z[G,] and let I, be an R,,-ideal that
annihilates Cy,. Then Cy, = Ry, /I, if and only if Ann(I,,) annihilates the module
Cyc,()/0R 0.

Proof. From the diagram of the proof of Theorem 2.4 we obtain the exact
sequence

0 — By — Cyc,(x)/Cyc, ()P = Cyc,(x)/0%(x)"" — 0,

where the first arrow is given by € — er*.

Since Cyc,,(x) /Cycn(x)pk is free of rank 1 over Ry, we see that Ann([},)
annihilates the module Cyc,,(x)/ O;:(x)i"'c if and only if B, = J for some R,-
ideal J containing Ann(fn). Since R, is a Gorenstein ring, this means that C,, =
Hompg, (J,R,) = R,/Ann(J) and that C,, admits a surjective R,-morphism
C, — R,/Ann(Ann(I,)). Since I, = Ann(Ann(I,)), we see that Ann(I,)
annihilates Cyc,,(x)/O: (x)’”e if and only if there is a surjective R,-morphism
Crn — Ry /I,. The proposition now follows from the fact that I, kills C,,. ]

We use this proposition as follows: suppose we know that C,, is annihilated by
p* and that it is a quotient of Ry, /I, for some ideal I.. To prove that C,, = R, /I,
we compute a finite set X of generators of the ideal Ann(f n) C Ry, and we attempt
to show that each z € ¥ annihilates Cyc,,(x)/O} )", ie.,

n € O;';p’c forz € .
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To show this, we compute very accurate approximations n(i) € R to 7, and
its conjugates. From these approximations we compute the minimal polynomial
F(Y) € Z[Y] of 1,,. This polynomial has degree 2p™. For each z € ¥ we pick a
representative z € Z[G] with small coefficients

pﬂ
r= Z“Wk’ ar € Z, lax| < p¥/2...
k=1

Here v € G/, is the generator corresponding to p + 1 and T + 1. Next we compute
very accurate approximations () € R of

pn
e=nf =[] m (03
k=1

and use these to compute the minimum polynomial G(Y') € Z[Y] of ¢. Finally we
compute the p*th roots of the ¢(*) and the polynomial

H(Y)= 2ﬁ (Y - ”f/ﬁ) € R[Y].

=1

If indeed n® € O;‘;”k, then the polynomial H(Y) has integral coefficients. In
practice one is quickly convinced when one finds that the coefficients of H are
very close to integers. However, this time one does not yet know that the zeroes are
contained in a field of degree 2p™. One can prove this by checking that the integral
polynomial close to H(Y') divides the polynomial G(Y”k). This completes the
description of the method.

In practice the polynomials F', G and H have gigantic coefficients. Therefore it
is necessary to use extremely accurate approximations of the cyclotomic units. For
the sake of efficiency we begin our computation of the 7(*) using only a moderate
accuracy of 100 or so decimal digits, just enough to “recognize” the integral
coefficients of the polynomial F(Y') € Z[Y]. Then we recompute the 7(*) using
Newton’s method. This is very efficient and provides us without excessive effort
with an accuracy of 500-5000 decimal digits. The computation of the polynomials
G(Y) and H(Y') is then completed using these high accuracy approximations.

We discuss only one fairly small example. See Example 3.3 for the upper bounds
in this case. We used UBASIC and PARI to do the calculations. In the cases where
the class groups seemed to stabilize at level 2 in the tower, it was necessary to do
the computations with an accuracy of several thousands of decimal digits.

EXAMPLE 4.2. f = 6396. In this case the A-ideal that we have found with the

method of Section 3 is (T2 + 3,37, 9). Therefore C is a quotient of the module

A/(T? +3,3T,9). Since w; = T3 4 372 4+ 3T € I, we have C = C;. We take
k

p* =09.
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We must show that C1 = Ry/I. Here Ry = Z/9Z[T]/(T? + 3T? 4 3T) and
I} = (T?+3,3T). The annihilator Ann([;) is (T2, 3T'). Let v denote the generator
of G; corresponding to T + 1. We have to show that

3(v-1)

—1)2
771 aIld ng"/ )

are ninth powers in O7. Equivalently, we must check the following:

e = y(m)n;' isacubeinO0}?
e’ = v%(m)y(m)~2m is a ninth power in O}?

To do this we first compute, for i = 1,2,...,6, the approximations () € R to
m:

7 = 10675494700636200658242.740540292555723835910871383683
866586357611513327567014852500109494561638321936678
5534783752726237577990729350374469425598374086458010
5998766704 ...

n(z) = 0.0000000000000000000000936724740203754220747270048
39536557434046098945063531230922449635694024565429
544350150600582766365281775623597235308105397 ...

n(3) = —14078828366.72265307644902369504841108188291704137
123619543632215197836226002272135218032291828451139
56685718040494885913144129947919335219205188184
15486098 . ..

n®) = —0.00000000007102863774968978383909104743512468788
0979669423838335066698315835822996014658080869934
992938698903368897373464795839691595355729114578...

7G) = —0.0000000004563634209613548435636006318348408089
9914344105732015910498978368060732427206628227716
1330110508606681672363319579026373177643632073344 . . .
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n© = —2191236094.0178872522791566298317251015567983134
16634186021150975583163302853991775666671351733747
77273615967822556134273934471540118293498331595
8530192358...

Here y(*+1) is the inverse of y(*) fori = 1, 3, 5. i’he number 5(®) is an approximation
to 7(71) and n0) is an approximation to y2(7;).
The minimum polynomial is

F(Y) = Y% - 10675494700619930593782Y°
—173690986929614172042800423512161Y*
—329339405212412219248997455956670633604372Y
—173690986929614172042800423512161Y2
—10675494700619930593782Y + 1.

The minimum polynomial of ¢ is
G(Y) = Y%+ 23392529309499872876162751357786Y>
—721660374146064344071097889429332928472329083234

913y*
—547210427497253920042364578762595732774592939740

725519246576052Y
—721660374146064344071097889429332928472329083234

913Y?
+23392529309499872876162751357786Y + 1
and the minimum polynomial of its cube roots is

H(Y) = Y% 4 28596413658Y° — 89436172566759393Y* — 8179337463

87389632436Y3
—89436172566759393Y2 + 28596413658Y + 1.

It divides G(Y'3). Similarly, the minimum polynomial of ¢’ is given by

G'(Y) = Y % 4 721660374146064344047705360119833055596166331877

130Y°
—128006359637103489533191734240131189287121791883

37595416889552072851485407378500550716000481Y*
—520793721213909501749096147292200103729072388176

174535537311325933525723397957771476778118358185283604Y"
—128006359637103489533191734240131189287121791883

37595416889552001472851485407378500550716000481Y 2
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+721660374146064344047705360119833055596166331877
130Y + 1.

Finally, the polynomial H’(Y'), minimum polynomial of v/¢’ is equal to

H'(Y) = Y% 4 383754Y5 — 28596797409Y* — 204459959828Y
—28596797409Y2 + 383754Y + 1.

It divides G'(Y?).

5. Results

We have computed the Iwasawa modules C for all quadratic fields Q(+/f) of
conductor f < 10000 with f # 1 (mod 3). In this section we present the numerical
results.

First of all, in every case C' turns out to be finite. This implies that the sequence
of class groups A,, stabilizes. In other words, the projective limit

lgn An

is finite. Equivalently:

THEOREM 5.1. For all quadratic fields Q(+/f) of conductor f < 10000 with
f # 1 (mod 3) the Iwasawa invariants X associated to the cyclotomic Z3-extension

of Q(/f) are zero.

For any real quadratic field of conductor f # 1 (mod 3) with Ap = 0, i.e. with
class number not divisible by 3, the Iwasawa module C is trivial. This is an easy
consequence of Nakayama’s Lemma.

There are 144 real quadratic fields of conductor f < 10000 with f #Z 1 (mod 3)
that have Ao # 0. In these cases C = A/I for some non-trivial A-ideal I. In 110
cases we found that I is equal to the maximal ideal m = (7', 3) of A. In these cases
all groups A,,, B, and C,, have order 3 and all maps A,, — A, are zero (n > m).
Splitting the cases f = 0,2 (mod 3) we have I = m in 45 out of 54 cases when
f = 0 (mod 3) and in 65 out of 90 cases when f = 2 (mod 3).

The remaining 34 cases are listed in the table below. In the first column the A-
ideal I for which C' = A /I is given. In the second column the group structure of C
is given; this can be deduced easily from the ideal I incolumn 1. By a; X @, X - - - X a;
we indicate the group Z/a1Z X Z/a3Z X - - - X Z/a,Z. In column 3 we have listed
the level ng where stabilization occurs: C,, = Cy,, for all n > ng. By Corollary 2.6
these entries can also be deduced easily from the ideals in column 1. The remaining
columns contain the conductors of the quadratic fields and various frequencies.
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Table 5.2.
I C no | freq. | f =0 (mod 3) f =2 (mod 3)
(T,9) 9 0 [0+3 3137, 4409, 6809
(T -3,9) 9 1 |0+2 4481,7709
(T +3,9) 9 1 | 3+6 | 3957,7032,7053 | 1772,2777, 7244, 8069, 8396, 8837
(T%,3) 3x3 1 [ 1+2 ] 8745 4001, 6401
(T -3,27) 27 2 | 141 | 4749 5297
(T - 12,27) 27 2 |0+6 473,785, 2021, 3569, 3596, 7601
(T +12,27) 27 2 |0+2 5081, 6584
(T +3,27) 27 2 | 2+1 | 5613,9813 2429
(T%,3) 3x3x3 (1 [0+42 1937,3305
(T*+3,3T,9) | 3x9 1 [ 140 ]| 6396
(T*-3,9) 9x9 2 | 140 5529

The very first entry of Table 5.2 contains the only three cases where C'/T'C has
order 9. In these cases stabilization happens to occur at level ng = 0. In the
remaining 31 cases C/T'C has order 3. Using Corollary 2.6 it is easy to figure out
the behaviour of the class groups A, and the maps A,, — A, in the Z3-extension
of Q(+/f). The groups A,, “grow” and “become” isomorphic to A,,, when n > ng;
the maps A,, — A, are zero when the difference n’ — n is sufficiently large. We
only discuss the last entry of the table as an example.
Let F = Fy = Q(v/5529). In this case

Co = C/TC = A/(T, T*-3,9) = A/gT,3) ~ 7./3Z,

C1 = CJlwiC = A/(T?+3T? +3T,T* - 3,9) = A/(3T,T% - 3,9)
~7/9Z x Z/3Z,

Cy = ClunC = Af(w2, T? —3,9) = A/(T? - 3,9) 2 Z/9Z x Z/9Z.

The last line follows from the fact that w, = (14 T')° — 1 is contained in the ideal
I = (T? - 3,9). Stabilization of the groups C,, occurs at level n = 2. We have
that C,, = C forn > 2.

By Corollary 2.6 the class groups A, are dual to C[w,]. It is easy to see
that

Ay = Z/3Z,
A =2 Z/9Z x Z/3Z,
A, 2 Z/9Z x Z/9Z, forn > 2.

The kemels of the maps j, - : An, — A, are dual to (C/N,, ,,»C)[wy]. For all
n’ > n + 2, the maps Jnn are zero. For n > 1 the maps j, 41 have kernels
isomorphic to Z/3Z x Z/3Z. Finally, jo, is the zero map.
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