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Abstract. Let p be an odd prime and let X denote the projective limit of the p-parts of the ideal class
groups of the fields in the cyclotomic Zp-extension of a real quadratic number field F. We present
a method to compute the structure of X. As an illustration of the method we compute X for p = 3
and all real quadratic fields Q(~f) of conductor f  10000 and f 0 1 (mod 3). For all fields we
find that X is finite. In other words, Iwasawa’s À-invariant is zero in these cases, which confirms a
conjecture of Greenberg’s.

1. Introduction

Let F be a number field and let p be an odd prime. Let

denote the cyclotomic Zp-extension of F. In other words, Fn - FQ,, where Can
is the unique subfield of degree pn of the field of pn+lth roots of unity Q(03B6pn+1).
Welet F~=~nFn.

The p-parts An of the class groups of the rings of integers of the fields Fn form
a projective system

where N denotes the norm map. By K. Iwasawa’s theorem [12], there exist three
integers 03BC, À, v E Z, which depend on the number field F and the prime p, such
that

#An = p03BCpn+03BBn+v for n sufficiently large.

For abelian number fields F, the M-invariant is zero by the Ferrero-Washington
theorem [12]. Moreover, the Qp-vector space
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has finite dimension À.
If F is a complex abelian field, the Main Conjecture [7] implies that the char-

acteristic polynomial of a topological generator of Gal(F~/F) acting on V is
closely related to the p-adic L-functions Lp(s, 03C9~-1) associated to the characters
X of Gal(F/ Q). Here w denotes the Teichmüller character.

When X is an odd character, the character 03C9~-1 is even and the p-adic L-function
Lp(s,03C9~-1) is related to the ~-1-eigenspace of V. When X is even however, the
p-adic L-function is identically zero [12]. One expects that the corresponding
eigenspace is trivial in this case. In other words, Iwasawa’s A-invariant should be
zero for real abelian number fields F. This means that the projective limit lim An
is finite. Equivalently, the sequence of class groups Ao, A1, A2, ... , stabilizes, i.e.,
there is an index no such that the norm map N : An ~ An,, is an isomorphism for
all n  no.

In his thesis [4], R. Greenberg has studied this question. He gave a sufficient
criterion for À to be zero. Using his criterion the a-invariant has been shown to be
zero in a handful of examples [1, 6]. In this paper we present an efficient algorithm
to compute the groups An in the cyclotomic Zp-extension of an abelian number
field. The method is based on properties of cyclotomic units and exploits the fact
that certain group rings are Gorenstein rings. The algorithm not only enables us to
verify in any given case that 03BB = 0, but it also gives the structure of lim An as a
Galois module. This is a consequence of our Proposition 2.6 which says that, when
a = 0, the group of units modulo cyclotomic units becomes actually isomorphic
to An when rc is sufficiently large .

Although our method applies in greater generality, we restrict our attention to
the simplest non-trivial case: F is a real quadratic field and p = 3. The algorithm is
inspired by the one used in [8]. As an illustration of the method we have computed
the groups An for the fields Q( v7) of conductor f  10000 with f 0 1 (mod 3).
We know of only one non-trivial case where the structure of the groups An had
been computed previously: for Q( V257) and p = 3, Greenberg [5] has shown that
An EÉ Z/3Z for all n. It is not difficult to extend our computations much further.

For the case f - 1 (mod 3) see the papers by T. Fukuda, K. Komatsu and
H. Taya (see [11] and the references there). We will apply our methods to this
somewhat different case in a separate paper.

The results of the calculations are presented in Table 5.2. It tums out that the
sequence of groups Ao, Ai, A2,..., stabilizes in all cases. As a consequence we
can confirm Greenberg’s conjecture in all cases:

THEOREM. The Iwasawa À-invariants associated to the Z3-extension of the real
quadratic fields Q( v7) of conductor f  10000 with f ~ 1 (mod 3) are all equal
to zero.

In Section 2 we discuss some properties of cyclotomic units. In Sections 3 and 4
we present our algorithm and in Section 5 we give the results of our computations.
For the cohomology and class field theory that we use, see [2].



137

2. Cyclotomic units

In this section we study the cyclotomic units in the Zp-extension of a real quadratic
field in some detail. First we introduce some notation.

Let F = Q(,Jf-) be a real quadratic field of conductor f. Let o, denote the non-
trivial automorphism of F and let ~(x) = (f x) be the Dirichlet character associated
to F. Let p be an odd prime and let

be the cyclotomic Zp extension of F: every Fn is of the form FQn where Qn is
the nth layer in the cyclotomic Zp-extension of Q. The field Fn is contained in
Q(03B6pn+1f) and is abelian over Q. Let Gn = Gal(Fn/F0); it is a cyclic group of
order pn.

For any n  0, let O*n denote the unit group of the ring of integers On of Fn, let
Cycn denote the subgroup of 0* of cyclotomic units and Cln the ideal class group
of On. We use the definition of Cycn as in Sinnott’s paper [10, Sect. 4].

All these groups admit an action by the Galois group Gal(Fn/Qn) ~ Gal(F/Q) =
{03C3, id}. We use this action to split the modules into an invariant and anti-invariant
piece. The anti-invariant pieces . are important for us. They are defined as fol-
lows : O*n(~) = (O*n ~ Zp)03C3-1 and similarly Cycn(~) = (Cycn ~ Zp)03C3-1 and
Cln(~) = (Cl. 0 Zp)03C3-1.

DEFINITION. The nth cyclotomic unit ~n e Fn is defined by

here f’ = f / p when p divides f (or equivalently: when x(p) = 0) and f’ = f
otherwise.

From now on we assume that

It follows from [10, Thm. 4.1 and Thm. 5.3] that in this case the index [0* : Cycn] is,
up to a p-adic unit, equal to the class number #Cln. It follows from the distribution
relations for the cyclotomic units, that, up to exponents of the form x( p) - 1, the
cyclotomic units ~k, for k  n and the cyclotomic unit NormQ(03B6f)/F0(1-03B6f)1-03C3
are all norms of rin. Therefore T/n generates Cycn (~) as a Zp[Gn]-module. In other
words, the map

given by z - ~xn is surjective. Since both Zp[Gn] and Cycn(~) are free Zp-modules
of rank pn, the map is an isomorphism and we see that Cycn(~) is free of rank 1
over Zp[Gn] generated by ~n.



138

For convenience sake we let

The groups Bn and Cn have the same order as An :

This follows from the decomposition of the zeta-function of Fn into a product of
L-series [12]. In general, the groups An and Bn are not isomorphic. Recall that the
action of the Galois group Gn on Cn is given by

In order to study the growth of the class groups An in the Zp-extension, we may
as well study the groups Bn which are easier to compute. It tums out to be even
more convenient to study the dual groups Cn.

For any n  m  0 let G n,m denote the group Gal(Fn/Fm). It is a cyclic group
of order pn-m .

LEMMA 2.1. Let n  m  0. Then the natural map

is an isomorphism.
Proof. Since Cycn(X) is a free Zp[Gn]-module, the cohomology group

H1(Gn,m, Cyc.(x» is trivial. Now apply the snake lemma to the following dia-
gram.

This proves the lemma. Il

The following proposition enables us to decide whether the sequence of groups

stabilizes.

PROPOSITION 2.2. (Stabilization.) If #Bm = #Bm+1 for some m  0, then the
natural map Bm ~ Bn is an isomorphism for all n  m.
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Proof. Let n  m + 1 and let ï denote a generator of Gn,m. The group ring
Zp[Gn,m] is a local ring with maximal ideal m = (-y - l,p). By Lemma 2.1
the groups Bm and Bm+l are precisely the invariants of Gn,m and its subgroup
Gn,m+1 respectively. In other words Bm = ker(q - 1) and Bm+l = ker(ïP - 1).
Since these groups have the same cardinality, the same is true for (-y - 1)Bn and
(03B3p - 1)Bn. This implies that

By Nakayama’s Lemma we therefore have that (’1 - 1 )Bn - 0. This implies that
Bn is Gn,m-invariant and hence equal to Bm as required. ~

In the computations we will use the following, obviously equivalent, form of
Proposition 2.2:

COROLLARY 2.3. If #Cm = #Cm+1 for some m  0, then the norm map
An - Am is an isomorphism for all n  m.

We now study the structure of the groups Cn in some more detail. It is convenient
to introduce the projective limit

Here the transition maps Cn - Cm (for n  m) are the duals of the natural maps
Bm - Bn. The group C is a module over the projective limit of the rings Zp[Gn],
which is isomorphic to the Iwasawa algebra A = Zp[[T]]. Here 1 + T corresponds
to the topological generator 1 + p of the projective limit 1 + pZp of the groups
Gn ~ 1 + pZ/n+1Z. One has that

where can denotes (1 + T)P" - 1.
THEOREM 2.4.

(i) There is an isomorphism of A-modules

C c-’-2 Ail for some A-ideal I.

Moreover, for each n  0 we have

(ii) For every k, n  0, there is a canonical Gn-isomorphism
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Proof. (i) Since C/TC is dual to the cyclic group Bo, it follows from Nakaya-
ma’s Lemma that C is a cyclic A-module. The fact that Cn ~ A/(03C9n), I) follows
by dualizing from Lemma 2.1.

(ii) Let n  0 and let pk be a power of p. Consider the diagram

By the snake lemma this gives an exact sequence

All Galois modules in this sequence are killed by pk. Therefore they are Z/pkZ[Gn]-
modules. The finite ring Rn = Z/pkZ[Gn] is a Gorenstein ring (see appendix
of [7] for definition and basic properties). This means that Hom7, (&#x26;, Q/Z)
is a free Rn -module of rank 1. Therefore the canonical isomorphism
HomGn (M, Homz(Rn, Q/Z)) ~ Homz (M, Q/Z) gives rise to an isomorphism

for every finite R",-module M. The isomorphism is given by f - 1b o f for some
chosen Rn-generator 1/J: Rn ~ Q/Z. This shows that the contravariant functor
HomGn (-, Rn) is exact. Applying it to the exact sequence above gives us the exact
sequence

Since Cycn(X) is free with generator 1/n, we can identify HomGn(Cycn(~), Rn)
with the ring Rn itself via f ~ f(~n). We obtain

as required. Il

For computational purposes, it is convenient to make part (ii) of this theorem
more explicit. We can exhibit many Gn-homomorphisms f : O*n(~) - Z/pkZ[Gn]
as follows: let r be a prime number which is split in Fn and which is 1 (mod pk).
We have the reduction modulo r map

For every p, raising to the power (r - 1 ) /pk gives a surjective homomorphism
(O/p)* ~ Z/pkZ. Since all primes p over r are permuted by the Galois group Gn,
we obtain, by taking x-parts, a Gn-homomorphism
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which we also denote by fr.

PROPOSITION 2.5. Let k  1 and n  0. Every Gn-homomorphism f : 0* (X) -
Z/pkZ [Gn is of the form fr for some prime r which is split in Fn((pk).

Proof. Let r, = max(k - 1, n). Then both O*n and (pk are contained in Fk(03B6p).
By Kummer theory we have the following diagram:

Here the Frobenius element cpr of r is mapped to the homomorphism fr.
The second isomorphism follows from the fact that the map F*n/(F*n)pk ~
F03BA(03B6p)*/(F03BA(03B6p)*)pk is injective, because its kernel, which is isomorphic to
H1 (Gal(F03BA ((p), Fn), 03BCpk) is trivial. This follows from the exact restriction-inflation
sequence

and the fact that 0394 = Gal(F03BA «p), F,,) has order prime to p and that 03BC0394pk = {1}.
By the Cebotarev density theorem, every element in Hom(On(X), Z/p kZ[Gn])

is of the form f,.. This proves the proposition. 0

This gives us an explicit description of the modules Cn/pkCn:
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Next we explain how to recover the structure of the class groups An and the maps
Am - An from the structure of the A-module C. First we establish the following
remarkable relation between the class groups An and the groups of units modulo
cyclotomic units Bn:

PROPOSITION 2.6. Suppose that the sequence of modules Cn stabilizes: C = Cn
iffor n  no (i.e. "03BB = 0 "). Then there is an isomorphism of Gn-modules

Proof Let n  m  0. Let Gn,m = Gal(Fn/Fm). Since ~ ~ 1, the X-part
of the Gn,m-cohomology groups of the idèle class group of Fn is trivial. Since
~(p) ~ 1, the x-part of the Gn,m -cohomology groups of the group of unit idèles of
Fn is also trivial [9, Sect. 4]. This implies that there is a canonical isomorphism

Since the group Cycn(x) is cohomologically trivial and since Gn is cyclic this
implies that there is a Gm-isomorphism

Since A = 0, the groups An and Bn stabilize. Therefore there is an integer N such
that Nth power of the maximal ideal m = (p, T) of A kills both An and Bn for all
n. Take m  N and n = 2m. Then both 03C9m and the Gn,m-norm are contained in
m . Therefore H (Gn,m,Bn) = Bn and H (Gn,m,An) = An.

This implies that An ~ Bn as Gn-modules for large n and therefore for each
n  no. This proves the proposition. ~

PROPOSITION 2.7. Suppose that the sequence ofmodules Cn stabilizes: C = Cn
if for n  no. Then

(i) there is for each m  0 an exact sequence

(ii) For every 0  m  m’ there is a commutative diagram:

Here jm,m’ denotes the natural map Am ~ Am’.
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Proof. Suppose that N  no is so large that mN kills C. Let n  m + N.
Then the norm map norm Nn,m is contained in m N and the kemel of the map
"’-’m: C ~ C is the zeroth Gn,m-Tate cohomology group of Cn. By cohomological
duality, this group is dual to 1 (Gn,m, Bn) ~ 1 (Gn,m, O*n(~)). Since X(p) =1= 1
the x-part of the cohomology groups of the idèle units of Fn is trivial. This implies
that

Therefore C[03C9m] is dual to ker(Am ~ An), which is just Am if n is sufficiently
large. This proves part (i).

To prove (ii) it suffices to observe that the following diagram is commutative

We leave this straightforward verification to the reader. 0

It is well known that Am is in general not isomorphic to Bm. Therefore Propo-
sition 2.6 does not hold for every n &#x3E; 0. By Proposition 2.7 the group Ao is dual to
the kemel of T : C ~ C while Bo is dual to the cokemel C/T C. Note that ker(T)
can be non-cyclic even though cok(T) is always cyclic. For instance, if I = mi,
then

Two explicit examples of such ideals I are provided by f = 32009 and
f = 62501. In both cases I = m2 and the sequence of class groups stabilizes
at level 1.

3. Upper bounds

In this section and the next we explain how we compute the groups Cn. In this
section we discuss our method to obtain upper bounds for the modules Cn. In
practice these upper bounds are actually sharp, but this is only verified by means
of the calculations explained in Section 4 where we discuss our method to obtain
rigorous lower bounds for the Cn.
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By Proposition 2.5 we have the following explicit expression:

where we have written fr for fr(~n). This result enables us to compute the modules
Cn at every level n: to calculate Cn/pkCn for a given prime power pk, we compute
many elements f r 1, fr2,... . If we have computed "enough" of them, we have
found the full ideal ffr : r is split in Fn(03B6pk)} and hence, by Proposition 2.5, we
know Cn/pkCn. If Cn/pkCn is already killed by pk-1, then apparently Cn =
Cn/pkCn and we have found Cn itself. In practice we can rarely be sure to have
computed sufficiently many elements f r , but, in any case, Cn/pkCn is a quotient
of Z/pkZ[Gn]/~fr1, fr2,...~. If in addition pk-1 annihilates Cn/pkCn, we have
therefore rigorously computed an "upper bound" for Cn = Cn/pkCn.

To investigate the behaviour in the Zp-extension, we compute the modules
Co, C1, C2,..., as explained above. If one finds that Cn = Cn+l for a certain n,
then by Corollary 2.3 the modules Cn stabilize at this point: Cm = Cn for each
m  n and C = Cn.

In practice, one simply computes the groups Cm / pk Cm for some reason-
ably large k at some moderately high levels m = n and m = n + 1. When
Cn+1/pkCn+1 = Cn/pkCn and this group is killed by pk-1 one knows that
Cn - Cn/pkCn and that, most likely, C = Cn. One can recover the structure of
the groups An and Bn at every level, by applying Proposition 2.7.

What do the fr look like on a computer? Identifying the generator p + 1 of Gn
with X, we write

In this way the elements fr become polynomials in X. The "logarithmic map"
logp : (On/p)* ~ Z/pkZ can be computed as follows: we choose (once and for
all) a generator ( for the subgroup of pkth roots of unity in Z/rZ. Then log,,(x)
is the discrete logarithm with respect to ( of x(r-1)/pk. Finally, rather than fixing
a cyclotomic unit 1 - 03B6pn+103B6f and permuting the prime ideals p with the Galois
group, we fix one prime ideal p over r and permute the cyclotomic units with the
Galois group. The choices of ( and p are not important; they only change fr by a
unit.
We only give the formula for p = 3. The condition ~(p) ~ 1 means that

1 "t 1 (mod 3). When f - 2 (mod 3) we get

Here g E (Z/fZ)* satisfies (1) = -1 and ( is a primitive 3n+lth root of 1
modulo r. We have written log, for logp; the summation over x corresponds to the
normtoFn((3) = Q(03B6,~f).
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The four factors inside the logarithm are projections into the correct X-
eigenspace : the factors in the numerator correspond to the norm to Fn =

Qn(~f). The denominator is just Q applied to the numerator, where Q gener-
ates Gal(Q(~f/Q). In other words, the quantity in the log is just (1 + T)(1 - Q)
applied to (1 - 03B64y 03B6xf). Here T is the non-trivial automorphism of Q(03B63). For com-
putational purposes, the formulas should be modified a little. It is not difficult to
see that, up to a 3-adic unit, we have

When f - 0 (mod 3), the resulting formulas are practically the same as the ones
for the case f - 2 (mod 3). There are slight differences because of the definition
of the cyclotomic units. The analogue of formula (1) of the previous section is:

Here f’ denotes f /3. Since Q (,,/7) is a real quadratic field, Q(~-f’) is complex
and (-1 f’) = -1. So, in terms of the formula in the case f = 2 (mod 3), we
have taken g = -1 in this case. The sum over x corresponds to the norm to
Q((? JT) = Fn(03B63, ~f’). The products within the numerator and denominator
correspond to the norm from Fn(03B63, ~f’) to Qn(~3f’) = Fn. Finally we project
the unit into the x-eigenspace by applying 1 - u.

As in the case f = 2 (mod 3), we modify the formula a little bit. Proceeding
as before, we find the following expression:

Notice that this time (f’ x) is an odd character.
When f is large, computing the product in (2) and (2’) is a lot of work. It is

important to first compute the products and then take their logarithms (only 3n of
them). Usually, it is not necessary to take n large than 0 or 1, because the class
groups are all trivial or stabilize immediately. Occasionally, however, one may
wish to consider n = 2, 3, 4,... : In these cases it might be useful to have a table
of the quadratic residue symbols modulo f. So far, we have always recomputed
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all of them for each new auxiliary prime r. The choice of k hardly effects the
running times when n is small: computing modulo 31° is as efficient as computing
modulo 3; only computing the few discrete logarithms is a lot slower when k is
large.

In order to compute the ideal generated by the fr in the ring Z/pkZ[X]/
(XP n - 1) it is convenient to convert everything to the parameter T = X - 1.
Then the ring becomes isomorphic to Z/pkZ[T]/(03C9n) where Wn = (1 +T)pn - 1.
This is a finite local ring with maximal ideal (p, T). It is a Gorenstein ring and its
unique minimal ideal is generated by pk-1Tpn-1.

In our case

In practice, we apply the WeierstraB-Preparation Theorem and compute the "distin-
guished parts" of fr, i.e. we compute a WeierstraB polynomial f r such that f r = ir
up to a unit.

EXAMPLE 3.1. This is an example of what usually happens: let f = 761. In
this case ho = 3. We take, somewhat arbitrarily, p k = 27 and n = 1. So, the
coefficients of the f r are computed modulo 27 and the f r are elements of the ring

It is easily seen that the fr generate the maximal ideal m of A/(WI) in this case.
Therefore

By Proposition 2.2, this implies that C = Ci = C0. Note that, since 039B/~r1,...,rt~
is certainly an upper bound for C, we have a complete proof in this case: the tower
of class groups stabilizes immediately at level 0. All the norm maps in the towers
are isomorphisms and all the maps jm,m’: Am ~ Am’ are zero (m  m’).

EXAMPLE 3.2. f = 4749. Here’s an example where the class groups grow a little
bit in the Z3 -extension. The class group of Q(~f) is cyclic of order 3. We compute
the following elements at level 1 modulo 27:
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All polynomials have 3 as a zero modulo 9. We move to level 2 and compute the
following elements modulo the ideal (03C92, 81 ):

Once more, all polynomials Ir have 3 as a zero; this time modulo 27. Once more,
we move up one level in the Z3-extension. At level 3, modulo the ideal (03C93, 243)
we find

This time the polynomials again generate the ideal (T - 3, 27). Since the computa-
tions were done modulo 35, we conclude that the module C3/35C3 is equal to C3.
Since we tried so many primes r we are actually led to believe that the class groups
stabilize at this point and that
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Taking covariants we see that Co ÉÉ CITC n-’-2 Z/3Z. Similarly Ci ÉÉ C/03C91C ~
Z/9Z and C2 = C ÉÉ Z/27Z. Using Proposition 2.7 one easily sees that Ao, Al,
A2 are cyclic of order 3, 9 and 27 respectively. The maps A0 ~ Ai - A2 are
injective. It is not difficult to see that, in general, all ideal classes in Ak become
only trivial in Ak+3.

EXAMPLE 3.3. f = 6396. This is a somewhat "exotic" example. We computed
the following polynomials modulo 27 at level 1.

The polynomials f, generate the A-ideal (T2 + 3, 3T, 9). At level 2 we find,
computing modulo 27,

The f, generate the same ideal as before. This proves that C is isomorphic to a
quotient of A/(T2 + 3, 3T, 9). In the next section we describe the computations
that prove that actually C ~ A/(T2 + 3, 3T, 9).

4. Lower bounds

Our method to prove that the A-modules 039B/(fr1,..., frt ) that we have computed
using the method of Section 3 are actually equal to the module C, is similar to
the one employed by G. Gras and M.-N. Gras in [3]. It is based on very accurate
approximations of the cyclotomic units in R. If one only wants to show that A = 0,
one can avoid the computations of this section as follows. If À &#x3E; 0, then by
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Proposition 2.2 we have that #Cn  pn+1 for every n  0. Therefore it suffices
to show that #Cn  pn for some n and this can be done using the method of the
previous section.

Let pk be a power of p and let n  0. We let

We saw in the proof of Theorem 2.4 that this ring is a Gorenstein ring and that the
Rn-module Homz(Rn, Q/Z) is free over Rn of rank 1. For every finite Rn-module
M there is an isomorphism Homz(M, Q/Z) ~ Hom m (M, Homz(Rn, Q/Z)) ~
HomRn (M, Rn). Because of our identification of Homz(Rn, Q/Z) with Rn, this
is, in general, not an isomorphism of Rn -modules. For instance, when M is an Rn -
ideal I, we have that Hom(l, Q/Z) ~ HomRn(I, Rn) ~ Ann(l), but the natural
actions of Gn on Hom(l, Q/Z) and Ann(l) do not agree. One is the inverse of the
other.

Let : . Rn ~ Rn denote the involution of Rn induced by 03C3 ~ a-l for
a E Gn. If A c Rn is any subset, then Â denotes the subset {:x E A}.

Our method is based on the following proposition.
PROPOSITION 4.1. Let n  0 and let pk be a power of p that annihilates Cn (and
hence Bn). Let Rn denote the group ring Z/pkZ[Gn] and let In be an Rn-ideal that
annihilates Cn. Then Cn ~ Rn/ln if and only if Ann(În) annihilates the module
Cycn(~)/O*n(~)pk.

Proof. From the diagram of the proof of Theorem 2.4 we obtain the exact
sequence

where the first arrow is given by 03B5 H -Pk.
Since Cycn(~)/Cycn(~)pk is free of rank 1 over Rn, we see that Ann(În )

annihilates the module Cycn(~)/O*n(~)pk if and only if Bn ~ J for some Rn-
ideal J containing Ann(In). Since Rn is a Gorenstein ring, this means that Cn ~
HomRn (, Rn) ~ Rn /Ann(J) and that Cn admits a surjective Rn-morphism
Cn - Rn/Ann(Ann(In)). Since In - Ann(Ann(In)), we see that Ann(În)
annihilates Cycn(~)/O*n(~)pk if and only if there is a surjective Rn-morphism
Cn - Rn/In. The proposition now follows from the fact that In kills Cn. 0

We use this proposition as follows: suppose we know that Cn is annihilated bypk and that it is a quotient of Rn/In for some ideal In. To prove that Cn ~ Rn/In
we compute a finite set E of generators of the ideal Ann(In ) C Rn and we attempt
to show that each x ~ 03A3 annihilates Cycn(~)/O*n(~)pk, i.e.,
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To show this, we compute very accurate approximations ~(i) ~ R to qn and
its conjugates. From these approximations we compute the minimal polynomial
F(Y) E Z[Y] of T/n. This polynomial has degree 2pn. For each x E E we pick a
representative x E Z[Gn] with small coefficients

Here q E Gn is the generator corresponding to p + 1 and T + 1. Next we compute
very accurate approximations e(’) E R of

and use these to compute the minimum polynomial G(Y) E Z[Y] of -. Finally we
compute the pkth roots of the s(’) and the polynomial

If indeed ql E O*pkn, then the polynomial H(Y) has integral coefficients. In
practice one is quickly convinced when one finds that the coefficients of H are
very close to integers. However, this time one does not yet know that the zeroes are
contained in a field of degree 2pn . One can prove this by checking that the integral
polynomial close to H(Y) divides the polynomial G(Ypk ). This completes the
description of the method.

In practice the polynomials F, G and H have gigantic coefficients. Therefore it
is necessary to use extremely accurate approximations of the cyclotomic units. For
the sake of efficiency we begin our computation of the q(’) using only a moderate
accuracy of 100 or so decimal digits, just enough to "recognize" the integral
coefficients of the polynomial F(Y) E Z[Y]. Then we recompute the q(’) using
Newton’s method. This is very efficient and provides us without excessive effort
with an accuracy of 500-5000 decimal digits. The computation of the polynomials
G(Y) and H(Y) is then completed using these high accuracy approximations.
We discuss only one fairly small example. See Example 3.3 for the upper bounds

in this case. We used UBASIC and PARI to do the calculations. In the cases where
the class groups seemed to stabilize at level 2 in the tower, it was necessary to do
the computations with an accuracy of several thousands of decimal digits.

EXAMPLE 4.2. f = 6396. In this case the A-ideal that we have found with the
method of Section 3 is (T2 + 3, 3T, 9). Therefore C is a quotient of the module
039B/(T2 + 3, 3T, 9). Since wl = T3 + 3T2 + 3T E l, we have C = C1. We take
pk = 9.
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We must show that Ci c--- RIIII. Here Ri = Z/9Z[T]/(T3 + 3T2 + 3T) and
Il = (T2 + 3, 3T). The annihilator Ann(Îl ) is (T2, 3T). Let -j denote the generator
of G1 corresponding to T + 1. We have to show that

are ninth powers in O*1. Equivalently, we must check the following:

To do this we first compute, for i = 1, 2,..., 6, the approximations r¡(i) E R to
r¡1 :
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Here 03B3(i+1) is the inverse of 03B3(i) for i = 1, 3, 5. The number ~(3) is an approximation
to 03B3(~1) and q(5) is an approximation to y2(~1).

The minimum polynomial is

The minimum polynomial of - is

and the minimum polynomial of its cube roots is

It divides G(Y3). Similarly, the minimum polynomial of e’ is given by
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Finally, the polynomial H’(Y), minimum polynomial of ~03B5’ is equal to

It divides G’(Y9).

5. Results

We have computed the Iwasawa modules C for all quadratic fields Q(~f) of
conductor f  10000 with f ~ 1 (mod 3). In this section we present the numerical
results.

First of all, in every case C tums out to be finite. This implies that the sequence
of class groups An stabilizes. In other words, the projective limit

lim An

is finite. Equivalently:
THEOREM 5.1. For all quadratic fields Q(~f) of conductor f  10000 with

f ~ 1 (mod 3) the Iwasawa invariants À associated to the cyclotomic Z3-extension
of Q(~f) are zero.

For any real quadratic field of conductor f ~ 1 (mod 3) with Ao = 0, i.e. with
class number not divisible by 3, the Iwasawa module C is trivial. This is an easy
consequence of Nakayama’s Lemma.

There are 144 real quadratic fields of conductor f  10000 with f 0 1 (mod 3)
that have Ao fl 0. In these cases C ~ A/I for some non-trivial A-ideal I. In 110
cases we found that I is equal to the maximal ideal m = (T, 3) of A. In these cases
all groups An, Bn and en have order 3 and all maps Am ~ An are zero (n &#x3E; m).
Splitting the cases f - 0, 2 (mod 3) we have I = m in 45 out of 54 cases when
f - 0 (mod 3) and in 65 out of 90 cases when f z 2 (mod 3).

The remaining 34 cases are listed in the table below. In the first column the A-
ideal I for which C ÉÉ A/I is given. In the second column the group structure of C
is given; this can be deduced easily from the ideal I in column 1. By al x a2 ··· x at
we indicate the group Z/a1Z x Z/a2Z x··· x Z/atZ. In column 3 we have listed
the level no where stabilization occurs: Cn = Cno for all n  no. By Corollary 2.6
these entries can also be deduced easily from the ideals in column 1. The remaining
columns contain the conductors of the quadratic fields and various frequencies.
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Table 5.2.

The very first entry of Table 5.2 contains the only three cases where C/T C has
order 9. In these cases stabilization happens to occur at level no = 0. In the

remaining 31 cases C/T C has order 3. Using Corollary 2.6 it is easy to figure out
the behaviour of the class groups An and the maps An ~ An’ in the Z3-extension
of Q( v7). The groups An "grow" and "become" isomorphic to Ano when n  no;
the maps An ~ An, are zero when the difference n’ - n is sufficiently large. We
only discuss the last entry of the table as an example.

Let F = Fo = Q(~5529). In this case

The last line follows from the fact that w2 = (1 + T)9 - 1 is contained in the ideal
I = (T 2- 3, 9). Stabilization of the groups Cn occurs at level n = 2. We have
that Cn = C2 for n  2.

By Corollary 2.6 the class groups An are dual to C[w,,]. It is easy to see

that

The kemels of the maps jn,n’ : An ~ An, are dual to (C/Nn,n’C)[03C9n]. For all
n’  n + 2, the maps jn,n’ are zero. For n  1 the maps jn,n+1 have kemels

isomorphic to Z/3Z x Z/3Z. Finally, jo,l is the zero map.
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