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1. The Taniyama-Weil conjecture.
In this paper we sketch the proof of the Taniyama-Weil conjecture for semi-stable elliptic curves
over Q obtained by Andrew Wiles (completed by Richard Taylor and Andrew Wiles). We often
omit certain details hoping to present the essential lines of the proof in a clear way. We refer the
interested reader to the original papers [8, 9] and to [1] for the details. See also [3, 5, 7]. I thank
Bas Edixhoven for his help with the preparation of this paper. In this first section we explain what
the Taniyama-Weil conjecture says about elliptic curves that are defined over the rational number
field Q.

Let F be an elliptic curve over Q. Such a curve can be embedded as a smooth cubic curve in
the projective plane P? by means of a so-called Weierstrass equation with coefficients a; € Q:

Y2+ a1 XY 4 a3Y = X3 + a4, X2 + as X + as.

The point at infinity 0 = (0 : 1 : 0) is the neutral element of the group law on E. One usually

defines
b2 = CL% + 4a2,

by = aja3 + 2a4,

bg = a% + 4ag,

bg = a%as + 4asag — ara3aq + azag — ai,

A = 9bybybg — b3bg — 8b3 — 27b2.
The fact that F is smooth is reflected by the fact that the discriminant A does not vanish. One
can always find a “minimal” Weierstrass equation, i.e., an equation with a; € Z for which |A| is

minimal. This minimal discriminant is called the discriminant A(E) of E. A prime number p is
called “a prime of good reduction” if the minimal equation modulo p describes again a smooth cubic
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curve. A prime is called “a prime of bad reduction” if the minimal equation modulo p describes a
singular curve. The bad primes are precisely the prime divisors of A(E).

The curve E modulo a bad prime p possesses a unique singular point with coordinates in F,.
One can always make a linear substitution so that the singular point becomes (0,0) modulo all
bad primes p. This does not change the discriminant of the equation and implies that a3, a4,a6 =
0 (mod p) for all bad p. The slopes of the tangent lines to the curve at the singular point (0,0) are
then the zeroes of the polynomal X? + a; X — a3 modulo p.

We define the coefficients a(p) € Z associated to E as follows:

p+1—a(p) =#E(F,), when p is good;
1+ a(p) = #{solutions in F,, of X2 + a1 X — ay = 0}, when p is bad;

Then the L-series of F is defined by

1 1
L(E,s)= ][ — — |1 —  s€C,Res>3/2
»good L @@ +p p7 S 1—alp)p

We define coefficients a(n) for every n > 1 by expanding L(E, s) as a Dirichlet series

L(E,s)=)Y “T(::) s€C,Res > 3/2.
n=1

The elliptic curve F is called semi-stable at a prime p if either p is a prime of good reduction, or
if p is bad and the two tangent lines at the singular point (0,0) are distinct. This means that the
discriminant by of the polynomial X2+ a; X — a3 is not zero mod p and that a(p) = £1. The curve
F is called semi-stable, if it is semi-stable at all primes p.

The conductor N of an elliptic curve is a positive integer that captures the reduction behaviour

of E. We have
N = Hp‘sp.
P

The exponent §, is zero for all good primes p. For bad primes of semi-stable reduction J, = 1. For
the other bad primes d, > 2. For semi-stable curves E the conductor N of F is simply the product
of the bad primes.

Conjecture (Taniyama-Weil conjecture) The Fourier series

f(r) = Z a(n)e?™inT, Im7 > 0,

n=1

satisfies

f (Z:i;) = (et +d)*f(7) for every ((z Z) € To(N).

Here the subgroup T'g(N) of SLo(Z) is defined by

{((Cl Z) € SLy(Z) : N divides c}.
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Moreover, for every (a b) € SLy(Z), the function T +— (ct + d)72f (‘”"'b) admits a Fourier

cd ct+d
expansion in positive powers of e2™7/N .

27TniT

Another way to phrase this, is to say that f(7) = > 7, a(n)e is a modular form of weight 2
for the group I'g(N). It is then automatically a cusp form and a normalized eigenform for the
Hecke algebra acting on the vector space of cusp forms of weight 2 for T'y(V).

One of the motivations for believing the Taniyama-Weil conjecture is the following. Let N be
the smallest integer N such that f is a modular form of weight 2 for the group I'g(N). Then the
involution

wy = (_ON é) € SLy(R)

normalizes T'o(N). It acts on the space of cusp forms and commutes with the action of the Hecke
algebra. Therefore wx(f) = £f. This implies that the L-function can be extended holomorphically
to all of C and satisfies the functional equation

A(E,s) = FN'*A(E,2 — s).

Here A(E,s) = (2m)~*T'(s)L(E, s) is the usual modification of the L-function.

Conversely, André Weil showed in the 1967 that, if for sufficiently many Dirichlet charac-
ters x the “twisted” L-series > .- ; x(n)a(n)/n® admit functional equations of this type, then the
Taniyama-Weil conjecture must be true. It is widely believed that such L-functions admit holo-
morphic extensions to C. Indeed, the celebrated Birch-Swinnerton-Dyer conjecture predicts what
the value of L(E,s) in s = 1 should be. Since s = 1 is not in the domain of convergence of the
series > -, a(n)/n®, the Birch-Swinnerton-Dyer conjecture presupposes that the L-series can be
continued analytically to s = 1.

For future purposes we reformulate the Taniyama-Weil conjecture somewhat.
The coefficients a(p) can also be recovered as follows. Let [ be a prime. For every n let

pepe] : Gq — Aut(E["])) = GLy(Z/1"Z)

be the representation given by the natural action of Gg on the group E[I"] of [™-torsion points.
Taking the projective limit we obtain the [-adic representation

PE, GQ — Aut(Tal(E)) = GLZ(Zl)

on the Tate module Ta;(E) = 1('1111 E[i™], which is a module of rank 2 over the ring Z; of [-adic

integers. For every prime of good reduction p # [, any Frobenius element ¢, € Gq, acts on the
Tate module Ta;(F) via a 2 x 2 [-adic matrix with characteristic polynomial equal to

X? —a(p)X +p.

For every positive integer N, the Hecke algebra T(N) is the Z-algebra generated by the Hecke
operators acting on the space of cusp forms of weight 2 for the modular group I'o(N). More
precisely, it is the Z-algebra generated by the Hecke operators T}, for all p not dividing N. The
ring T(N) is finite, free and reduced over Z. Another way to say that the Fourier series f(7) is a
normalized eigenform for the Hecke algebra is to say that the map

T(N) —Z
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induced by T, — a(p) is a ring homomorphism.
Let A be a Z;-algebra endowed with the [-adic toplogy. We say that a continuous representation

is modular of level N if there is a ring homomorphism
g: T(N) — A

such that for almost all primes p and any Frobenius element ¢, € Gq, the characteristic polynomial
of p(¢,) acting on Ta;(E) is given by

X? - f(Tp)X +p.
To prove the Taniyama-Weil conjecture for semi-stable curves, it suffices to show the following;:

Theorem 1.1. Let E be a semi-stable elliptic curve over Q of conductor N, then for some prime |
for which the I[-torsion points E[l] form an irreducible Galois module, the representation on the
Tate module Ta,(E)

PE,: GQ — GLQ(Z[)

is modular of level N.

Indeed, by Cebotarev’s density theorem and the irreducibility condition the representation associ-
ated to the modular form f is isomorphic to pg,;. See [2]. Since f(T,) € Z for almost all p, the
abelian variety A; associated to f is an elliptic curve over Q. By Faltings’s isogeny theorem Ag
is isogenous to F. In this particular case this already follows from an older result of Serre’s. This
implies that the coefficients a(p) agree for all primes p of good reduction. See [2] for the fact that
the same is true for the bad primes.

2. Lifing modular representations.

In this section we explain how the Taniyama-Weil conjecture follows from a certain “lifting” result
proved by Wiles. Let [ be an odd prime. By € : Gq — Z; we denote the cyclotomic character:
o(¢) =¢@ forall o € Gq and for every ["-th root of unity (.

Definition. Let A be a complete local Noetherian Z;-algebra. A continuous representation
p:Gq — GLy(A)

is called semi-stable if its restriction to a decomposition group Gj at [ is either ordinary or flat. Here
p is called ordinary if G; acts via a subgroup of GL2(A) conjugate to (8 ’{) wheree : Gq — Z; — A”
is the cyclotomic character. The representation p : G, = A* is called flat if for every finite quotient
A’ of A, there exists a finite flat group scheme M over Z; such that M(Q;) is a free A’-module of
rank 2 with the action of G; induced by p.

Note that the conditions only depend on the decomposition group G, where [ is the char-
acteristic of the residue field of A. The fundamental examples of semi-stable representations are
provided by the representations

pupe] : Gq — Aut(E[I"]) = GLy(Z/I"Z)

and
PE, : GQ — Aut(Tal(E)) = GLZ(Zl)

associated to a semi-stable elliptic curve E over Q. This follows from the properties of the curve
FE over the [-adic numbers, in particular from Tate’s theory of [-adic uniformization. Wiles proves
a “lifting” result. In the next sections we will sketch his proof. In this section we explain how the
Taniyama-Weil conjecture follows from it.



Theorem 2.1. (A .Wiles) Let | be an odd prime and let
p:Gq — GL2(Fy)

be a continuous irreducible representation which satisfies:
— det(p) = € (mod 1),
— p is semi-stable,
— For all primes p # 1, the image p(I;) of the inertia group I, is contained in a subgroup
conjugate to ((1] 1),
— p is modular.
Then for every complete local Noetherian ring A with residue field F;, any continuous representation

p for which the triangle
Gq & GLy(4)

7\ l
QLo (F))

is commutative and satisfies
- det(p) =&
— p is semi-stable,
— There is a finite set S, such that for all primes p # | and not in S, we have: p(Ip) is

contained in a subgroup conjugate to ((1) ’{) and if p is unramified at p, so is p.

is modular.

To deduce the Taniyama-Weil conjecture for semi-stable curves from Theorem 2.1, Wiles proceeds
as follows. Let E be a semi-stable elliptic curve. For any prime [, the representation on the I-
torsion points E[l] is semi-stable. One rarely knows whether this representation is modular. In two
instances one knows this: if [ = 2 this follows from the work of Hecke. In this case one observes that
AutE[2] = S5 — GL3(C) and one knows that the L-series associated to the resulting representation

5:Gq — GLy(C)

is the L-series of a modular form of weight 1. This representation was, in fact, Wiles’s starting point
in 1986. However, he encountered several technical difficulties in his attempts to apply Iwasawa
theory to the lifting problem. Indeed, many of the arguments in Wiles’s eventual proof do not
apply when [ = 2.

The other situation where one knows that the representation on E[l] is modular is the case [ = 3.
In this case it so happens that the reduction homomorphism

GLa(Z[v-2]) — GLx(F3)
determined by v/—2 + 1, admits a section s and in this way one obtains a representation
p:Gq — GLy(F3) =5 GLy(Z[V-2]) C GLy(C).
Moreover —and this is essential—, in this case the group GLy(F'3) has order 48 and is solvable. This
allowed R. Langlands and J. Tunnell in the 1970’s to show that the representation p is modular.

Their methods are based on analytic techniques. The proof makes use of the Selberg Trace Formula.
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The result is that there exists a modular form g of weight 1 whose L-series is the Artin L-series
associated to the representation s o p.
Multiplying g by the ¥-series

0o
Z eZwi(n2+nm+m2) — 146 Z b(k)e27rik7'
n,meZ k=1

we obtain a cusp form ¢’ of weight 2 whose coefficients are congruent modulo 3 to the coefficients
of g. The form g may have a high level; that is, it may only be a modular form with respect to a
relatively small modular group.

For the action of Gq on E[3] there are two possibilities: either the image of Gq is all of
GLy(F3), or it is contained in a subgroup conjugate to (3 :) In the first case Theorem 2.1 implies
that E is modular. There exists a modular form f so that the representation p¢ 3 associated to f is
isomorphic to pg 3. To ensure that f is actually a modular form with respect to the group I'y(N),
one invokes the “lowering the level” results of Carayol that imply that f actually has level equal to
the conductor N of E. See [2] for more details. This completes the proof when E[3] is an irreducible
G q-module.

In the second case we consider E[5]. Again the image of Gq in GLy(F'5) is either all of GL2 (F'5)
or is contained in a subgroup conjugate to (3 :) In the latter case, £ admits a rational subgroup
of order 15. This gives rise to a rational point on the modular curve X((15). This curve has genus 1
and only four non-cuspidal rational points. They all correspond to elliptic curves over Q that have
additive reduction at 5. Although not semi-stable, it is well known that all these curves are all
modular.

Therefore we may assume that the action of Gq on E[5] is irreducible. The curve X'(5) that
parametrizes elliptic curves E’ over Q for which E’[5] is isomorphic to E[5] as a Galois module, is a
twisted form of the modular cure X (5). This curve has four components, all curves of genus 0. The
component that contains the rational point corresponding to (E, E[5]) is isomorphic to P! over Q.
Therefore it contains infinitely many rational points. Consider the curve X'(5;3) that parametrizes
elliptic curves E' with E'[5] = E[5] and with E[3] = Z/3Z x Z/3Z. An application of Hilbert’s
irreducibility theorem to the covering X'(5;3) — X (5) shows that there are infinitely many elliptic
curves E' over Q that have E'[5] = E[5] and E[3] irreducible. By choosing E’ 5-adically close to
E, we can make sure that E’ is semi-stable.

Now we apply Wiles’s theorem to E'[3]. We conclude that pgr 3 is modular. Therefore so
is ppr 5 and pgi5) = pgps)- Another application of Wiles’ theorem, this time with [ = 5, gives
then that pg s is also modular of some level. Then pg 5 is actually modular of level equal to the
conductor N of E, as required.

It is worth noting on how many “coincidences” the proof appears to depend: the prime [ = 2
could not be used because of several technical reasons. For any prime [ > 5, the group GLy(F;) is
not solvable and results like the theorem of Langlands-Tunnell are lacking. Only [ = 3 could work
in this way. To cirumvent the problems that arise when one tries to prove directly an analogue
of Wiles’s theorem for reducible E[3], Wiles used a second prime /. To make the argument above
work, it was essential that the genus of X (/) is zero, while the genus of the cure X (30) is not zero.
This implies that [ < 5 and [ > 5 respectively. So [ = 5 was the only choice Wiles had ...



3. Deformation rings and Hecke rings.

In this section we study the following situation. We fix a prime [ # 2 and a continuous irreducible
representation

p: GQ — GLz(Fl).

We assume in addition that the determinant of the representation is equal to the cyclotomic char-
acter € (mod [) : Gq — F;. As a consequence the representation p is absolutely irreducible. We
assume that

— the representation p is semi-stable.

— for every prime p # [, the image p(I,) is contained in a subgroup of GLy(F;) conjugate to

(6 1)

If E is a semi-stable elliptic curve over Q for which E[l] is an irreducible Galois module, the
representation
Pry: Gq — Aut(E[l)

of Gq enjoys these properties. Wiles views the representation pg; — Aut(Ta,(E)) as a deforma-
tion of p. Here a deformation of p is a continuous representation p

Gq & GLy(4)
AV
GLy(Fy)

where A is a complete local Noetherian Z;-algebra with residue field F; which is endowed with the
[-adic topology. Moreover, modulo the maximal ideal of A, the representation p is conjugate to p.

If the representation p is the representation of Gq acting on the I-torsion points E[I] of a semi-
stable elliptic curve E over Q, then the basic examples of such deformations are the representations

on the [™-torsion points of E. The representation on the l-adic Tate-module
PE,L: GQ — GLQ(Zl)

is another example of a deformation of p. If p is modular, i.e., if the traces of the p(yp) are the
coefficients of some eigenform f, then the [-adic respresentation associated to the modular form pg;
is yet another example of a deformation of p. All these are deformations of a rather special kind:
the representations are at most ramified at a finite set of primes of bad reduction, the local Galois
groups () act in a rather restricted way, the determinant is given by the cyclotomic character ¢ ...
etc.

The strategy of the proof is to study all deformations that satisfy these kind of properties
and show that they are all modular. This implies then in particular that the deformation pg;
is modular. In some sense, this follows from a counting argument: one exhibits many modular
deformations of p and then shows that their number is equal to the number of all deformations.

We need to be more precise about the kind of deformations we will be studying. Roughly
speaking, the more restrictive the type of deformations we consider, the more control we have
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on them and the easier it becomes to study the collection of deformations. On the other hand,
the restrictions should not be so severe that the deformation pg; does not satisfy them and since
eventually the representations are supposed to be modular, it seems reasonable to insist that at
least the respresentations associated to the candidate modular forms also satisfy the restrictions.

Rather surprisingly, Wiles drops the first requirement : he starts off by studying deformations
of such a severely restricted type, that the representation on the [-adic Tate module of the elliptic
curve F may not even meet all the requirements. Once these restricted, so-called minimal, de-
formations have been understood, Wiles relaxes the conditions of his deformation problems. This
leads to the following notion.

Definition. Let S be a finite set of primes. An S-deformation of p is a continuous representation

where A is a complete local Noetherian Z;-algebra with residue field F;. It satisfies the following
conditions.

— The reduction of p modulo the maximal ideal of A is p.
— The determinant of p is the cyclotomic character € : Gq — Z; — A*.
— The restriction of p to G; is semi-stable. In other words G acts via a subgroup conjugate to

(8 ’1‘) C GLs(A)

or p|g, is flat, which means that for every finite quotient A" of A there is a finite flat group
scheme M over Z; such that M (Q;) is a free A’-module of rank 2 with G;-action via p.

At the primes p € S that are different from | we do not put any restrictions on p at all. At the
primes p € S we insist that the ramification is “as limited as is reasonable”:

— If p=1 and p is flat, then p is flat.
— Ifp #1 and p is unramified at p , then p is unramified at p.

— Ifp #1 and p is ramified at p , then p(I,) is contained in a subgroup conjugate to ((1) ’1‘)

For example, let E be a semi-stable elliptic curve over Q and let S be the set of primes of bad
reduction of E. Then the representation

PE, : GQ — GLz(Zl)

is an S-deformation of the action of Gq on E[l].
For every set S there exists a universal S-representation in the following sense.

Theorem 3.1. (B. Mazur, R. Ramakrishna) There exists a complete local Noetherian Z;-algebra
Rg with residue field F; together with an S-deformation

pléniv : GQ — GLz(Rs)
which is universal in the sense that for every S-deformation

with A a complete local Noetherian Z;-algebra with residue field ¥y, there is a unique Z;-algebra
homomorphism g : Rs — A inducing a representation conjugate to p, i.e. p ~ g - pd™.
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These universal rings are, in general, poorly understood. One can compute their “cotangent spaces”
mg/(l,m%) and hence estimate their Krull dimensions. Here mg denotes the maximal ideal of the
universal deformation ring Rs. We have

Hom(ms/ (1, m3), Fy) = HE(Gq, (7).

Here sl5(p) denotes the 3-dimensional F;-vector space of 2 x 2-matrices of trace 0. The Galois group
Gq acts on sly(p) via p by conjugation. The Galois cohomology group Hi(Gq,sl2(p)) is a finite
dimensional F;-vector space and consists of 1-cocycles with restricted local behaviour, reflecting
the conditions that the S-deformations of p must satisfy, modulo certain coboundaries. Given the
set S, the cohomology group can be computed explicitly.

From now on we assume in addition that our fixed semi-stable representation

p: GQ — GL2(FZ)
is modular. This means that there exists a normalized eigenform f(1) = Y oo, a(n)e* "7 such
that the characteristic polynomial of the image p(¢,) of the Frobenius element ¢, € Gq is, for
almost all primes p equal to
X2 —a(p)X +p.

The representation p is ramified at only finitely many primes. Let M denote the product of those
primes except for [ when p is flat at [. Difficult results of Carayol, Coleman, Diamond, Edixhoven,
Gross, Ribet, Taylor et. al. imply that one can “lower the level” of the form f ala Ribet [2]. More
precisely, there exists a modular form f of minimal level M whose Fourier coefficients are congruent
to the ones of f modulo /. From now on we will assume that the modular form is of this minimal
level M. For simplicity we also assume that that the coefficients of f are in Z. This assumption
does not change the discussion in an essential way. Let

pf,l : GQ — GLQ(Z[)

denote the [-adic representation associated to f.

The representation p;; is a deformation of p. It is a deformation of the most restrictive
kind: it is an S-deformation with S = (). This follows from the study of these representations
by mathematicians like Shimura, Carayol, Langlands, Deligne-Rapoport, .... By the universal
property of the deformation rings there exists therefore a homomorphism of rings

h: R@ — 7
so that pg; = h - p‘dniv. The modular form f is, in general, not unique. Even if we restrict our
attention to modular forms of minimal level M, there may be several modular forms of level M
whose Fourier coefficients are congruent modulo [ to the traces of the matrices p(yp,). For every
such modular form g there is a homomorphism of rings T(M) — O,. Here O, denotes the Z;-
algebra generated by the coefficients of g. The kernels of all these homomorphisms are contained
in the same maximal ideal m which is the kernel of the homomorphism

(M) -2 — F,.
We let the Hecke ring Ty denote the completion of T(M) with respect to m. It is a local complete
Z;-algebra contained in [ 4 Og- The irreducible components of the spectrum of Ty are of the form

Spec(O) where O is a subring of the ring of integers in a finite extension of Q;. The components
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are glued at their closed points. Each component corresponds to a modular form of level M whose
Fourier coefficients are congruent to those of f modulo [.
Taking all I-adic representations p, together we obtain a representation

p:Gq — Ty

which, by a result of Carayol, is again an S-deformation with S = (. It has the property that the
characteristic polynomial of p(¢) is equal to X? — T, X + p for almost all primes p. Here we have
written 7, for the image of the Hecke operator T}, in T.

By the universal property of Ry we obtain therefore a commutative diagram

Ry — Ty

N
Z;

If S # (), we can construct Hecke rings T in a similar way: the level N is the lem of the minimal
level M and the squares of the primes in S except for the [-part. The prime [ divides N at most
once, namely when [ € S or when p is not flat at /. The modular form f of minimal level gives rise
to a homomorphism of rings which we denote by f as well

f:T(N) —T(M) —Z
Let m denote the kernel of the homomorphism
T(N) -5z — P

and let Tg denote the completion of T(N) with respect to the maximal ideal m. There is a
representation
p:Gq — Tg

which is an S-deformation of p. It has the property that the characteristic polynomial of p(p,) is
equal to X2 — T, X + p for almost all primes p.

The proofs of these facts are difficult and generalize certain results of B. Mazur. The rings
T are finite free Z;-algebras. To prove the existence of the representations p, it is important that
they are also Gorenstein rings.

For every set S we have a commutative diagram of ring homomorphisms

RS — TS

N
Z,

Theorem 3.2. (A. Wiles) For every S, the homomorphism
Rs — Tg
is an isomorphism.
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The proof of this result will be discussed in the next sections. It implies that Ts plays the role of
the universal deformation ring. In particular, this implies that for every S-deformation p: Gq —
GL5(A) there is a unique homomorphism g : Ts — A inducing p. In other words the characteristic
polynomials of p(p,) are, for almost all primes p equal to X2 — g(T},) X + p.

Therefore Theorem 1.1 and the Taniyama-Weil conjecture for semi-stable elliptic curves follow.

4. The minimal deformation problem.

In this section we show how to prove Theorem 3.2 for S = (). The proof of this result is given in the
paper by Taylor and Wiles [8] and in the appendix to that paper, which contains a simplification
due to Faltings. We remark that for the proof one should actually consider a somewhat more
general situation. Wiles only assumes that p is a GLy(k) representation for some finite extension k
of F; and considers GLy(A) representions where A is a complete local Noetherian O-algebra with
residue field k. Here O is the ring of integers of a finite extension of Q;. We ignore this and simply
work with F; and with Z;-algebras.

If » happens to be the representation given by the action of Gq on the I-torsion points of
a semi-stable elliptic curve E, then the level M of the modular form f of section 3 divides the
conductor N of E and may actually be a proper divisor of N. Indeed, if p is a prime dividor of the
conductor N which has the property that [ divides the p-adic valuation of the discriminant A(F),
then E[l] extends to a finite flat group scheme over Z,,. When p # [, this means that p is unramified
at p. In any case, such primes p do not divide the level M. Therefore the representation pg ; is not
an S-deformation with S = () in this case.

It is not very difficult to see that the homomorphism of section 3

R@—>T@

is a surjection. It follows from the fact that the Hecke operators that generate Ty occur as traces.
The problem is to show that the map is an isomorphism. We know that the Hecke ring Ty is
“small”: it is a finite free Z;-algebra. On the other hand, we know very little about the deformation
ring Ry. We tried our best to make it small by putting constraints on the type of deformations we
were considering, but we only know it is a Noetherian Z;-algebra whose Krull dimension we can
estimate by means of a Galois cohomology group:

dimKrull R@ S dimFl H&(GQ,ﬁ[Q (ﬁ)) + 1.

The important idea is to consider suitable S-deformations with S # () as well. Let S be a finite
set of primes p = 1 (mod /) at which the representation p is unramified. Moreover, assume that
the Frobenius automorphism ¢, acts via a 2 x 2-matrix p(y,) with distinct eigenvalues. Note that
these kind of S-deformations of p do not occur as the deformations pg ; : Gq — Ta;(E) of some
semi-stable elliptic curve E.

Because of these conditions on the primes p, the decomposition groups D, act via matrices in

univ

a subgroup of GL2(F;) conjugate to ((’; S) This implies that p§™" restricted to the inertia group
I, is of the form

x O

0 x°!

where x is a tame character of the inertia group I, of l-power order. The universal deformation
p8V(I,) induces therefore a homomorphism [I, I, — Rs — GL2(Rs) which factors over the
maximal quotient of /-power order Ag of Hp I,,. This gives rise to a Z;-algebra homomorphism
ZZ[A 5] — Rg.
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There is a commutative diagram of surjective homomorphisms

R5—>T5

Lo

Rq) — T@

The homomorphism Z;[Ag] — Rg turns, via this homomorphism, the ring Ts into an algebra
over the complete local ring Z;[Ag]. The Z;[Ag]-algebra structure of the Hecke ring T is related
to the action of the so-called “diamond” operators. Let I denote the augmentation ideal of Z;[Ag].
The vertical maps induce isomorphisms Rs/IRgs = Ry and Tg/ITg = T}.

Because of the minimality of the deformation problem associated to Ry, one can do the fol-
lowing:
Let r = dim Hy(Gq, Hom(sly(p), 11)). For every power [™ there exist a set S of r primes p congruent
to 1 (mod [™) so that both

~ dimH}(Gq,sl2(p)) < r; this implies that there exists a surjective Z;-algebra homomor-
phism
Zl[[Xla s 7X'r‘]] — Rs.

— the ring T is a free module over the ring of diamond operators Z;[Ag].

In other words, the ring Rg has bounded Krull dimension while the ring T, being free over Z;[Ag],
contains a large algebra. Note that, since Ag admits (Z/I"Z)" as a quotient, there is a surjective
map

Zl[AS] —» Zl[[Sl,. .. ’ST]]/((SI + ]_)ln —-1,..., (Sr 4 1)l" - 1)

In this notation, the augmentation ideal I of Z;[Ag] is just the image of (S1, S2,...,Sy).

The proof depends on some Galois cohomological computations and a clever application of
Cebotarev’s density theorem. It also depends on an argument of E. de Shalit. See [8] and [1] for
the details.

We reduce everything modulo /: let R = Rg/IRs and T = Tg/ITg. The following lemma is
due to Karl Rubin [6] and replaces the construction in [§].

Lemma. Let F;[[X1,...,X,]] & R — T be surjective morphisms of F[[S1,...,S,]]-algebras.
Suppose that d = dimg,T/(S1,...,S,)T is finite. If, for some k > r"~d", there is an injective
F,[[S1,..., Sr]]-algebra morphism

Fi[[S1,- - S/ (ST, .., SF) = T,
then the morphism R — T' induces an isomorphism
R/(S1,...,8: ) R=T/(S1,...,58:)T
of complete intersection algebras.

We can apply the lemma by taking p = 1 (mod ") for sufficiently large n. It tells us that Ry/IRy
and Ty /ITy are isomorphic complete intersection rings. An easy application of Nakayama’s Lemma
implies then that the homomorphism

Ry —» Ty

is also an isomorphism of complete intersection algebras.
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5. From the minimal deformation back to the elliptic curve.

In the previous section we have shown that when S = (), all S-deformations of the given modular
representation
p:Gg — GLy(Fy)

are modular a well. This result suffices to prove the Taniyama-Weil conjecture for semi-stable
elliptic curves that have square free discriminant and irreducible E[3]. In that case, all primes that
divide the conductor N of E are also ramified in the representation on the 3-torsion points. In
general, however, the representation

PE, : GQ — GLz(Zl)

on the Tate module may be ramified at primes p for which the representation p is not ramified.
Therefore it is necessary to prove Theorem 3.2 for all S and not only for the minimal S-deformations
with S = 0.

Incidentally, this phenomenon is essential in Frey’s application of elliptic curves to the proof
of Fermat’s Last Theorem: consider the representation on the [-torsion points of the Frey curve F
associated to a hypothetical solution of the Fermat equation a! +b' = ¢!. In this case the conductor
N of E is equal to the product of the prime divisors of abc, but the representation p is only ramified
at 2 and the minimum level of a deformation of p is 2.

For every set S there is, by Mazur’s result, a universal deformation ring Rg which is a complete
Noetherian Z;-algebra with residue field F;. Since the modular representation

p: GQ — GLQ(TS)
is an S-deformation, there is a unique homomorphism
Rs — Tg.

This homomorphism is surjective and by the universal properties there are commutative diagrams
with surjective ring homomorphisms

Rs —» Ts

! !

To prove Theorem 1.2, we must show that the homomorphism Rgs — Tg is, in fact an isomor-
phism for every S. The proof is based on a counting argument. We know that Ry — Ty is an
isomorphism. Starting from this isomorphism, we “measure” the difference in size between Rs and
Ry and between T's and Ty respectively. In order to make this precise, we introduce two invariants
of local “pointed” Z;-algebras.

Definition. Let A be a finite free complete local Noetherian Z;-algebra provided with a Z;-point,
i.e. a section 7 of the canonical morphism Z; — A:

m:A— 7.
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Let I = ker(w). Then the cotangent space of A is defined to be
®(A) =1/I%
The second invariant is the “congruence ideal” n(A) C Z;:

n(A) = 7(Anna(1)).

Example 1. Let A = {(z,y) € Z; X Z; : x =y (mod [V)} with 7 : A — Z; given by 7(z,y) = =.
So, the spectrum of A consists of two copies of Z; that are glued to the order IV at their closed
points. We have A = Z;[X]/(X (X —IV)) with 7(X) = 0 and I is the ideal generated by X. Then
I/1? is I modulo (X2, X(X —1V)) = (X2,IVX). Tt follows that I/1? = Z/INZ. On the other
hand, Ann(I) is equal to the ideal generated by X — IV, so that n(4) = m(Ann(I)) = IV Z;.

Example 2. Let A = {(z,y,2) € Z; X Z; X Z; : z =y = z (mod [)} with 7 : A — Z,; given by
7(z,y,2) = z. We have A = Z;[X,Y]/(X? —IX,Y? —1Y,XY) with 7(X) =0 and I = (X,Y).
Then I/I? = Z/IZ x Z/IZ. On the other hand, Ann(I) is the ideal generated by X +Y —1, so that
n(A) = m(Ann(I)) = Z;.

It is easy to see that the invariant ®(A) is at least as large as Z; /n(A). Wiles found the following
surprising equivalent condition for the equality of these invariants. The present formulation is
slightly stronger than Wiles’s original statement and is due to H.W. Lenstra [4].

Theorem 5.1. Let A be a complete local Noetherian pointed Z;-algebra. Suppose that n(A) # 0.
Then

#O(A) = #7Z:/n(A)

and we have equality if and only if A is a complete intersection, i.e. if and only if there is an
isomorphism of pointed Z;-algebras

A= Zl[[X17X27"' 7X7‘]]/(f15f27"- 7f7‘)

for some power series f; € Z;[[X1,Xo,...,X,]] with f;(X) = 0. Here the “point” is the ring
homomorphism 7 : Z;[[X1, X2, ..., X,]] — Z; given by n(X;) = 0 for each i.

It is not difficult to derive the following criterion from this.

Criterion. Suppose that
p:R—T

is a surjection of pointed Z;-algebras and suppose that n(T) # 0 If
#O(R) > #7,/n(T)
then ¢ is an isomorphism and both R and T are complete intersections.
By the results of the previous section, we know that
Ry — Ty

N
Z;
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is an isomorphism of complete intersections. Moreover, this is an isomorphism of pointed Z;-
algebras via the morphism provided by the modular form f of minimal level. Therefore we have
that #®(Ry) = #Z;/n(Ty).

In order to apply the criterion one computes the difference between ®(Rg) and ®(Ry) and
between 7n(Tg) and n(Ty). The difference between the ®-invariants can be computed by means of
the “inflation-restriction” cohomology sequence relating Hi and Ho} One finds

<Hcp

PES

where ¢, is the order of a Galois cohomology group over the residue field F,. For example, for
primes p # [ at which p is unramified, one finds

= #H"(Gr,, Hom(slz(p; (mod p*)), m)),
= (pay /By — 1)(p — 1) (0Bp/p — 1),
= (p—-1)((p+1)* - ap)?).

Here k is very large and «,, and 3, are the zeroes of the characteristic polynomial X2 —a(p)X +p of
Frobenius ¢, acting on the l-adic representation of p; associated to the modular form f. Since ¢,
acts with eigenvalues o/, 1 and f,/a; on the Z;-module slz(p; ;) of rank 3, the result follows.
The difference between the n-invariants can also be estimated. Roughly speaking, the quotient
of #Z;/n(Ts) by #Z;/n(Ty) measures the order of glueing between the irreducible components of
Spec(Tp) and the additional irreducible components of Spec(Ts). Since the components correspond
to modular forms, this corresponds to congruences between the “old” modular forms that come
with Ty and the “new” ones that come with Tg. To estimate #Z;/n(Ts)/#Z;/n(Tp) one must
show that there are many congruences modulo high powers of [. This kind of estimates had already
been obtained by Thara and Ribet. To do the computations one uses the fact that the ring Tg is
known to be a Gorenstein ring.
The result is ... the same:
#Zy / n(T > H cp-
#Z,/n(Ty) Cs

Therefore #®(Rs) < #Z;/n(Ts) and by Criterion 4.3 we obtain an isomorphism

Rs — Tg

N
Z;

as required.

15



Bibliography

[1]
2]
(3]
[4]
[5]

Darmon, H., Diamond, F. and Taylor, R.: Fermat’s Last Theorem, in Current developments in Math,
1995, International Press, Cambridge MA 1995

Edixhoven, B.: Le réle de la conjecture de Serre dans la démonstration du théoréme de Fermat, Gazette
de Mathématiques ce volume.

Faltings, G.: The Proof of Fermat’s Last Theorem by R. Taylor and A. Wiles, Notices of the AMS 42
(1995). 743-746.

Lenstra, H-W.: Complete intersections and Gorenstein rings, in Conference on Elliptic Curves, Hong-
Kong 1993, International Press, Cambridge MA 1995.

Oesterlé, J.: Travaux de Wiles (et Taylor . ..), partie II, in Sém. Bourbaki, 804, 1994-1995, Paris juin
1995.

Rubin, K.: private communication.

Serre, J.-P.: Travaux de Wiles (et Taylor ...), partie I, in Sém. Bourbaki, 803, 1994-1995, Paris juin
1995.

Taylor, R. and Wiles, A.: Ring theoretic properties of certain Hecke rings, Annals of Math. 141 (1995),
553-572.

Wiles, A.: Modular elliptic curves and Fermat’s Last Theorem, Annals of Math. 141 (1995), 443-551.

16



