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GRH AND FINITE FLAT GROUP SCHEMES OVER Z

LASSINA DEMBÉLÉ AND RENÉ SCHOOF

Abstract. Since simple commutative finite flat group schemes G over Z are
killed by a prime number p, their order is a power of p. Tate asked whether

a simple group scheme G is necessarily equal to Z/pZ or µp. This has been
proved for primes p ≤ 19. Under assumption of the Generalized Riemann
Hypothesis we extend this result to primes p ≤ 37.

1. Introduction

A finite flat commutative group scheme G over Z is simple if and only if the set
of its points G(Q) is an irreducible Galois module. Therefore G is annihilated by
some prime number p and G is a p-group scheme in the sense that its order is a
power of p. Group schemes of prime order p are simple. By a theorem of Oort and
Tate [14], the only ones over Z are the constant group scheme Z/pZ and its Cartier
dual µp. Tate asked the following question [13].

Question 1.1. Let p be a prime number. Are Z/pZ and µp the only simple p-group
schemes defined over Z?

Simple p-group schemes over Z cannot have order p2. Indeed, suppose that such
a group scheme G existed. Let GD be the Cartier dual of G, and G(Q) and GD(Q)
their respective Q-points. Then, the determinant of the Galois action on G(Q)
would be a power of the mod p cyclotomic character ω. Over the ring Zp (and up to
an unramified twist), the group scheme G would be either a (p, p)-group scheme in
the sense of Raynaud [7], in which case the Galois action on the determinant is via ω,
or an extension of group schemes isomorphic to Z/pZ or µp. However, the Galois

action on G(Q) and on GD(Q) cannot be unramified at every prime. Therefore,
over Zp the group scheme G is an extension of Z/pZ by µp, so that also in this case
the action on the determinant would be via ω. Since ω is an odd character, Khare’s
proof of the level 1 Serre conjecture implies then that G(Q) must be reducible [4].
Therefore G cannot simple.

It is not known whether simple p-group schemes over Z can have order pk for
some k ≥ 3. However, for small primes p this cannot happen. Abrashkin [1]
and Fontaine [3] both showed that Question 1.1 has an affirmative answer for
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primes p ≤ 17. In [2] this result is extended to p = 19. In this paper we prove the
following theorem under the Generalized Riemann Hypothesis (GRH).

Theorem 1.2 (GRH). For every prime p ≤ 37 the only simple finite flat commuta-
tive group schemes over Z of p-power order are Z/pZ and µp.

The main idea in the proof of Theorem 1.2 is also at the heart of the proof of
the non-existence of abelian varieties with everywhere good reduction over Q by
Abrashkin and Fontaine. It is the fact that for p a prime, and G a p-group scheme
over Z killed by p, the field F generated by the points of G is a finite Galois extension
of Q which has very little ramification. More precisely, F has the following two
properties, the second of which follows from works of Abrashkin [1] and Fontaine [3].

(A) F is unramified outside p and ∞;
(B) uFp/Qp

≤ 1 + 1
p−1 for all primes p of F lying over p.

Here, the invariant uFp/Qp
, which only depends on the structure of the group scheme

G over Zp, is defined as follows. Let p be a prime of F lying over p, and let Fp

denote the completion of F at p. Let OFp
be the ring of integers of Fp, and dp the

different of Fp over Qp. Then, by Kummer, we can write OFp
= Zp[α], for some

α ∈ OFp
. We define

uFp/Qp
= ip + v(dp), where ip = max

{
v(σ(α)− α) : σ ∈ Gal(Fp/Qp), σ 6= 1

}
.

The valuation v is normalized by setting v(p) = 1. It follows that both ip and v(dp)
are in 1

ep
Z, where ep is the ramification index of Fp over Qp. Note that the local

root discriminant δFp
of F is equal to pv(dp) for each p. Therefore, by [3, sect. 3.3],

the global root discriminant δF satisfies

δF < p1+ 1
p−1 .

See [2] for a characterization of the invariant uFp/Qp
in terms of the upper numbering

of the higher ramification groups.

The Abrashkin-Fontaine field is the maximal extension Q ⊂ F having the two
properties (A) and (B) above. It contains the cyclotomic field Q(ζp) as well as its
Hilbert class field H. More generally, F does not admit any proper extensions that
are unramified outside p and ∞ and are at most tamely ramified at p. In Section 3,
we prove under the assumption of GRH that for p ≤ 37 the Abrashkin-Fontaine
field is actually equal to H. It follows that for p ≤ 37, the points of a simple finite
flat commutative p-power order group scheme G over Z are defined over the Hilbert
class field H. A little bit of group theory then implies that the points of G are
actually defined over the subfield Q(ζp). The theorems of Oort and Tate [14] then
imply Theorem 1.2. In other words, the group scheme G is isomorphic to Z/pZ
or µp.

For p ≥ 41, bounds on the root discriminant of F are too large for the GRH
Odlyzko bounds to apply. Therefore we do not have any bound on the degree of the
Abrashkin-Fontaine field F . However, for larger p, we expect that F is usually strictly
larger than the Hilbert class field H. This already happens for small values of p.
Indeed, for p = 53, the splitting field H ′ of x8−x7+3x6−3x5+2x4−2x3+5x2+5x+1
is unramified outside 53 and∞. Since it is only tamely ramified at 53, it is contained
in the Abrashkin-Fontaine field for p = 53. However, the Galois group of H ′ over
Q is the non-solvable group PGL2(F7). This implies that H ′ cannot be a subfield
of H.

Similarly, for p = 59 the splitting field H ′′ of x4−x3−7x2 +11x+3 is unramified
outside 59 and ∞. Therefore it is contained in the Abrashkin-Fontaine field F
for p = 59. The Galois group of H ′′ over Q is isomorphic to the symmetric group S4.
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Since the Galois group of the Hilbert class field H of Q(ζ59) is metabelian, and S4

is not, H ′′ is not contained in H.
The Abrashkin-Fontaine field F may not even be a finite extension of Q. Indeed,

the entire Hilbert class field tower of Q(ζp) is contained in F . The smallest prime p
for which we know this tower to be infinite is p = 401. Since the degree 8 subfield
of Q(ζ401) has class number 45, this follows from the following result. The proof is
similar to the proof of [8, Theorem 5.1].

Proposition 1.3. Let p > 2 be a prime. If there exists a divisor d of p − 1 for
which (p− 1)/d is odd and for which the class number of the degree d/2 subfield of
Q(ζp) exceeds 2d+ 5, then the class field tower of Q(ζp) is infinite.

2. The Abrashkin-Fontaine field F

Let p be a prime and let H be the Hilbert class field of Q(ζp). It is contained in
the Abrashkin-Fontaine field F defined in the introduction. The root discriminants
of F and its subfields are smaller than p1+ 1

p−1 . In particular, for p = 2 the root
discriminant of F is < 4. Odlyzko’s discriminant bounds easily imply that F = Q(i)
in this case. For p > 2 we have the following results.

Proposition 2.1. Let p > 2 be prime and let F be the Abrashkin-Fontaine field.
Then

(a) the maximal abelian extension of Q inside F is Q(ζp);
(b) the maximal abelian extension of Q(ζp) inside F is the Hilbert class field H

of Q(ζp).

Proof. (a) By the Kronecker-Weber theorem the maximal abelian extension of Q
that is unramified outside p is contained in a cyclotomic field Q(ζpv ) for some v ≥ 0.
Since uQp(ζpv )/Qp

is equal to v, we must have v = 1.
(b) By class field theory the maximal abelian extension of Q(ζp) inside F is

contained in a ray class field K of conductor πa for some a ≥ 0. Here π denotes
the prime ζp − 1 over p. It splits completely in the Hilbert class field H. Let
p be a prime over π in K and let Kp be the completion of K at p. We have
uQp(ζp)/Qp

= 1 and iQp(ζp)/Qp
= 1

p−1 . It follows from [11, Lemma 2.1] that

uKp/Qp
= 1 + max(0, a

p−1 −
1
p−1 ). Since K ⊂ F , this is at most 1 + 1

p−1 . Therefore

we have a ≤ 2. The proposition now follows from the following lemma. �

Lemma 2.2. Let p be an odd prime and let π denote the prime above p in Q(ζp).
Then the ray class fields of conductor π and π2 are equal to the Hilbert class field H
of Q(ζp).

Proof. Let a ∈ Z be coprime to p. Then the cyclotomic unit ηa = (ζap − 1)/(ζp − 1)
is congruent to a modulo π. Class field theory therefore implies that the ray class
field of conductor π is equal to the Hilbert class field H. To prove that the ray class
field of conductor π2 is also equal to H, we compute ηp−1

a modulo π2. We find

ηp−1
a =

(
ζap − 1

ζp − 1

)p−1

=

(
(1 + π)a − 1

π

)p−1

≡ 1− a− 1

2
π mod π2.

Since we can take a = 2, the lemma follows. �

In the rest of this section we collect some numerical data regarding the primes
p = 23, 29, 31 and 37. The root discriminants of the corresponding Abrashkin-
Fontaine fields are too large for the unconditional Odlyzko bounds to apply. However,
under the Generalized Riemann Hypothesis (GRH), Odlyzko obtained bounds that
still apply. See [5, Tables 1 and 3]. Table 1 contains data that are used in the proofs
in the final section.
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p h δQ(ζp) p1+ 1
p−1 [Hunr : Q] [Hunr : H] [Htame : Q] [Htame : H] [F : Q] [F : H]

23 3 19.94 26.52 120 1 220 3 600 9
29 8 25.71 32.71 400 1 1000 4 4800 21
31 9 27.64 34.76 720 2 1900 7 10000 37
37 37 33.46 40.93 5300 3 42700 32 5684000 4267

Table 1. Odlyzko bounds

We use the following notations:

- p is a prime between 23 and 37.
- h is the class number of the cyclotomic field Q(ζp).
- δQ(ζp) is the root discriminant of Q(ζp).

- the root discriminant bound p1+ 1
p−1 of the Abrashkin-Fontaine field F .

- H is the Hilbert class field of Q(ζp).
- Hunr is the maximal unramified extension of H; and the column [Hunr : Q]

(resp. [Hunr : H]) gives an upper bound on the degree of Hunr (resp. relative
degree of Hunr over H).

- Htame is the maximal tamely ramified extension of H; and the column
[Htame : Q] (resp. [Htame : H]) gives an upper bound on the degree of
Htame (resp. relative degree of Htame over H).

- The column [F : Q] (resp. [F : H]) is an upper bound on the degree of F
(resp. [F : H]).

We note that Hunr has the same root discriminant as H, and that Htame has root
discriminant at most p. All the bounds assume GRH, and were computed using
Odlyzko’s bounds from [5, Table 1]. Only for p = 37, the degrees are outside the
range of this table and we computed the Odlyzko bounds using [5, Table 3]. For
instance, the bound 5684000 was obtained by choosing b = 15.000 and E = 70185.

3. A representation-theoretic result

In this section we fix a prime p and let k denote an algebraic closure of Fp.
Our proof of the main result of this paper depends on a representation theoretic
result. For a finite abelian group G and a character χ : G→ k∗, we let k(χ) denote
the 1-dimensional k-vector space on which G acts through χ. The χ-twist of a
k[G]-module M is the module M ⊗k k(χ).

Proposition 3.1. Let A be a finite abelian group and let ∆ be a finite abelian group
of order prime to p acting linearly on A. Let Q denote the semidirect product Ao∆.
Let V be a finite irreducible k[Q]-module. Then, as a ∆-module, V is isomorphic to
a twist of k[∆/H] for some subgroup H ⊂ ∆.

Proof. Let V be a finite irreducible k[Q]-module and let the action of Q on V be
given by % : Q −→ Aut(V ). Then the p-Sylow subgroup P of A acts trivially on V .
Since P is normal in Q, we may replace Q by Q/P and assume that p does not
divide #Q. Since A is abelian, %|A is a sum of characters. Let ψ : A→ k∗ be one
of those characters and let ∆ψ be the stabilizer of ψ inside ∆ and Hψ = Ao ∆ψ.
Then, by Clifford theory there exists a representation θ : Hψ → k∗, which extends
ψ, such that

% = IndQHψ θ.

Indeed, the proof in [12, §8.2, Proposition 25] not only works when the characteristic
of the coefficient field is zero, but also when it is prime to the order of Q. Since ∆ψ

is the stabilizer of ψ, its action on V commutes with that of A. In fact, since ∆ is
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abelian, the action of ∆ψ on V commutes with that of Q. So, by Schur’s Lemma,
∆ψ acts on V via a character χ0 : ∆ψ → k∗. We extend χ0 to a character of ∆.

Then ∆ψ acts trivially on the twisted module V ⊗ k(χ−1
0 ). Since each character χ of

∆/∆ψ occurs at most once in V and since dimV = [∆ : ∆ψ], it follows that each χ

occurs exactly once, so that, as a ∆-module, V ⊗ k(χ−1
0 ) is isomorphic to k[∆/∆ψ].

This proves the proposition. �

Theorem 3.2. Let p be a prime and let G be a simple finite flat commutative group
scheme over Z of p-power order. If the field generated by the points of G is contained
in the Hilbert class field of Q(ζp), then G ∼= Z/pZ or G ∼= µp.

Proof. Let G be a simple finite flat commutative group scheme over Z of p-power
order, with the property that the field K generated by the points of G is contained
in the Hilbert class field H of Q(ζp). It suffices to show that K is contained in Q(ζp).

Indeed, in that case the group of points G(Q) is an irreducible module over Fp[∆],

where ∆ = Gal(Q(ζp)/Q). Since ∆ is cyclic of order p − 1, the group G(Q) has
order p. It is then a consequence of the Oort-Tate classification of group schemes of
order p that G ∼= Z/pZ or G ∼= µp.

This argument takes care of the primes p for which H is equal to Q(ζp), in other
words the primes p ≤ 19. The following argument works for the primes p > 19. Let
Q be the Galois group of the Hilbert class field H over Q. Put A = Gal(H/Q(ζp))
and ∆ = Gal(Q(ζp)/Q) ∼= (Z/pZ)∗. Since the unique prime over p in Q(ζp) is
principal, it splits completely in H. Therefore, the decomposition group at each
prime of H lying over p is isomorphic to ∆. It follows that Q is a semidirect
product Ao ∆.

Let V be an irreducible constituent of the k[Q]-module G(Q)⊗ k. Then Proposi-
tion 3.1 implies that, as a ∆-module, V is a sum of characters on ∆, each of which
appears with multiplicity at most one. But, by the Oort-Tate classification, only
the trivial character 1 and the cyclotomic character ω can occur in V . It follows
that the dimension of V is at most 2.

If dimV were 2, Proposition 3.1 would imply that ω is trivial on the unique
index 2 subgroup of ∆, so that ω is quadratic. This is a contradiction since p > 3.
Therefore we have dimV = 1. Since k∗ is abelian, Proposition 2.1 implies that the
subgroup A acts trivially on V . It follows that A also acts trivially on G(Q)⊗ k
and hence on G(Q), as required.

�

4. End of proof

In this section we prove the following result. Together with Theorem 3.2 it implies
Theorem 1.2.

Theorem 4.1 (GRH). Let p = 23, 29, 31 or 37. Then the Abrashkin-Fontaine field
F is equal to the Hilbert class field H of Q(ζp).

Proof. We have inclusions

Q ⊂ Q(ζp) ⊂ H ⊂ F.

Let Γ = Gal(F/Q). By Proposition 2.1 its commutator subgroup Γ′ is Gal(F/Q(ζp))
and the commutator subgroup Γ′′ of Γ′ is Gal(F/H). Below we show that for p = 23,
29, 31 and 37 the group Γ′′ is trivial, or equivalently that Γ′ is abelian. This implies
that F = H. Since the details are different for each prime, we proceed case by case.

Case p = 23. From Table 1, we see that [F : H] = #Γ′′ ≤ 9. This implies that
F is tamely ramified at 23, so that Table 1 implies that #Γ′′ ≤ 3. It follows that
Aut(Γ′′) is abelian. This implies that Γ′ is in the kernel of the map Γ→ Aut(Γ′′)
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given by conjugation. It follows that Γ′′ is in the center of Γ′. Since Γ′/Γ′′ is cyclic,
we find that Γ′ = Gal(F/Q(ζp)) is abelian, as required.

Case p = 29. We have the following inclusions

Q ⊂
4
K ⊂

∆
Q(ζ29) ⊂

V
H︸ ︷︷ ︸

Γ2

⊂
Γ′′

F.

Here V = Gal(H/Q(ζ29)) is a 3-dimensional F2-vector space on which the order 7
group ∆ = Gal(Q(ζ29)/K) acts non-trivially. See [9].

From Table 1, we see that [F : H] = #Γ′′ ≤ 21. This implies that F is tamely
ramified at 29, so that Table 1 implies that #Γ′′ ≤ 4. So, Γ′′ is either cyclic or
isomorphic to Klein’s four group. Since [H : Q] = 8 · 28 is not divisible by 3, it
follows that the image of Γ in Aut(Γ′′) has order at most 2. Therefore Γ′ and hence
its subgroup Γ2 = Gal(H/K) act trivially on Γ′′. We claim that the group extension

0 −→ Γ′′ −→ Γ1 −→ Γ2 −→ 0

is split. It follows that K admits an extension E inside F with Gal(E/K) = Γ′′ of
order at most 4. A short pari-computation [6] shows that the only such extension
is K itself. This means that Γ′′ is trivial and we are done.

It remains to show that the extension is split. Since #Γ2 = 56 is prime to 3,
this is the case when #Γ′′ = 3. So, we may assume that Γ′′ has order 1, 2 or 4. It
suffices therefore to show that the cohomology group H2(Γ2,Z/2Z) = 0 vanishes.
Since H2(Γ2,Z) = Hom(Γ2,Q/Z) is trivial, our cohomology group is isomorphic to
the 2-torsion of the Schur multiplier H3(Γ2,Z). Since ∆ and V have coprime order,
the Hochschild-Serre spectral sequence degenerates and we find that H3(Γ2,Z) is
isomorphic to H3(V,Z)∆. The Schur multiplier of the abelian group V is V ∧ V
equipped with its natural ∆-action. In particular, the ∆-invariants are zero and we
are done.

Case p = 31. From Table 1, we see that [F : H] = #Γ′′ is at most 37. If F is
wildly ramified, the group Γ′′ is cyclic of order 31 and its automorphism group is
abelian. It follows that Γ′ acts trivially on it. Since the class group of Q(ζ31) is
cyclic [9, Thm. III], this means that Γ′ modulo its center is cyclic. It follows that
Γ′ is abelian and we are done.

F

H

H ′(ζ31)

Q(ζ31)

H ′

Q(
√
−31)

Q

Γ′′

3

3

15

2

3

15
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If F is tamely ramified at 31, Table 1 implies that [F : H] = #Γ′′ is at most 7. It
follows that Aut(Γ′′) has order at most 6. If the image of Γ→ Aut(Γ′′) is abelian,
we find that Γ′′ is contained in the center of Γ′. Since Γ′/Γ′′ is cyclic, it follows that
Γ′ is abelian as required.

If the image of Γ→ Aut(Γ′′) is not abelian, then Γ′′ is isomorphic to V4 or to S3.
Since S3 is not the commutator subgroup of any group [10, Lemma 4.1], the group
Γ′′ must be isomorphic to Klein’s group V4. The group Γ/Γ′′ = Gal(H/Q) has a
unique quotient isomorphic to S3. It is Gal(H ′/Q), where H ′ is the Hilbert class
field of Q(

√
−31). It follows that the order 45 group Gal(H/H ′) acts trivially on Γ′′.

This implies that H ′ admits an extension field E inside F for which Gal(E/H ′)
is isomorphic to V4. However, a short pari computation [6] shows that the ray class
group of conductor

√
−31 of H ′ has odd order. Therefore this cannot occur.

Case p = 37. In Table 1, we find that [F : H] ≤ 4270. Suppose that F 6= H. Then
there a surjective homomorphism Gal(F/H)→ Γ0, where Γ0 is a simple group. Let
H ⊂ L ⊂ F be the fixed field of its kernel, so that Γ0 = Gal(L/H).

If the order of Γ0 is divisible by 37, then Sylow theory implies that Γ0 is either
cyclic of order 37 or it is a non-commutative simple group of order 37(1 + 37k) for
some k ≥ 1. Since #Γ0 ≤ 4270 this implies that #Γ0 = 1406, 2775 or 4144. We
leave the exercise to show that groups of these orders cannot be simple to the reader.
It follows that either Γ0 is cyclic of order 37, or #Γ0 is prime to 37.

If Γ0 is cyclic of order 37, we consider the maximal Galois extension Q(ζ37) ⊂ E
inside F for which P = Gal(E/Q(ζ37)) is a 37-group. Then E contains the Hilbert
class field H. The maximal Galois extension H ⊂ E′ inside F for which Gal(E′/H)
is a 37-group, is Galois over Q(ζ37). Therefore we have E = E′. It follows that E
contains L. We have inclusions

Q ⊂ Q(ζ37) ⊂ H ⊂ L ⊂ E︸ ︷︷ ︸
P

⊂ F.

By Proposition 2.1, the maximal abelian extension of Q(ζ37) inside F is the Hilbert
class field H. This means that P/[P, P ] is cyclic of order 37. By Burnside, P is also
cyclic, and hence has order 37. It follows that E = L = H. Contradiction.

So #Γ0 = [L : H] is prime to 37 and hence the extension H ⊂ L is at most
tamely ramified at the primes lying over 37. From Table 1, we see that [L : H] ≤ 32.
It follows that Γ0 is cyclic of prime order q ≤ 31.

Consider the maximal abelian exponent q-extension E′′ of H inside F . Then we
have

Q ⊂ Q(ζ37) ⊂ H ⊂ L ⊂ E′′ ⊂ F.

and E′′ is Galois over Q. The degree [E′′ : H] is at most 32. The orders of the
groups GLd(Fq) are not divisible by 37 when qd ≤ 32. It follows that conjugation
by the cyclic order 37 group Gal(H/Q(ζ37)) is trivial on Gal(E′′/H). This means
that Gal(E′′/H) is in the center of Gal(E′′/Q(ζ37)). Since Gal(H/Q(ζ37)) is cyclic,
the group Gal(E′′/Q(ζ37)) is abelian. However, by Proposition 2.1 the field H is
the maximal abelian extension of Q(ζ37) inside F . Contradiction. So F = H after
all.

�
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