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Abstract. Let E denote an elliptic curve over Q without complex multiplication. It is shown that the

exponents of the groups E(Fp) grow at least as fast as
√

p log p

(log log p)2
.

1. Introduction.

The exponent exp(A) of a finite abelian group A is the smallest positive integer m for
which ma = 0 for all a ∈ A. In this note we study the exponents of the groups E(Fp) of
points modulo a prime of good reduction p of an elliptic curve E which is defined over Q.

By the Riemann hypothesis for elliptic curves over finite fields [7, Ch.5.Thm.1.1],
proved by H. Hasse in 1933, we have that

|#E(Fp)− (p+ 1)| < 2
√
p.

Since the group E(Fp) can be generated by two points [7, Ch.3.Cor.6.4] we see that

√
p− 1 < exp(E(Fp)) < (

√
p+ 1)2.

In this note we show that for elliptic curves without complex multiplication the lower
bound can be somewhat improved:

Theorem 1.1. Let E be an elliptic curve over Q without complex multiplication. There
exists a constant CE > 0 such that

exp(E(Fp))√
p

> CE
log p

(log log p)2
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for every prime p of good reduction.

Note that “complex multiplication” means complex multiplication over C . Theorem 1.1
is proved in section 2. It is a consequence of the fact that the absolute values of the
discriminants ∆p of the endomorphism rings of the curve E (mod p) grow as p goes to
infinity. We show that

|∆p| ≥ C ′E
(log p)2

(log log p)4

for some constant C ′E > 0.
In section 3 we investigate how small the exponents exp(E(Fp)) and the discriminants

∆p can be. Assuming certain generalized Riemann Hypotheses we can show that there
exists a constant cE so that for infinitely many primes p the quantity exp(E(Fp))/

√
p is

less than cEp
3/8 log p. Similarly we can show that there exists a constant c′E such that

|∆p| ≤ c′Ep3/4 log p for infinitely many primes p.
I would like to thank Hendrik Lenstra for the elegant proof of Lemma 2.1 and the

referee for many helpful suggestions.

2. Large exponents.

In this section we prove Theorem 1. We need two lemmas.

Lemma 2.1. Let R be a quadratic order of discriminant ∆ and let χ(x) denote the
quadratic residue symbol (∆

x ). Let furthermore ` be a prime and let O denote R⊗Z`. We
have ∑

a

1

Na
=

`+ 1

`− χ(`)
,

where the sum runs over all invertible ideals a in O which are not contained in `O . The
norm Na is just #R/a.

Proof. When χ(`) = 1 he ring O is isomorphic to a Z`×Z`, when χ(`) = −1 it is a local
ring with maximal ideal generated by ` and when χ(`) = 0 it is a local ring with maximal
ideal l of index `.

Let µ denote a Haar measure on O. We have

µ(O∗) = µ(Z∗` )
2 = (1− 1

`
)2µ(O) if χ(`) = 1.

= µ(O)− µ(`O) = (1− 1

`2
)µ(O) if χ(`) = −1,

= µ(O)− µ(l) = (1− 1

`
)µ(O) if χ(`) = 0,

In other words

µ(O∗) = (1− 1

`
)(1− χ(`)

`
)µ(O). (1)

The ring O is a disjoint union of `O , the zero divisors not in `O and sets of the form αO∗

where α is not a zero divisor and α is not contained in `O . Since the zero divisors have
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measure zero we find that

µ(O) = µ(`O) +
∑
α

µ(αO∗).

Therefore

(1− 1

`2
)µ(O) = µ(O∗)

∑
α

1

Nα

and hence by (1) that ∑
α

1

Nα
=

`+ 1

`− χ(`)

where the summation runs over α ∈ O− `2O which are not zero divisors; they are counted
modulo units of O. Since O is a semi-local ring the invertible O-ideals are precisely the
ideals of the form αO where α is not a zero divisor. The result now follows at once.

It was pointed out by the referee that the following lemma on binary quadratic forms
can also be proved in an elementary way i.e. without invoking Lemma 2.1.

Lemma 2.2. There exists an absolute constant C such that for every ∆ ∈ Z<0 congruent
to 0 or 1 (mod 4) we have that ∑ 1

a
≤ C log2 |∆|

where the sum runs over all reduced positive definite primitive binary quadratic forms
aX2 + bXY + cY 2 of discriminant ∆.

Proof. It is easy to see that for a reduced positive definite quadratic form aX2+bXY +cY 2

one has that a ≤
√
|∆|/3. Using the dictionary between quadratic forms of discriminant

∆ and ideals in the order of discriminant ∆ one sees that∑ 1

a
=
∑
a

1

Na

where the second summation runs over all invertible ideals a in the order of discriminant
∆ which are primitive and have their norms not exceeding

√
|∆|/3. Here an ideal in an

order R is called primitive if it is not contained in mR for any integer m > 1.
Decomposing the ideals into products of prime ideals one finds that this sum does not

exceed ∏
`

∑
a

1

Na
.

Here the product runs over the primes ` less than
√
|∆|/3 and the sums run over all

primitive ideals a having norm a power of `. The sums can be computed in the semi-local
rings R⊗ Z`. Therefore we obtain as an application of lemma 2.1 that∑ 1

a
≤
∏
`

`+ 1

`− χ(`)
≤
∏
`

(1− 1

`
)−2.
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By Mertens’s Theorem [4,Thm 429] the product
∏

(1− 1
` )−1 is O(log

√
|∆|/3) and therefore

we find that
∑

1
a ≤ C log2 |∆| for some universal constant C. This proves the lemma.

For z ∈ C with Rez > 0 let j(z) denote the modular function

j(z) =
(1 + 240

∑∞
n=1

n3qn

1−qn )3

q
∏∞
n=1(1− qn)24

where q denotes e2πiz. The Fourier expansion of the j-functions begins as q−1 + 744 +
196884q+ . . . . For z in the standard fundamental domain for the action of SL2(Z) on the
upper half plane the quantity |qj(z)| is bounded. In fact, it is easy to see that there exists
a constant C ∈ R such that |qj(z)| < C for all z ∈ C satisfying imz ≥ 1

2

√
3.

Proposition 2.4. Let ∆ ∈ Z< 0 be congruent to 0 or 1 (mod 4) and let n,m ∈ Z. Then

∏
aX2+bXY+cY 2

|m− n · j(
−b+ i

√
|∆|

2a
)| ≤ eC

√
|∆| log2 |∆|,

where C is a constant depending only on n and m. The product runs over the SL2(Z)-
equivalence classes of positive definite primitive binary quadratic forms of discriminant ∆
.

Proof. A quadratic form aX2 + bXY + cY 2 of discriminant ∆ is reduced if and only if

the number
−b+i
√
|∆|

2a is in the standard fundamental domain for the action of SL2(Z) on
the upper half plane. Therefore we have, for some absolute constants C and C1, that

|m− n · j(
−b+ i

√
|∆|

2a
)| ≤ |m|+ |n|C|q|,

≤ C1 max(|n|, |m|)e
π
√
|∆|
a .

Every equivalence class contains exactly one reduced form and we conclude that

∏
|m− n · j(

−b+ i
√
|∆

2a
)| ≤ (C1 max(|n|, |m|))h(∆)eπ

√
|∆|
∑

1
a .

For a reduced form aX2 + bXY + cY 2 one has that a ≤
√
|∆/3|. Therefore it follows

at once from Lemma 2.2 that there is a constant C2 such that the class number h(∆) is
bounded by C2

√
|∆| log |∆| for all ∆. By Lemma 2.2 there exists an absolute constant C3

such that
∑

1
a ≤ C3 log2 |∆|. This implies that

∏
|m− n · j(

−b+ i
√
|∆|

2a
)| ≤ (C1 max(|n|, |m|))C2

√
|∆| log2 |∆|eC3π

√
|∆| log2 |∆|

≤ eC4

√
|∆| log2 |∆|.
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for some absolute constant C4. This proves the proposition.

Corollary 2.4. Let E be an elliptic curve over Q without complex multiplication. For
every prime p of good reduction let ∆p denote the discriminant of the endomorphism ring
of the reduced curve E/Fp . There exists a constant C ′E > 0 such that

|∆p| > C ′E
(log p)2

(log log p)4
for all p.

Proof. We may assume that p ≥ 5. If p is a prime of supersingular reduction we have that
∆p = −p or − 4p and we are done. If p is a prime of ordinary reduction we observe that
the j-invariant j(E) of the curve E is congruent to the j-invariant jp ∈ Q of an elliptic
curve with complex multiplication by the quadratic order of discriminant ∆p. We conclude,
since j(E) − jp is not zero, that p ≤

∏
|n −mj′| where n and m are integers such that

j(E) = n/m and where the product runs over the conjugates j′ of jp. These conjugates

are precisely the j(
−b+i
√
|∆|

2a ) with aX2 + bXY + cY 2 a primitive binary quadratic form
of discriminant ∆p. It follows from Proposition 2.3 that

p ≤ eC
√
|∆p| log2 |∆p|

which easily implies the required result.

Proof of Theorem 1.1. We may assume that p ≥ 5 and that p is a prime of good
reduction. Let ∆p denote the discriminant of the ring of endomorphisms O of E over Fp.
We write

E(Fp) ∼= Z/ndZ⊕ Z/dZ

so that exp(E(Fp)) = nd. We have

exp(E(Fp))
2 = n2d2 = n#E(Fp) ≥ n(

√
p− 1)2

by Hasse’s inequality. Since the d-torsion points of E are defined over Fp we must have
that

φp = 1 + dψ for some ψ ∈ O .

Since φp 6∈ Z the endomorphism ψ is not in Z either and we find that

nd2 = #E(Fp) = (φ− 1)(φ̄− 1) = d2ψψ̄ ≥ d2 |∆p|
4
.

Therefore n ≥ |∆p|
4 and we get

exp(E(Fp)) ≥
1

2

√
|∆p|(

√
p− 1).

The result now follows at once from Corollary 2.4.
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Remark 2.6. Theorem 1.1 is very probably false when the elliptic curve E has complex
multiplication: consider the elliptic curve given by Y 2 = X3−X. It has complex multipli-
cation by the ring Z[i]. This curve has its 2-torsion points rational over Q while the field
of definition of the 4-torsion points is Q(ζ8), the field of 8th roots of unity. We conclude
that for primes p that are congruent to 1 (mod 8), the Frobenius endomorphism φp is
congruent to 1 (mod 4) in Z[i].

Suppose p is an odd prime of the form n2 + 1. In this case n is even and p splits in
Z[i] as (1 − ni)(1 + ni). Therefore the Frobenius endomorphism φp of a prime like this
must be one of ±1±ni or ±i±n. One concludes that for primes p of the form n2 + 1 with
n ≡ 0 (mod 4) one has that φp = 1± ni and

E(Fp) ∼= Z/nZ⊕ Z/nZ

showing that exp(E(Fp)) = n ≈ √p. Since it is very likely that there are infinitely many
primes of the form n2 + 1 with n ≡ 0 (mod 4), it is also likely that Theorem 1.1 is false
for elliptic curves with complex multiplication. It is easy to show that certain standard
conjectures on the distribution of prime numbers in quadratic progressions imply that
for every elliptic curve E over Q with complex multiplication the exponent of E(Fp) is√
p + o(1) for infinitely many primes p. It would be interesting to try and show without

any unproved hypotheses that for elliptic curves over Q with complex multiplication there
exist infinitely many primes p for which exp(E(Fp))/

√
p is bounded.

3. Small exponents.

In this section we show that for an elliptic curve E over Q there exist infinitely many
primes p for which exp(E(Fp)) is relatively small. We derive the results from an effective
Čebotarev Density Theorem. A strong and realistic version of this theorem can at present
only be proved assuming the truth of certain Generalized Riemann Hypotheses (GRH).
Propositions 3.3 and 3.4 are only valid under these hypotheses.

Let K be a finite Galois extension of Q with G = Gal(K/Q). The discriminant of K is
denoted by ∆K and we let δK = |∆K |1/n where n = [K : Q] denote the root discriminant
of K. For a prime p let ep denote the ramification index of p in K over Q and let rp denote
vp(DK/Q); here DK/Q denotes the different of K over Q and vp denotes the normalized
valuation associated to a prime p over p in K. It is elementary to check that

δK =
∏
p

prp/ep ,

where the product runs over all primes p.

Prposition 3.1. Let E be an elliptic curve over Q and let ` be a prime. By K we denote
the field generated by the group of `-torsion points E[`]. We have

δK < |∆E |`2;

here ∆E denotes the discriminant of the curve E.

Proof. The field K is a Galois extension of Q . We put G = Gal(K/Q). Using the
notation introduced above we have that rp/ep = 0 for every unramified prime p. We now
estimate the ratios rp/ep for all primes p that ramify in K over Q.

6



case 1. p 6= `. Since the prime p is ramified in K, it must be a prime of bad reduction.
We use Ogg’s formula [6]:

ordp∆E = #C + ε+ δ − 1,

where C denotes the set of components of the Néron minimal model of E over Z and ε = 1
or 2 according as the reduced curve E (mod p) has a double point or a cusp singularity.
In either case we have

ordp∆E ≥ δ + 1,

where δ is Serre’s measure of wild ramification [6]:

δ =
1

ep

∞∑
j=1

#Gj codim(E[`]Gj).

Here Gj = {σ ∈ G : σ(x) ≡ x (mod pj) for all integral x} denotes the j-th higher ramifi-
cation group. Let i denote the largest integer for which Gi 6= {1}. We clearly have

δ ≥ 1

ep

i∑
j=1

#Gj .

Therefore

rp = vp(DK/Q) =
∞∑
j=0

(#Gj − 1) ≤ ep − 1 + epδ < epordp∆E

and hence
rp
ep

< ordp∆E .

case 2. p = `. If ` is tamely ramified in K we clearly have that

r`
e`

= 1− 1

e`
< 2.

If ` is wildly ramified we let l denote a prime over ` in K and we consider the local field
extension Kl over Q` with Galois group G`. The group G` considered as a subgroup of

GL2(F̀ ) contains the subgroup N = {
(

1 a
0 1

)
: a ∈ F̀ } as a normal subgroup. Therefore

G` is contained in the normalizer of

(
1 1
0 1

)
which is the group of upper triangular

matrices. By the non-degeneracy of the Weil-pairing the determinant maps G/N onto
(Z/`Z)∗ and we find that Kl is a cyclic extension of degree ` of the field F (ζ`) where F is
an unramified extension of Q`. By local class field theory the conductor of Kl over F (ζ`)
is at most (ζ` − 1)`+1. One easily checks that r` ≤ 2`2 − 2` − 1 and, since e` ≤ `(` − 1),
that

r`
e`
< 2.
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Combining everything we obtain

δK < |∆E |`2

as required.

Remark 3.2. When E has good reduction at ` one has in fact that

δK < |∆E |`1+ 1
`−1

(see [3].) The result in Prop.3.1 is sufficiently strong for our purposes.

Assuming the Generalized Riemann Hypotheses (GRH) we can now show the follow-
ing:

Proposition 3.3. (Assuming GRH) Let E be an elliptic curve over Q. There exists a
constant cE such that

exp(E(Fp))√
p

< cEp
3/8 log p

for infinitely many primes p.

Proof. Let ` be a prime and let K denote the field generated by the `-torsion points of E.
Since the cardinality of G = Gal(K/Q) is at most #GL2(F̀ ) < `4, Proposition 3.1 implies
that the discriminant ∆K of K satisfies

|∆K | ≤ |∆E`
2|`

4

.

Therefore the effective Čebotarev Density Theorem [5] implies that there exists a prime
p < c`8 log2 |∆E`

2| that splits completely in K. Here c denotes some absolute constant.
The `-torsion points are rational over Fp. Therefore

exp(E(Fp)) ≤
(
√
p+ 1)2

`

which is easily seen to imply that

exp(E(Fp))√
p

≤ cEp3/8 log p

for some constant cE that only depends on E. Letting l −→ ∞, one finds infinitely many
primes this way, the result follows.

Proposition 3.4. ( Assuming GRH) Let E be an elliptic curve over Q. There exists a
constant c′E such that

|∆p| < c′Ep
2/3 log p
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for infinitely many primes p.

Proof. Let ` be a prime and let K be the field that appears in the proof of the previous
proposition. Let K ′ denote the subfield of K that is invariant under the centre of GL2(F̀ ).
Then we have [K ′ : Q] ≤ #PGL2(F̀ ) < `3 and therefore

|∆K′ | ≤ |∆E`
2|`

3

.

By Čebotarev there exists therefore a prime p < c`6 log2 |∆E`
2| that splits completely

in K ′. The Frobenius endomorphism φp of p is congruent to an integer (mod `) in

End(E/Fp). Therefore we have
|∆p|

4 `2 ≤ p and it follows easily that

|∆p| ≤ c′Ep2/3 log p

for some constant c′E which only depends on E. This proves Prop.3.4.

Conjecture 3.5. It seems reasonable to conjecture that for infinitely many primes ` as
in Propositions 3.3 and 3.4 one can find primes p completely splitting in K or K ′ which
do not exceed log |∆K | or log |∆K′ | respectively. This would imply that

exp(E(Fp))√
p

≤ cEp1/4 log p

and
|∆p| ≤ c′Ep1/3 log p

for infinitely many primes p.
This conjecture seems to be related to an elliptic analogue of the problem of estimating

the largest prime divisor of p− 1, see [2]. I have no idea how the exponents and the |∆p|
are distributed as p varies.

Bibliography

[1] Davenport, H.:Multiplicative Number Theory (second edition), Graduate Texts in Math. 74,
Springer-Verlag, New York 1980.
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