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Abstract. This lecture is part of a series of introductory talks given in El Escorial, Spain in the summer
of 1994. The talks were concerned with Wiles’ proof of Fermat’s Last Theorem. In this lecture we study
the Diophantine equations X3 = Y2 + d for d = 1,19, —18,61 and 5. Along the way, we introduce the
basic concepts of algebraic number theory.

1. d=1.

In this lecture we study the Diophantine equations
X3=Y2+4d, deZ.

The problem is to solve these equations in ordinary integers X,Y € Z. Even though the
problem only involves only ordinary integers in Z, we are naturally led to consider other
algebraic numbers. Along the way we introduce various concepts in algebraic number
theory. See [1, 2, 3, 4] for more systematic introductions to algebraic number theory.

We begin with the case d = 1. In this case we can give a complete answer. Our
method relies on arithmetic in the ring of Gaussian integers Z[i], given by

Z[i] = {a+bi:a,bec Z}.

The ring Z[i] is a subring of the field of complex numbers. It is itself not a field; it is easy
to see that the only units of Z[i] are &1 and +i. The ring Z[i] is a unique factorization
domain, i.e., every non-zero element o € Z[i| can be written as a product of irreducible
elements of Z[i] and, apart from the order and multiplication by the units £1, +4, this
can be done in only one way. This property of the ring Z[i] is well known; it follows from
the fact that Z[i] is a Euclidean domain which is an easy consequence of the fact that the
complex plane C can be covered by the disks of radius 1 and center a + bi € Z[i].
The following lemma is the key ingredient to our method:

lemma 1.1. Let R be a (commutative) unique factorization domain. Let r be a positive
integer and suppose that o, B € R are coprime and satisfy

af =~".
Then, up to a unit in R*, both a and (8 are r-th powers.
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Proof. Let
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be the factorizations of « into a product of distinct irreducible elements m; and of 3 into
a product of distinct irreducible elements =, respectively. Similarly

_ e 11Ck

Y= ... T

for distinct irreducible elements 7). We now have that
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Since « and S are coprime, m; # 7r;~ for all + and j. Therefore, by the uniqueness of the
factorization, each m; and 7} is, up to a unit, equal to one of the 7r;~’ , and each exponent a;
and b; is equal to the corresponding exponent rc¢;. This implies that all exponents a; and
b; are divisible by r and this implies the lemma.

Theorem 1.2. The only solution X,Y € Z of the equation
X3=Y%+1

is given by X =1 and Y = 0.

Proof. Let X,Y € Z be a solution. If X were even, we would have Y2 = X3 -1 =
—1 (mod 4) and that is impossible since squares are congruent to 0 or 1 (mod 4). Therefore
X is odd. We write, in the ring Z[3]

X% = (Y +4)(Y —i).

A common divisor of Y +7 and Y — ¢ divides their difference 27 and hence 2. This common
divisor also divides the odd number X3 and hence the ged of X3 and 2, which is 1. We
conclude that Y + ¢ and Y — 4 have no common divisor. The ring Z[i] being a unique
factorization domain, we can apply Lemma 1.1: since the product of Y 4 ¢ and Y — i is a
cube, each factor is, up to a unit, itself a cube. Since the unit group of Z[i] has order 4,
which is prime to 3, every unit is also a cube. Therefore

Y +i=(a+bi)

for some a,b € Z. There is an analogous equation involving Y — i. Equating real and
imaginary parts, we find that

Y = a3 — 3ab?,

1 =3a’b—b°.
The second relation says that b(3a? — b?) = 1. Therefore b =1 and 3a®> = -1 or b = —1
and 3a? — 1 = —1. Only the second possibility gives rise to a solution of the equation

X3=Y241viz., Y =0and X =1 as required.



2. d=19.

In this section we consider the equation X2 = Y? +d for d = 19:
X3 =Y?%+19.

We solve it in a similar way: if X were even, we would have Y? = X3 - 19=0-19 =
5 (mod 8), but this is impossible, since odd squares are congruent to 1 (mod 8). If X were
divisible by 19, also Y would be divisible by 19. This implies that 19 = X3 —Y? is divisble
by 192, but that is absurd. We conclude that X is divisible by neither 19 or 2.

In the ring Z[/—19], viewed as a subring of C

Z[V=19] = {a+by/—19 : a,b € Z},

we write

X3 = (Y +v-19)(Y —v/-19).

A common divisor 6 € Z[y/—19] of Y ++1/—19 and Y —+/—19 divides the difference 21/—19
and hence 2-19. Since (Y ++/—19)(Y —v/=19) = Y2419 = X3, we see that § also divides
X3. Therefore ¢ divides the ged of X2 and 2 - 19 which is equal to 1. We conclude that
the factors Y + v/—19 and Y — v/—19 have no common divisor.

A number z = a+b\/—19 € Z[\/—19] is a unit if and only if its norm N(z) = a?+19b?
is equal to 1. It is easy to see that the only units of the ring Z[\/—19] are 1 and —1. Since
the product (Y + +/—19)(Y — /—19) is a cube, an application of Lemma 1.1 shows that
each of the factors Y ++/—19 and Y — +/—19 is, up to a sign, itself a cube. Since —1 is
itself a cube, this means that

Y +v/—=19 = (a + by/—19)3

for some a,b € Z. Taking real and imaginary parts we find

Y = a3 —3-19ab?,
1 = 3a%b — 1953.

it is easy to see that already the second equation b(3a? — 19b?) = 1 has no solutions
a,b € Z. As in the previous example one would now like to conclude that the original
equation X3 = Y2 + 19 has no solutions either, but this is not true at all, as is shown by
the following equality:

73 =182 +19.

What went wrong? The problem is, that one can only apply Lemma 1.1 if the ring under
consideration admits unique factorization. The ring Z[v/—19] does not have this property:

35=5-7,
= (4+V/—19)(4 — vV—19),
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are two distinct factorizations of the number 35 in the ring Z[\/—19]. We check that the
factors are irreducible elements. The norm map

N:Z[V-19] — Z

given by N(a + by/—19) = a? + 1962, is multiplicative. We have N (5) = 25, N(7) = 49
and N(4 4+ +/—19) = 42 + 19 = 35. If any of these numbers were not irreducible in the
ring Z[v/—19], there would be elements in this ring of norm 5 or 7. Since the equations
a?+19b2 = 5 and a? 4 196 = 7 have no solutions a, b € Z, there are no such elements. We
conclude that the number 35 admits two genuinely distinct factorizations into irreducible
elements. Therefore the ring Z[v/—19] is not a unique factorization domain.

In this first example it is rather easy to get around the problem. The ring Z[/—19]
is in some sense too small.

Definition. Let F' be a number field. The ring of integers O of F' is the integral closure
of Z in F'. In other words

O ={z € F: f(x)=0 for some monic f € Z[X]}.

The ring Z[+/—19] is not the ring of integers of the number field F' = Q(1/—19). In general,
for quadratic number fields the rings of integers are as follows.

Proposition 2.2. Let d # 1 be a squarefree integer. Then the ring of integers of Q(\/E)
is given by
Z[Vd  ifd=2 or3 (mod 4);

14+Vd
5

Z] ifd =1 (mod 4);

For instance, the ring of integers of F = Q(v/—19) is

1++v-19 a+ byv—19
Or =2y —l=t

I=A a,b€ Z, a=b (mod 2)}

which contains Z[v/—19] as a subring of index 2. The ring O is not Euclidean, but using
techniques from algebraic number theory, it can be shown that O is a unique factorization
domain. Applying Lemma 1.1, we can solve the Diophantine equation as follows:

Theorem 2.3. The only solutions in integers X,Y € Z of the equation
X3=Y%+19

are X =7 and Y = £+18.



Proof. We proceed as before. We write
X3 = (Y +v/-19)(Y —V/-19)
and we conclude from Lemma 1.1 that each factor is a cube in the ring of integers Op. In
particular ,
Y 4+ =i — (a + b2\/——19 ) ’

a® —3-19ab%>  3a2b— 1963

= —19.
8 * 8
Equating real and imaginary parts we find that
2 1 b2
ple — 107 _

8

This implies that b divides 8 and that 3a® — 196> = 8/b. This leaves only a few possibilities
for b and one easily checks that only b = 1 gives rise to the integral solution a = £3. This
implies that ¥ = +18 and X = 7, as required.

3. d=—18.
The equation X3 = Y2 — 18 factors as

X3 = (Y = V18)(Y + V18).

This time the number field F = Q(+/18) = Q(v/2) is involved. By Prop.2.2 the ring of
integers O of F'is given by

Op =Z[V2] = {a+bV2:a,bec Z}.

It is a Euclidean ring and therefore a unique factorization domain. The gcd of the factors
Y+vV18 =Y +3v2and Y —v/18 = Y — 3+/2 divides 2v/18 = 61/2. However, if V2 divides
the gecd, then 2 divides both X and Y and Y2 = X3 + 18 = 2 (mod 4); a contradiction. If
3 divides the gcd, then 3 divides both X and Y and we can write X = 3X’ and Y = 3Y".
Then 3X"® = Y’ =2 and Y'> = —1 (mod 3). This contradiction shows that ¥ + 3v/2 and
Y — 3v/2 are coprime in Z[/2].

A careless application of Lemma 1.1 to the ring Z[/2] and the equation X3 = (Y —
V18)(Y + /18), would give us that

Y +3v2 = (a+bV3)3,
= (a® + 6ab?) + (3a%b + 2b°) V2.

From this one would then deduce that b(3a® + 2b%) = 41 and hence that b = +1 and
3a? = £1 — 2. Since this equation has no solutions in Z, the original equation would have
no solutions in Z either. But this is clearly false:

73 =192 + 18.
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What went wrong this time? This time the unit group of the ring Z[v/2] is rather large
and the application of Lemma 1.1. was not quite correct: from the equation one can
only deduce that Y + 3v/2 is a cube, up to units of the ring Z[v/2]. To understand this
complication better, we consider the unit group more closely.

Dirichlet’s Unit Theorem gives a complete description of the unit group of the ring
of integers of a number field. This result is one of the basic theorems of algebraic number
theory. In general, it says the following.

Let F be a number field. By the theorem of the primitive element there exists an
element o € F such that F' = Q(«). Let f(X) € Q[X] be the mimimum polynomial of .
We have that

fX)=(X—-—a)(X —ag)-...- (X —ag),

where the o; are the zeroes of f(X) in C. The first r; zeroes are contained in R while the
remaining n — r1 are not. The latter zeroes come in complex conjugate pairs. There are
27y of them and we number them in such a way that (&@;) = o4, for ri < j <ry. We
have that n = [F : Q] = r1 + 2rs.

For every j we consider the embeddings

pj: F—=R, for 5 < rq,
pj: F— C, for j > 1.

given by ¢;(a) = «;. Using the embeddings ¢; for 1 < j < r; + r we define a group
homomorphism
U:0p — RN,

by

log|p1(e)|
Ue) = :
1Og|§07'1 +72 (6) |

Theorem 3.1. (Dirichlet’s Unit Theorem) The kernel of the homomorphism WV is finite
and is equal to the group of roots of unity contained in F'. The image is a lattice in the
subspace of R™ "2 of codimension 1 which is given by

Z1
{ eER™2 iy + . 42y 4y, = 0.

Ly 4y

In particular, ¥(O%) is a free abelian group of rank r1 473 —1 and there is an isomorphism
of groups
Op 2 Z/wZ x Z" 21

where w denotes the number of roots of unity contained in F'.
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For example, for the fields Q(4) and Q(v/19) and, in general, any number field of the
form F = Q(v/—d) where d is a positive integer, we have that 7; = 0 and ro = 1. Therefore
the rank of the unit group is 71 +72 —1 = 0 and O% is equal to the group of roots of unity
in F. For F = Q(%) this is a group of order 4 and for Q(v/—19) this is the group {£1}.
For Q(v/2) however, r; = 2 and 7, = 0 and in this case the rank of O% is equal to 1.

This means that in the ring Z[ﬁ] there are, apart from the usual units 41, infinitely
many more units. Indeed, 14 /2 is also a unit (with inverse —1 — 1/2) and so are all its
powers. Using methods from algebraic number theory one can show that

ZIV2) = {1 +V2)F : k€ Z} = Z/2Z x Z.

Lemma 1.1 only allows us to conclude that the factor Y + 3v/2 is a cube up to units.
Indeed, the non-trivial solution X = 7, Y = 19 corresponds to the factor 19 + 3v/3 which

satisfies
19+3v2= (3 - \/5)3 (3+2v2).

Note that 3 + 2v/2 = (1 +1/2)? is a unit. We do not determine all solutions to the
Diophantine equation X3 = Y2+418. This problem is related to the problem of determining
integral points on elliptic curves and can be solved by means of techniques that belong to
the theory of Diophantine approximation.

4. d =61.

In this section we discuss the equation
X3=Y?%+6l.

We have
= (Y + V=61)(Y — vV/=61)

in the ring Z[v/—61]. By Prop.2.2 this ring is actually the ring of integers of the number
field Q(v/—61). A common divisor of the factors Y 4+ +/—61 and ¥ — /—61 divides also
2y/—61. If it does not divide v/—61, then Y is necessarily odd and X must be even. We
find that

Y? = X3 —-61=3 (mod 8)

which is impossible. If, on the other hand, the common divisor divides /—61, then 61
divides both Y and X. This implies that 61 = X3 —Y?2 is divisible by 61. A contradiction.
We conclude that the factors are coprime.

By Dirichlet’s Unit Theorem 3.1, the only units of the ring Z[\/—61] are +1, both of
which are cubes. Our final careless application of Lemma 1.1 therefore would give us that

Y ++v—=61 = (a + bvV/—61)>,
= (a® — 3-61ab®) + (3a®b — 61b%)/—61.

Inspection of the imaginary parts gives us that 1 = b(3a2 — 61b2). This means that b = +1
and that 3a2 = 41 + 61 which has no solution in integers. Therefore we would conclude
that the equation X3 = Y2 + 61 has no solutions in integers X,Y € Z.
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However, this is once again false:
5% = 8% +61.

So something went wrong again ... This time the ring Z[\/—61] is the ring of integers of
Q(+v/—61) and the only units are +1, but Z[\/—61] does not have the unique factorization

property:
62 =(14++v—-61)(1 —v—61),
=2-31.

However, the ring Z[v/—61] still admits unique factorization of ideals. In general, for an
algebraic number field F'; one defines a fractional ideal I as a non-zero Op-submodule
of F'. In other words, there exists an a € Op such that al C Op is a non-zero ideal of Op.
Examples of fractional ideals are principal fractional ideals, which are given by

{a-z:a€F}

for any x € F*. The fractional ideals form a group Ir under ideal multiplication. The fact
that the unique factorization property holds for ideals, means that Ir is a free group on
the prime ideals of Or. The principal fractional ideals form a subgroup Pr. The following
theorem is one of the basic results of algebraic number theory.

Theorem 4.1. The group Ir is a free group on the prime ideals of Or. The quotient
group
Clp = Ip/Pr

is called the ideal class group of F. It is a finite abelian group of order hg, the class number
of F.

Clearly, the class group Clp is trivial if and only if the ring OF is a principal ideal
ring and one can show that this happens precisely when Or has the unique factorization
property. The class groups of the rings Q(7), Q(v/—19) and Q(v/2) are all trivial, but the
class group of Q(v/—61) is not. Using methods from algebraic number theory, one can
show that it has order 6.

From the equation

= (Y +V-61)(Y - v-61)

we can still deduce that Y + /61 is the cube of an ideal. Indeed, the solution X = 5,
Y = 8 gives rise to the equation

5% = (8 +/—61)(8 — vV/—61).

and the principal ideal (8 ++/—61) is the cube of the ideal generated by 5 and 3 + /—61.

We do not determine all the solutions of the Diophantine equation X3 = Y2 +61, but
in the next section we solve a similar equation using Theorem 4.1.



5. d=5.
The equation
X3=Y?+45

gives rise to a factorization

X3 = (Y +vV=5)(Y - v-5)

in the ring Z[v/—5]. A common divisor of the factors necessarily divides 2v/—5. Since
61 = 5 (mod 8), one can use the same arguments as in the previous section to show that
any common divisor of Y + /=5 and Y — /=5 is necessarily a unit.

In order to avoid further “careless” applications of Lemma 1.1, we analyze the ring
Z[\/-5] in some detail. Since x € Z[/=5] is a unit if and only if x = a + b\/=5 with
a,b € Z and a? + 5b% = 1, we see that the only units of Z[/—5] are 1. By Prop.2.2,
Z[\/—=5] is the ring of integers of F' = Q(+/=5). This ring is not a principal ideal ring or a
unique factorization domain. Indeed,

6=(1+v=5)(1—-v-5),
=2-3,

which shows that the unique factorization property fails. The ideal
(2,1+5)

is not principal. Indeed, any generator a = a + by/=5 (with a,b € Z) would necessarily
have the property that N(a) = a? + 5b% divides 4 and 12 + 5 = 6 and therefore 2. Since
« cannot be a unit and since the equation a? 4+ 5b? = 2 has no solutions with a,b € Z, the
ideal cannot be principal.

Using techniques from algebraic number theory, one can show that the class group
Clr has order 2. This implies that the product of any two non-principal ideals is principal
and, in particular, that the square of any ideal is principal. Indeed,

(2,14+V5)? = (4,2 +2V/=5,6) = (2).

Finally we solve the equation:

Theorem 5.1. The equation
X}=Y2+5

admits no solutions X,Y € Z.

Proof. From the discussion above and the uniqueness of ideal factorization we conclude

that the ideal
(Y ++v-5)

is the cube of a Z[\/—5]-ideal I. Therefore the cube of the class of I is trivial in the class
group. Since the class group has order 2, which is prime to 3, this means that the class of
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I itself is trivial. In other words, I is principal. Since the only units of Z[v/—5] form the
group {+1} of order 2, we conclude that

Y +V=5=(a+b/-5),
= (a® — 3-5ab?) + (3ab — 5b%)v/—b.

This implies that b(3a® — 5b?) = 1 and therefore that b = 1 and 3a® = +1+5. Since this
equation has no solution a € Z, we conclude that there is no solution in integers X, Y € Z
of the original equation, as required.
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