ERRATUM

Kraft, S.J. and Schoof, R.: Computing Iwasawa modules of real quadratic number fields, *Compositio Math.* **97** (1995), 135–155.

Table 5.2 of our paper contains errors. These were caused by a bug in our computer program. We thank Professor H. Taya for pointing this out to us. Lines 13 to 7 from below on page 153 and Table 5.2. at the top of page 154 should be modified as follows:

There are 144 quadratic fields of conductor f < 10000 with $f \not\equiv 1 \pmod{3}$ that have $A_0 \neq 0$. In these cases $C \cong \Lambda/I$ for some non-trivial ideal I. In 109 cases we found that I is equal to the maximal ideal $\mathfrak{m} = (T, 3)$ of Λ . In these cases all groups A_n , B_n and C_n have order 3 and all maps $A_m \longrightarrow A_n$ are zero (n > m). We have $I = \mathfrak{m}$ in 45 out of the 54 cases with $f \equiv 0 \pmod{3}$ and in 64 out of 90 cases with $f \equiv 2 \pmod{3}$.

The remaining 35 cases are listed below.

Table 5	.2.
---------	-----

Ι	C	n_0	freq.	$f \equiv 0 \pmod{3}$	$f \equiv 2 \pmod{3}$
(T, 9)	9	0	0 + 3		3137, 4409, 6809
(T-3,9)	9	1	0+2		4481, 7709
(T+3,9)	9	1	3+6	3957, 7032, 7053	1772, 2777, 7244, 8069, 8396, 8837
$(T^2, 3)$	3×3	1	1+2	8745	4001, 6401
(T-3,27)	27	2	1 + 0	4749	
(T-12, 27)	27	2	0 + 5		785, 2021, 3569, 3596, 7601
(T+3, 27)	27	2	2 + 1	5613, 9813	2429
$(T^2+3, 3T, 9)$	3×9	1	1 + 0	6396	
$(T^3, 3)$	$3 \times 3 \times 3$	1	0+2		1937, 3305
(T+39,81)	81	3	0 + 1		5081
(T+24, 81)	81	3	0 + 1		5297
$(T^2 - 3, 9)$	9×9	2	1 + 0	5529	
(T-12, 243)	243	4	0 + 1		473
(T+15, 243)	243	4	0 + 1		1016
(T-15, 243)	243	4	0 + 1		6584

Tokyo, February 1996

Some typos pointed out by Pietro Mercuri:

- Page 135: line +3 of the introduction. "In other words," should be replaced by "In the cases we consider in this paper we have"
- Page 145: in the displayed equation (2) the Legendre symbol should be $\left(\frac{-f'}{x}\right)$ rather than $\left(\frac{f'}{x}\right)$.
- Page 149 Lines 11 and 12: $\operatorname{Ann}(I)$ should be $R_n/\operatorname{Ann}(I)$ (in two places).
- Page 149 Line -8: J should be J (in two places).
- Page 150 Line 8: γ_k should be γ^k .
- Page 152: The polynomial G(Y) is the minimum polynomial of $\sqrt{\varepsilon}$ rather than ε .