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- ON THE NORMAL SUBGROUPS OF RUBIK GROUPS'

s b0 : J. van de CRAATS & R.J. SCHOOF

1. INTRODUCTION

Rubik's Cube and related toys like Meffert's Pyraminx or the 4x4x4

 Master Cube ('Rubik's Revenge') provide examples of nontrivial finite groups,
g g

and thus are important didactical tools in a first course on group theory.
Concepts like group, subgroup, coset, normal subgroup, conjugation, factor
group, commutator subgroup, center, generator, transitivity, direct product,
homomorphism, isomorphism, are vividly illustrated with a cube at hand.
In this note we shall concentrate upon normal subgroups, and among
other results, we shall give a proof'ofithe fact, first discovered by the
second author in 1981, that the group of Rubik's .Cube has exactly 13 normal

subgroups.
2. RUBIK GROUPS

Rubik's Cube has three kinds of pieces: six center pieces, having fixed
locations relative to each other, twelve edge pieces, and eight corner 7
pteces. The six center pieces form a natural reference frame. With respect
to this frame, every edge piece and every corner piece has a well-defined
home-location and home-orientation.

‘Any state of the cube may be described by a quadruplet (p,v, o,y) where

the permutation p ¢ S,, describes the location of the twelve edge pieces,

12

i : 12
the l2—tuP1e Vo= ("1"""’12) € C2

edge pieces, the permutation ¢ e’S8 describes the location of the corner

characterizes the orientations of the

_ pieces and the 8 - tuple w = (wl,...,ws) € Cg their orientations (Sn denotes

the symmetric group of all permutations on n objects,. Al will be the alter-
nating group of all even permutations and Cq the cyclic group with q
Flemeﬁts). ' ‘

To be specific, we number the edge pieces and the corner pieces in an
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arbitrary way, and mark one of the faces of every piece. This induces a num-
bering and marking of every home-location, determined by START, the state
of the clean cube. In a state described by (P, Vs G5 W)> p(1) is the num-
ber of the actual location of edge piece i; vy = 0 or | means that the edge
piece mow on location j (i.e. piece number p =1(j)) has a marking that does
or does not coincide with the home-marking of location j. imilarly,io(i)
defines the location of cormer piece i, and wJ = +1, =1 or 0 describes a
clockwise twist, an anticlockwise twist, or no twist at all of the cormer-
piece on location J.

It is well-known (see, e.g. SINGMASTER, 1980; VAN DE CRAATS, 1981,
ch. 5; FREY & SINGMASTER, 1982, ch.7, or BERLEKAMP, CONWAY & GUY, 1982,
p. 760-768) that for any state (p, v, g, w) of the cube
(i) sgn p = sgn O,

12
i Vit %

(ii)

8
(iii) iE1 YT 0.
Conversely, any quadruplet (p,V, o, w) satisfying (i), (ii) and (iii) can

be realized by turning a cube in an appropriate way.

A quadruplet (p, Vv, O, w) also may be interpreted as a transfbrmatzon
of the set of states of the cube. A state is' transformed by (p, Vs, Oy w) imy
the following way: the edge piece on location i is brought to location p(i)
‘w1th4or1entat1on flipped iff vp(i) = 1, and similarly for the cornerpieces.
The two interpretations of (p,V , 0, w) are connected by the\effect of the
transformation on START.

Considered as transformations, the quadruplets form a group R. We shall

use the convention that the composition
¢)) (0rvs Gy w) (PsV,0,W

means that first (p,V, o, W) is taken, and then (p, Vv, O, w). When (1) is

applied to START, then edge piece i first goes to location p(i) with orien-

tation v- , and then to pp(l) with orientation v- . If we put
() 12 p(i ) ¥ Voo (i)
pp(i) = j and define pv € C2 by (DV) = v o1 , then
(J)
Y=oy ¥V = =V +v, = (pv+V),
Vo) T Voe(d) Vo l(j) v (pv v)J ?

so the new orientation vector is ov + v.

In a similar way the corner pieces are affected, and we see that
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\ :(p,:v,d,w‘) (Os‘—’n 3,5) = (DS: p\—7+V, 05, 0‘—’+W)-
‘Notg tﬁat‘if 1 is the identity permutation, the neutral element of the
group (also denoted by 1) is (1, 0, 1,0) and

(p,_v,cr,w) = (p l,—p lv:OI,-U]W).

‘ Thé black edges group

, With Rubik's Cube modified, other interesting groups may be obtained

For example, if we color all edge pieces black, so that they canﬁﬁt be

%fstinguished from each other, the group becomes

G(8,3) = {(c,w)|c eSS; W= (wl""’w8) € Cg,

i
w, = 0}.
i=1 *

(The notation G(8,3) will be explained later). Note that in this group no

limitation on the parity of o occurs: any o € 88 can be realized!

The black cormers group

Another interesting group occurs when the cormers are colored black:

G(12 =
(12,2) {(o,v)lpe S0V = (Vl""’vlz)e C‘;z

s

12
2 v, = 0} .
~ i=1

The black centers group

When all center pieces are colored black, our reference frame disap-
pears. However, with respect to one particular corner piece, the other
s . .
even corner pieces and the twelve edge pieces again have well-defined home-

locations and home-orientations, and the group becomes

\

G(IZ,Z) x G(7,3) =.{(p,v ,O',W)l p € 512, o€ S7s

- 12 '
v (vl""’v12) € C2 , W= (wl,...,w7) € C7

3
7
\ w., = 1

It is interesting to note that indeed there are no limitations on the parity
of the permutations, and therefore this group is a direct product of the
action on the corners and the action on the edges. .-
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The 2x2x2 group

1f the edge
, again taking one corner piece as point of reference, its

s and the.centers are colored black, a simulated 2x2%2 cube

results, and

group is

G(7,3) = {(U,W)I'U € Sy,w = (Wyseeeswy) € C;,

A
‘Am}

Meffert's Pyraminx

I’I’lg.

v N
>
=D

A‘I

/7R

Meffert's Pyraminx (a), with corner piece, s

AR

(c)

fig.1 ubcorner piece (b)
and edge piece (c) |

This object has four cormer pieces, four subcorner pieces and six edges

pieces. In turning, the cornmer- and subcornmer pieces keep their locations

e to each other, and any orientation of these eight. pieces can be
So

relativ
realized without affecting the edges by a suitable sequence of moves.

the only interesting part is formed by the possible locations and orien-
tations of'the six edge pieces. Any move of the pyraminx engenders a 3-

cycle on edges, so only even permutations can be realized. Furthermore,

as with Rubik's Cube, the orientations are such that in any state the total

mmber of 'flipped' edges is even. The edge group, denoted by H(6,2), thus

is

o : 6
}I(B:Z) = {(p,V)| p € A6’ v= (Vl"'O’VG) € Cg: iZ] Vi = 0})

and the complete groupvof Meffert's Pyraminx is the direct product

'

8
H(6,2) xc3.

| fig.3

ON THE NORMAL SUBGROUPS OF RUBIK GROUPS 271

The 4%x4x4 Master Cube

A\

fig.2 The Master Cube

This most astonishing toy has eight cormer pieces, 24 edge pieces (two
on every gdge), and 24 center pieces (four on every face). The edge pieces
?ppear with equal colors in pairs , but since the side of such a piece that
is adjacent to a middle plane of the cube always keeps such a position, the
t?o p%eces are mirror images and in any state of the cube they can be ;ié—
tinguished from each other. Consequently, such a piece cannot be flipped
on its place: each piece can occupy each edge position in only one orien-
tation! Similarly, the center pieces always keep their innermost corner in
the center of a face, and thus every center piece also has only ome possi~

ble ori i i
‘ orientation on every center location: centers cannot be twisted on
their place!

Tt

. Edge pieces and center pieces of the Master Cube have only~~

one possible orientation

\
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However, it is impossible to distinguish between four equally colored
center pieces, and this means that the different states of the Master Cube
do not generated a group! Two sequences of moves that yield the same result

when applied to START, may give distinct results when applied to another

state!

fig.4 A pattern to give each center piece a well-defined home-location

If we prov%de the faces with patterns to distinguish the center pieces from
each other, however, we do get a group; let us call it the quadro-super-
group Q. Again, we take one particular cormer piece as point of referénce.
Then with suitable patterns on the faces, the seven other corner pieces,

the 24 edge pieces and the 24 center pieces all have a well-defined home-
location and (only for the corner pieces) home-orientation. Keen cubologists
may have discovered that any permutation of the 24 edges can be obtained )
without affecting the other pieces. Thus Q is the difect product of 824 (the
action on the edges) and the action on corners and centers.

Any quarterturn of a face not containing the chosen reference corner,
yields a 4-cycle on corners and centers, and every quarterturn of a middle
slice yields two 4-cycles on centers (and one 4-cycle on edges). Therefore,
the permutations on cormers and centers always have the same parity. Persis-
tent players will discover that any 3-cycle on cormers or centers can be

obtained without affecting the rest of the cube, so the quadro-super-group

_Q can be described as .

Q=\{(5,0;K’ V)IVE, 0 € 324: K € S79 ’ - AL

7
v = (VI""’V7) € C; , Z Vi = 0, sgn 0 = sgn K}.
. i=1
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Now we shall treat all these kinds of groups (let us call them Rubik Groups)
in a pn}fied way, and determine their normal subgroups.

3. GROUPS AND NORMAL SUBGROUPS

.'For natural numbers n, p with p prime, we define

G(n’p) = {(O,V)IU € Sns v = (Vla-'-,vn) € Ctpl s

H(n,p) = {(G,V) € G(n,p)| o € Ah} .
V(n’p) = {(I,V) € G(U,P) }
Z(n,p) = {(I,V) € G(n,p)| v = (v,,...,’vn) with

‘.’1 =V2 Z oheree = Vn}

_ If (o,v) € G(n,p) then we define ov ¢ C* by
P

(ov)., = v

) for i =1,...,n.

ot (i)
G(n,p) is a group by (o,v)(a,v) = (60, ov+v).

Note that 1 = (1,0) and (o,v)" ! = (¢! , - o ).

It will be convenient to define
G(n,1) = Sn s
H(n,1) = A ,

n
V(q,l) Z(n,1) = {1}.

Sometimes we shall write (0,0) instead of o if 0 € § = G(n,1) to ob-

tain 4 unified treatment of G(n,1) and G(n,p) for p > 1.

Examples:

G(8,3) is the group of the black edges cube, G(7,3) is the group of the
2x2x2 cube, G(12,2) is the group of the black corners cube, and H(6,2) is
the edge group of Meffert's Pyraminx. Note that in each case V(n,p) is the
s?bgroup of transformations that change orientations while keeping every
plece on its location. Note also that 2(8,3) = 2(7,3) = {1} by the condition
that Z?=] v, = 0, and that Z(12,2) and Z(6,2) consist of the neutral element
| and the element that flips every piece on its place.

In general, we have Z(n,p) # {1} iff p>1andp| n.

»
Normal subgroups

In the following chain of subgroups

v {1} ¢ 2(n,p) ¢ V(n,p) < H(n,p) < G(n,p)
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each subgroup is normal in G(n,p). Recall that a subgroup N is normal in
G iff'gNg-l.= N for all g € G. We shall use the notation N < G to express
that N is a normal subgroup of G. Beginmers often fail to realize that if
we have a chain of subgroups N ¢ M c G and N < G then also N < M, but if
N 9 M then not necessarily N 4 G holds! This is illustrated by the fact that
every subgroup of V(n,p) is mormal in V(n,p) (since V(m,p) is abelian), but
only {1}, Z(n,p) and V(n,p) are normal in H(n,p) or in G(m,p), as will be
shown below.

In the sequel, we shall frequently use the fact that for n 2 5 the al-
ternating group A/ is simple, i.e. its only normal subgroups are
A itself (see, e.g., VAN DER WAERDEN, 1971, p. 163-165).

Normal subgroups of H(n,p)

In theorems 1 and 2 we shall determine all normal subgroups of H(n,p).
It may be helpful for the reader to realise the contents of theorem ! in a
concrete case, e.g. the edge group H(6,2) of Meffert's Pyraminx. Then
theorem | states that if a normal subgroup N contains a transformation that
flips some, but not all edge pieces, then N >Vv(6,2), i.e., by conjugation
and composition any (even) number of flips can be obtained. In the black
edges group G(8,3) theorem 1 staées that the existence in N < H(8,3) of one
twisting transformation (1,v) € V(8,3) with v ¢ 0, forces all tvisting

transformations to be contained in N.

THEOREM 1. Let N < H(n,p), p > 1, n 2 5. If there is an element
Vo (V,eeV) € cg such that (1,v) € N and v, ¢ vy for some i, j then
V(n,p) < N. ‘

~

PROOF, If (l,w) € N then also (l,0w) = (0,0)(1,w) (o, 0)’1 € N for all o € An

Thus we may suppose that Ql # 2 Define e, = (1,0,...,0,-1,0,...,0) ¢ Cg for

i=2,...,n (the i‘P

component of e, is - 1). The elements (1, e.) generate
V(n,p) It thus is sufficient to prove that (1, e ) € N for one value
€ {2,...,n}, for then also (1, oe1 ) € N for a11 o€ A
Take p = (132) € A s T = (154)5 A , then (1,v), (l,pv), (1,tv),
U,wv)eNamiMso(uv-pv~Tv+mv)eN. ) ‘

But v - pv- 1V +'Tp§ = (v]-vz,0,0,0,vz—vl,...,0) and since vV, # 0 also

(l,es) e N. O

THEOREM 2. Let N < H(m,p), n 2 5.
Then N = {1}, Z(n,p), V(n,p) or H(n,p).
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PROOF. Since An is simple, we may suppose that p > 1.

Consider H(n,p) ——— A
\ L / >
N (canonical).

,Again, since A is simple, we have im(N) = {1} or A .
n

Case l' im(N) = {1}.
Then N c V(n,p). If N # {1} or Z(n,p), then N = V(n,p) by theorem 1.

~

Case 2: im(N) =
Take 0 = (132) € A sw= (1,-1,0,...,0) € C . Since im(N) = A there

exists a (o,v) ¢ N, so also (1,w) (o,v) (1,w) " (o,v) -

= (1, w—cw) € N.
But w - ow = (2,-1,-1,0,...,0), so by theorem 1, V(n,p) c N.
Consider ‘ ?

fny s Ny « Bnp), RN

V(n,p) V(n,p) n

Since An is simple, it follows that N = H(n,p). 0O

It will follow from theorem 3 that in fact with theorem 2 we have

determined all nontrivial normal subgroups of G(m,p).

Direct products

v Cousider G = G(n],pl) Xeaons x G(nk,pk
For each g = (gl,...,gk) = ((cl,v ),...,(ak,v )) € G we shall write
= perm, (g). Furthermore, we shall frequently write 8; for
(l,...,l,g I,. .esl) and G Hi’ Vi, Zi for G(ni’Pi)’ H(ni,pi), V(ni,pi)
(ni,pi), respectively, and H Hl Xeesse X Hk.
Note that the groups

) R = {(p.v,o,w)lp € 5,55 0 € Sg, sgn p = sgn o,
N b 8
vV € C2 s, WE C3 N .2 v, = 'Z v, = 0}
i= i=]

of Rubik's Cube, and

- . |

Q= {(g,o,n,v)| €, 0 € 524 s K € S7, sgn 0 = sgn K,

of the modified Master Cube are normal subgroups of G(12,2) x G(8,3) and
G(24,1) x G(24 1) x 6(7,3), respectively.
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THEOREM 3. Let N < M, where M is a subgroup of G = G X.ooX G and suppose

that H < M and n, 2 5.
i) If there is an element g € N with perm, (g) # 1 then Hl c N.
(ii) If there is an element g = (8)s+--28) €N with g, €V, g, ¢ z,, then

V] < N.

. Since n, 2 5 > 2, the center of S is
. . ny
trivial, so there exists a T ¢ An with tot1 # 1.

Take h = (r 0) ¢ H,, then hgh 'g ! = (ng;n lg‘ ‘,1,...,1) e H|

perm; (hgh™ g ) = 10T ]c # 1. On account of Hl NN« HI and theorem 2 it

1 nN-= H], so Hl c N.

(ii) Let g = (1,v). As in the proof of theorem 1, there exist p, T € An

n N and

follows that H

1
such that (l,v-pv-tv+Tp v) ¢ Z

With h = (1,0v) = (p,0) (1,v) (p,O)
= (1,tv) and h

(hp’ gz,...,gk), (h ,gz,...,gk) and (h 0* 8 ,..-,gk) are elements of N, so
(gl,...,gk)(hp ,gz,...,gk) (h ,82, "»gk) ( ’ gz""igk)
i -1

= (g)h -th hoys fheees) € N Hp,

thus by theorem 1 we have Vl cNn Hl cN. 0O

= (1,tpv) we have that

7

COROLLARY. If N 4 G(n,p) and n 2 5 then N = {1}, Z(n,p),
V(n,p), H(n,p) or G(n,p).

PROOF. This follows from theorem 2, theorem 3 (i) with k =1 and M = G(n,p),
and the fact that H(n,p) has index 2 in G(m,p). 0O

THEOREM 4. Let N < H = H x...x H ,n, 2 5 for all i and p] # P for all

i>1,

(gl,...,gk)’g Nuithg # 1andg €2

" If there exists an element g = )

then Zl c N.

PROOF. Note that p, > 1 for otherwise {1} = Z- )
If gj 4 Z. for some j > 1 then by theorem 3 we have gj ¢ N, so also

=1
ggj = (glt'°'yl,

But then

..gk) € N. Thus ?e may suppose that g € Zl 3.....ka.

Poe-oP PoeesP
g 2 k. (812 k, ly...,1) e Nn z,

and p; d P, for all i > 1, P, does not divide the product Pyee Pyt Conse-

‘quently

and since gl\# 1, g € Zl

v
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" PosesP Poe P
g kog? K41, s0zpcn O

THEOREM 5. Let M be a subgroup of G = G x...x G and H = H x X H S M.
Suppose o, 2 5 for all i and (pi’pj) =14f1i#j.
If NaM and for some m, 1 < m < k,

NCHIL“X%XGMIL”X%

then N = N, X...X Nm x N, where

1
Ni =Nn Hi (i=1,...,m) and N = N n (Gm+lx...x Gk)'

PROOF. Let g is (gl,...,gk) € N. If for some i, 1 € i < m, 8; # 1 holds,

then from theorems 3 and 4 it follows that 8; € N. 0O
Finally, we treat the case that N < M where H = H]x... ka < N. Then
automatically N <4 G since G/H is abelian,

For any g = (gl,...,gk) € G we define sgn(g) € l?§ by

(sgug); = { 0 1f pemy(®) < Ay,
i .
1 otherwise
Then by the homomorphism g > sgn(g) we have G/H ~ Fg so[any normal sub-
group N, H ¢ N ¢ G, corresponds uniquely with a linear subspace of Fk

2"
From this we also see that the number I(k) of normal subgroups N with
H c N c G only depends on k and not on the special nature of the groups
G(ni,pi).

This number is equal to

Sk _pi-1 .,
1G) = 1+ 2 @50 @*-2).... "2 .
i-1

i=l Hipyeiag....e )

i-2

Indeed, for 1 < i < k, there are (Zk—l)(Zk—Z)..;(Zk—Zl_l) ordered sets of i
independent vectors in Eg and each i-dimensional subspace contains
(21-1)(21-2)..:(21-21-1) of these sets. For instance, we have I(1) = I +1

1(2) = 1+3+1 =5and I(3) = 1+7+7+1 = 16.

4. EXAMPLES AND FINAL REMARKS

Rubik's Cube

In G1 = G(12,2) we have the normal subgroups

{1} € Z(12 2) ¢ Vv(12,2) < H(12,2) < G(12,2),

N and 1n G

) = G(8,3)
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1 U1 evs,3 < KB, < 6,3 Furthernore, with the notations
(note that 3 } 8, so 2(8,3) = {1}). | . - ?ﬁ’ {sisjlgi' €Cj» 8y € G;> sgn(perm, (g.)) = sgn(permj (gj))}(i#j),
Thus in G = Gl x G2 we have 5 X 4 = 20 normal subgroups N of the form " D123 ={g ¢ G| sgn(perml(g)) = sgn(permz(g)) = sgn(perm3(g))},

N = N1 x N2 with N] < G] and N2 4 GZ' Since I(2) = 5, there are 5 normal
p X Hys Hy X Gy, G x Hy
and Gl x GZ’ are among the 20 mentioned above. The remaining one is'R,

E ={g ¢ G| if H, then exactly tw '
subgroups & with H < N, but foir of these. vis. B 123 g ¢ H, y two of the perm, (g) are odd},

we have the following 'mixed' normal subgroups of G:

the group of Rubik's Cube: R = {g ¢ Glltczlsgn(perml(g)) = sgn(perm, (g))}.

{1} xp H, xD G, xD
Its image in F§ is {(0,0), (1,11}. c , ; 23> 177230 CrT2d
. {1} x D13, H2 XDI3 , G2 XDIB’
5 Dig x (1}, Dy xVy, DyyxHy, D, %6y,
Djp3 and E o,

adding-to a total of 36 + 12 = 48 normal subgroups of G. Among these,

Q = Gl x D23 is the quadro-super-group. This group has 22 normal subgroups,

as shown in fig. 6.

i fig.5 The 29 normal subgroups of G(12,2) x G(8,3); the black

vertices are the 13 normal subgroups of the group R.of Rubik's Cube  §

) The 22 normal subgroups of G1 XG2 are shown in fig. 5, where two normal sub- I
o groups are connected by an ascending path iff the lower one is contained in f_f
| the upper one. The black vertices show the 13 normal subgroups of R. This '
part of the diagram is also shown (without proof) in VAN DE CRAATS, 1981, 'kf{
p. 86.

The Master Cube

Let G, = G, = G(24,1) = 324, Gy = G(7,3), then we have » '

fig.6 The 22 normal subgroups of the quadro-super-group, the group

{1} cH =H,c6 =¢, and . ; - of the modified Master Cube of fig.h

3

‘{l} cV. cH c G The setting of section 3 is general enough for our main purpose: to

3 3 ‘ ;;,vgeF a complete list of the normal subgroups of R and Q. Of course, similar

i (note’ that z, = z, = v =, - Z3 = {1}). Thus in G = ¢, x G, ¥ G, we have - ;:.f;.n&thOd§‘alk¢.can be appliedrundér less restrict}ve.conditiqns, but then the

3x3x4 = 36 normal subgroups of the form N = N]>(N2,XN3 with N, <G, B N T T ‘ , i

L
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/s

fesults mostly will be less simple. If, for instance, in theorem 5 we drop
the condition that all primes p; > 1'be distinct, then more 'mixed' normal
subgroups will arise. The same is true if not all n, are 2 5. The regder
might like to verify that theorem ! remains true if n = 2 or n = 4, but is
false if n = 3 and p = 1 mod 3. Also, if in G(n,p) the integer p is-not a
prime, complications will arise. -

We did not strive for the utmost generality. Instead, we,gried to il-

lustrate various concepts and methods from an attractive part of eleméntary
group theory. From our theorems other results can be obtained easily;”For

example, the commutator subgroup of G = G1 X .0 X Gk is H = Hl X i *Hk,
being the smallest normal subgroup with an abelian factor group. Also, if
H < M c G then it is easy to see that Z = Z Xe.. % Zk is the center of

M, i.e. the collection of all z for which zm = mz for all m ¢ M.
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