Proof of Theorem 5.2:

Replace from "In the second case ..." until the end of the proof by

In the second case, we note that the local Galois module $G(\overline{\mathbf{Q}}_2)$ is unramified. More precisely, $G(\overline{\mathbf{Q}}_2)$ becomes constant over an unramified cubic extension H' of \mathbf{Q}_2 . Let M be the Zariski closure of an order 2 subgroup of $G(\overline{\mathbf{Q}}_2)$. It is a finite flat group scheme over the ring of integers $O_{H'}$ of H'. Since H' is unramified over \mathbf{Q}_2 , Oort-Tate implies that M is isomorphic to either $\mathbf{Z}/2\mathbf{Z}$ or μ_2 . The same is true for the quotient G/M.

Since the action of $\operatorname{Gal}(\overline{\mathbf{Q}}_2/\mathbf{Q}_2)$ is irreducible, the exactness of the connected-étale sequence of G over \mathbf{Z}_2 implies that G is either étale or local. In other words, M and G/M are either both isomorphic to $\mathbf{Z}/2\mathbf{Z}$ or to μ_2 . If G is étale, we have $G \cong V$ by Galois theory. If G is local, we have an exact sequence over $O_{H'}$ of the form

$$0 \longrightarrow \mu_2 \longrightarrow G \longrightarrow \mu_2 \longrightarrow 0$$

It follows that the Cartier dual G^{\vee} is étale over $O_{H'}$ and hence over \mathbb{Z}_2 . It follows that G^{\vee} is isomorphic to V and hence that G is isomorphic to V^{\vee} . This proves the theorem