p.449, line -7 Recall also that $\mu_F$ is a finite cyclic group. p.450, line +2 We extend the norm multiplicatively to the group of fractional ideals. p.453, line +8 ...product on the $F_{\RR}$-module $L\otimes_{\ZZ}\RR$... p.454, line -13 Every rank $1$ projective $O_F$-module $L$ is a submodule of a $1$-dimensional $F$-vector space. Therefore we may assume ... etc p.459, line +18 Put $x=1$ here. p.460 line +3 log u_{\sigma} rather than log(sigma(u)) p.460, line +7: log u' \equiv log u modulo \Lambda in summation. p.461, line -3 log u_{\sigma} rather than log(sigma(u)) p.461, line -1 log \sigma(\varepslion)u_{\sigma} in summation. p.463, line +10: overline{d}(fI^{-1}) rather than d(f) p.464, line +6 volume of T^0 (rather than Pic^0) p.468, line +2 strict inequality p.469, line +7 \sum (deg\sigma)y_{\sigma} in summation p.473, line +3 generated by $a$ and $(-b + sqrt(\Delta))/2$. p.473, line-13 generated by $a$ and $(-b +sqrt(\Delta_F})/2$ p.473, line -1 last line $D = D' -(f) ...$ p.474 line +1 + sign in formula p.474, line +3 $||v||_Pic = \sqrt{2} * log ...$ (rather than = 2^{-3/2}) p.477, line +11 $f>1$ rather than $f>0$ p.477, line -10 $a>\sqrt{\Delta/3}$ rather than $a\ge\sqrt{\Delta/3}$ p.483, line +15 We have $D=(I,N(I)^{-1/n})+(O_F,vN(I)^{1/n})$. We compute reduced divisors close to $D=(I,N(I)^{-1/n})$ and to $(O_F,vN(I)^{1/n})$. p.483, line +19 close to $({\goth p},N({\goth p})^{-1/n})$ p.483, line +21 close to $(I,N(I)^{-1/n})$ p.483, line -13 close to the divisor $(O_F, v')$ with $|N(v')|=1$. p.483, line -11 $w^{2^t}=v'$.