- 1. Vero o falso?
 - (a) il prodotto tensoriale di due gruppi abeliani finiti è finito.
 - (b) il prodotto tensoriale di due gruppi abeliani finitamente generati è finitamente generato.
- 2. Siano A un gruppo abeliano divisibile e B un gruppo abeliano di torsione. Dimostrare che $A \otimes_{\mathbf{Z}} B = 0$.
- 3. Sia A un gruppo abeliano. Definiamo $A \wedge A$ come il gruppo $(A \otimes_{\mathbf{Z}} A)/B$, dove B è il sottogruppo generato dai tensori $a \otimes a$, $a \in A$. Scriviamo $a \wedge b$ per l'immagine di $a \otimes b$ in $A \wedge A$.
 - (a) Dimostrare che $b \wedge a = -(a \wedge b)$.
 - (b) Far vedere che $A \wedge A = 0$ quando A è ciclico.
 - (c) Sia p un numero primo e sia $A = \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$. Determinare $A \wedge A$.
- 4. (a) Sia R un anello e sia A un R-algebra. Per ogni polinomio $f \in R[X]$, esibire un isomorfismo naturale di A-algebre fra $(R[X]/(f)) \otimes_R A$ e A[X]/(f).
 - (b) Esibire divisori di zero nella **R**-algebra $\mathbf{C} \otimes_{\mathbf{R}} \mathbf{C}$.
- 5. Sia R un anello, sia M un R-modulo finitamente presentato e sia N_{ι} , ($\iota \in I$) una famiglia di R-moduli. Dimostrare che il morfismo naturale

$$M \otimes_R (\prod_{\iota \in I} N_i) \longrightarrow \prod_{\iota \in I} (M \otimes_R N_i)$$

è un isomorfismo di R-moduli.

- 6. Sia p un numero primo e G un gruppo di ordine p. Sia R l'algebra gruppale $\mathbf{F}_p[G]$ e sia I il nucleo dell'omomorfismo $\phi: \mathbf{F}_p[G] \longrightarrow \mathbf{F}_p$ determinata da $\phi(g) = 1$ per ogni $g \in G$. Far vedere che l'omomorfismo $f: I \otimes_R I \longrightarrow I^2$ dato da $f(x \otimes y) = xy$ è suriettiva ma non iniettiva. Esibire elementi espliciti nel nucleo di f. (Sugg. Considerare la successione esatta $0 \to I \to R \xrightarrow{\phi} \mathbf{F}_p \to 0$).
- 7. Sia R l'anello k[X,Y] in due variabili su un campo k. Siano I l'ideale (X) e J l'ideale (Y).
 - (a) Far vedere che $I, J \in I \cap J$ sono R-moduli liberi.
 - (b) Dimostrare che I + J è senza R-torsione, ma non è piatto.
- 8. Sia R un anello. Un R-modulo M si dice fedele quando la mappa $R \longrightarrow \operatorname{End}_R(M)$ data da $\lambda \mapsto \lambda_M$ è iniettiva. Qua abbiamo che $\lambda_M(m) = \lambda m$ per ogni $m \in M$.
 - (a) Far vedere che moduli fedelmente piatti sono fedeli.
 - (b) Dimostrare che **Q** è uno **Z**-modulo fedele e piatto ma non fedelmente piatto.
- 9. Sia R un anello e sia

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

una successione esatta di R-moduli. Suppiamo che A e C siano piatti e che uno fra A e C sia fedelmente piatto. Dimostrare che B è fedelmente piatto.