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Abstract. For every conductor f �∈ {1, 3, 4, 5, 7, 8, 9, 11, 12, 15} there exist non-zero abelian
varieties over the cyclotomic field Q(ζf )with good reduction everywhere. Suitable isogeny fac-
tors of the Jacobian variety of the modular curve X1(f ) are examples of such abelian varieties.
In the other direction we show that for all f in the above set there do not exist any non-zero
abelian varieties over Q(ζf ) with good reduction everywhere except possibly when f = 11
or 15. Assuming the Generalized Riemann Hypothesis (GRH) we prove the same result when
f = 11 and 15.

1. Introduction

In 1983 J.M. Fontaine [10] and V.A. Abraškin [1] proved one of the conjectures
made by Shafarevič at the 1962 ICM in Stockholm: they showed that there do
not exist any non-zero abelian varieties over Q with good reduction modulo every
prime. In this paper we determine the cyclotomic fields Q(ζf ) to which their the-
orem can be extended. Here ζf denotes a primitive f -th root of unity. Our main
result is the following.

Theorem 1.1. For every conductor f �∈ {1, 3, 4, 5, 7, 8, 9, 11, 12, 15} there exist
non-zero abelian varieties over Q(ζf ) with good reduction everywhere. Con-
versely, for all f in the above set there do not exist any non-zero abelian varieties
over Q(ζf ) with good reduction everywhere except possibly when f = 11 or 15.
Assuming the Generalized Riemann Hypothesis (GRH) the same is true when
f = 11 and 15.

The first statement of the theorem is a direct consequence of a result of
R. Langlands [14, Prop.2 on p.263] implying that certain isogeny factors of the
Jacobian varieties J1(f ) of the modular curves X1(f ) have good reduction ev-
erywhere over Q(ζf ). More precisely, J1(f ) admits the Galois group of the cov-
ering X1(f ) −→ X0(f ) as an automorphism group. This group is isomorphic
to (Z/fZ)∗/{±1}. Therefore there is a decomposition into a product of isogeny
factors
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J1(f ) ∼
∏

ψ

Jf,ψ,

where ψ runs over the rational even characters of (Z/fZ)∗. The abelian varieties
Jf,ψ are defined over Q. When the conductor of ψ is equal to f , the variety Jf,ψ
acquires good reduction everywhere over the maximal real subfield of Q(ζf ). The
dimension of Jf,ψ is equal to the dimension of the vector space of cusp forms of
weight 2 for the modular group �1(f ) and character ψ . For f > 1 it is given by

dim Jf,ψ = f

12

∏

p|f

(
1+ 1

p

)
− 1

2
#{d|f : gcd

(
d,
f

d

)
= 1}

−1

4

∑

x∈Z/fZ
x2+1=0

ψ(x)− 1

3

∑

x∈Z/fZ
x2+x+1=0

ψ(x).

This formula [5] easily implies that for any conductor f �∈ {1, 3, 4, 5, 7, 8, 9, 11,
12, 15} there exists a character ψ of conductor f , for which Jf,ψ �= 0. These
happen to be the conductors f for which the genus of X1(f ) is at least 2.
Incidentally, we recall that conductors f are never congruent to 2 (mod 4). This
is no restriction since Q(ζf ) = Q(ζf/2) whenever f ≡ 2 (mod 4).

This paper is concerned with the other two statements of Theorem 1.1. Their
proof proceeds by studying finite flat group schemes and their extensions by one
another over the global rings Z[ζf ]. We give an outline of the strategy of the proof.
For the conductors f = 7 and 11 certain “exotic” group schemes over Z[ζf ]
appear. Below we discuss the modifications that need to be made in these cases.

First we show that for a suitable small prime number p, all simple p-group
schemes over Z[ζf ] do, in fact, have order p. Here p-group scheme is short for
“finite flat commutative group scheme ofp-power order” and ap-group scheme is
called simple if it does not have any non-trivial closed flat subgroup schemes. The
proof uses Fontaine’s and Abrashkin’s bounds [1,10] on the ramification of the
Galois action, Odlyzko’s discriminant bounds, global class field theory and some
group theory. Odlyzko’s bounds [12] are much stronger if one assumes the truth
of the Generalized Riemann Hypothesis (GRH). This explains why we obtain a
stronger theorem when we assume GRH.

Then we employ the classification theorem of Oort and Tate [20] and check
that the only group schemes of order p over Z[ζf ] are actually isomorphic to
the constant group scheme Z/pZ or its Cartier dual µp. This implies that every
p-group scheme admits a filtration with closed flat subgroup schemes and sub-
quotients isomorphic to either Z/pZ or µp. Under some further easily verifiable
conditions certain obstruction groups vanish and much more is true: one can show
that every p-group scheme G over Z[ζf ] admits an exact sequence

0 −→ M −→ G −→ C −→ 0
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with C a constant group scheme and M diagonalizable, i.e., M is Cartier dual to
a constant group scheme.

To complete the proof of the theorem for Q(ζf ), one applies this result to thep-
group scheme A[pk] of pk-th torsion points of the Néron model of
an abelian variety A over Q(ζf ) which is supposed to have good reduction
everywhere. Reducing A modulo a prime ideal leads to a contradiction when
k→∞ unless A = 0.

As we already pointed out, there are two notable exceptions to this outline and
these take up most of the paper. For f = 7 we take p = 2. Since 2 = ππ , where
π denotes the prime 1+√−7

2 ∈ Z[ζ7], there are four simple 2-group schemes over
Z[ζ7]. These are Z/2Z, µ2, a group scheme that is étale at π and multiplicative
at π and one for which it is the other way around. We complete the proof by
analyzing all possible extensions of these four group schemes by one another.

When f = 11 we also take p = 2. Under assumption of GRH we show that
there exist precisely three simple 2-group schemes over Z[ζ11]. These are Z/2Z,
µ2 and a certain self-dual group scheme E of order 4 that is local-local at 2. The
main difficulty is then to prove that any extension of the group schemeE by itself
is trivial.

In section 2 we provide the main ingredients of our proof. This leaves us with
the explicit condition of Prop.2.2, involving certain p-extensions of Q(ζf , ζp).
We check this condition, case by case, in section 3. The exceptional cases f = 7
and 11 are discussed in sections 4 and 5 respectively. For f = 11 we use the
theory of Honda systems for a local computation. The computation is done in
section 6.

It is not true that abelian varieties with good reduction everywhere over Q(ζf )
are necessarily isogeny factors of the Jacobian variety of X1(f ). The latter are
always isogenous to their Galois conjugates. Richard Pinch found the following
elliptic curve over Q(

√
509):

Y 2+XY+ 1+√509

2
Y = X3+(3+

√
509)X2+ 327+ 3

√
509

2
X+88+17

√
509.

It has good reduction everywhere. Modulo the two primes over 5 it has 3 and
8 rational points respectively. Therefore the curve is not isogenous to its Galois
conjugate and it cannot be an isogeny factor of J1(509).

For small conductors f not in the list of Theorem 1.1, the methods of this
paper still give substantial information about the abelian varieties over Q(ζf ) that
have good reduction everywhere. We mention the following result [18] without
proof.

Theorem. The elliptic curve E given by

Y 2 + (i + 1)XY + iY = X3 + iX2
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acquires good reduction everywhere over Q(ζ20). Moreover, under assumption
of the Generalized Riemann Hypothesis, every abelian variety over Q(ζ20) with
good reduction everywhere is isogenous to Eg for some g ≥ 0.

Finally, we remark that it is possible to prove similar results for other number
fields F of small root discriminant. See [16,17] for a study of abelian varieties
over real quadratic fields with good reduction everywhere. I would like to thank
Bas Edixhoven for many explanations and the referee for his numerous helpful
comments on an earlier version of this paper.

2. Finite flat group schemes of p-power order

In this section we collect the basic ingredients of our proof. Let R be a com-
mutative ring. For a prime p, a p-group scheme is a commutative finite flat
group scheme of p-power order over R. If G is a p-group scheme, so is its
Cartier dualG∨. The group schemesµpn of the pn-th roots of unity and their Car-
tier duals Z/pnZ are p-group schemes. A constant p-group scheme is an étale
p-group scheme over R with trivial Galois action on its points. By Galois theory,
a constant p-group scheme is isomorphic to a product of group schemes of the
form Z/pnZ. A diagonalizable p-group scheme is the Cartier dual of a constant
p-group scheme. Equivalently, it is a product of group schemes of the form µpn .

A p-group scheme is called simple if it does not admit any non-trivial closed
flat subgroup schemes. Every p-group scheme of order p is simple. In particular,
the p-group schemes Z/pZ and µp are simple. Every p-group schemeG admits
a filtration

0 = Gs ⊂ Gs−1 ⊂ . . . ⊂ G1 ⊂ G0 = G
by closed flat subgroup schemes with simple successive subquotients Gi/Gi+1.

The strategy to prove Theorem 1.1 is the same as in [10, section 3.4.3]. We
summarize it in the Theorem below.

Theorem 2.1. Let F be a number field and let OF be its ring of integers. Let p
be a prime. Suppose that

(A) All simple p-group schemes over OF have order p.
(B) The only p-group schemes of order p over OF are Z/pZ and µp.
(C) Over OF we have that

(i) every extension of a constant p-group scheme by a constant p-group
scheme is again constant,

(ii) every extension of a diagonalizable p-group scheme by a diagonalizable
p-group scheme is again diagonalizable,

(iii) any extension
0 −→ Z/pZ −→ G −→ µp −→ 0

splits.



Abelian varieties over cyclotomic fields with good reduction everywhere 417

Then

(I) For every finite p-group scheme G over OF there is an exact sequence

0 −→ M −→ G −→ C −→ 0

with M diagonalizable and C constant.
(II) There do not exist non-zero abelian varieties over F with good reduction

everywhere.

Proof. Note that the condition in (C)(iii) is equivalent to the condition that ev-
ery extension of a diagonalizable p-group scheme by a constant one is split. We
proceed by induction on the order of G. If G has order p, it is simple and by
(B) isomorphic to either Z/pZ or µp. Let G be an arbitrary p-group scheme
over OF . By condition (A), we can filter G with simple subquotients of order p.
By condition (B), all these subquotients are in fact isomorphic to either Z/pZ
or µp. Therefore there is an exact sequence 0 −→ H −→ G −→ P −→ 0
where P is either Z/pZ or µp. By induction there exists an exact sequence
0 −→ M −→ H −→ C −→ 0 withM diagonalizable andC constant. Consider
the extension

0 −→ H/M −→ G/M −→ P −→ 0.

If P ∼= Z/pZ, we deduce from (C)(i) that the group scheme G/M is constant,
which implies (I). If P ∼= µp, we deduce from (C)(iii) that G/M ∼= C × P . Let
M ′ ⊂ G be the closed flat subgroup scheme which contains M and for which
M ′/M ∼= P . Then M ′ is an extension of P by M and hence, by (C)(ii) the group
scheme M ′ is multiplicative and by construction G/M ′ ∼= C. This proves (I).

To prove (II), letA be the Néron model of an abelian variety over F with good
reduction everywhere. Let n ≥ 1 and letA[pn] be the kernel of the multiplication
by pn map A −→ A. Since A has good reduction everywhere, A[pn] is a finite
flat group scheme over OF of order p2ng where g is the dimension of A. By (I)
there is an exact sequence

0 −→ M −→ A[pn] −→ C −→ 0,

with M diagonalizable and C constant. By Cartier duality and the fact that
the group schemes A[pn]∨ and Adual[pn] are isomorphic, there is another exact
sequence:

0 −→ C∨ −→ Adual[pn] −→ M∨ −→ 0.

This gives rise to a closed immersion of the constant rank p2ng group scheme
C ×M∨ into the abelian variety Bn = (A/M)× (Adual/C∨).

Now let q be a prime ofOF and let k denote the finite fieldOF/q. The abelian
varieties A/M and Adual/C∨ are isogenous to A over k. Therefore their numbers
of points are equal to the number of pointsA over k. It follows that the number of
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points of Bn over k does not depend on n. On the other hand, the abelian varieties
Bn have at least p2ng points over k. This is only possible when g = 0 and the
theorem follows.

As we will see below, conditions (B) and (C) of Theorem 2.1 are often true
and in any case, it is usually easy to check them. On the other hand, checking
condition (A) seems to be very hard in general. Conditions (A), (B) and (C) are
addressed in Propositions 2.2, 2.5 and 2.6 below.

We introduce certain p-group schemes that were constructed by N. Katz and
B. Mazur. See [11, Interlude (8.7)]. Let R be a ring and let ε ∈ R∗. Consider the
R-algebra

A = p−1⊕
i=0

R[Xi]/(X
p

i − εi).

For any R-algebra S with connected spectrum, the S-points of Tε = Spec(A) are
pairs (s, i)with 0 ≤ i < p and s ∈ S satisfying sp = εi . The scheme Tε is a finite
flat R-group scheme with multiplication of two points (t, i) and (s, j) given by

(t, i) · (s, j) =
{
(ts, i + j); if i + j < p,
(ts/ε, i + j − p); if i + j ≥ p.

The group scheme Tε is killed by p. The projection A −→ R[X0]/(Xp0 − 1)
induces a closed flat immersion of µp in Tε. There is an exact sequence

0 −→ µp −→ Tε −→ Z/pZ −→ 0.

Two extensions Tε and Tε′ are isomorphic whenever ε/ε′ is a p-th power. If R
is a field, the points of Tε generate the field extension R(ζp, p

√
ε). For R = Z,

p = 2 and ε = −1, the group scheme Tε is the group scheme of order 4 in [13,
p.58, Prop. 4.2., Ext.2].

In order to formulate the next proposition, we recall that the root discriminant
δF of a number field F is given by δF = |�F |1/n where �F denotes the absolute
discriminant of F and n = [F : Q].

Proposition 2.2. (Condition (A)) Let F be a finite Galois extension of Q and let
p be a prime. If every finite extension L of F satisfying the following conditions:

1. the field L is Galois over Q,
2. the extension F ⊂ L is unramified outside p(∞),
3. p
√
ε ∈ L∗ for every ε ∈ O∗F ,

4. the root discriminant of L satisfies

δL < δF · p1+ 1
p−1 ,

has the property that P = Gal(L/F(ζp)) is a finite p-group, then every simple
p-group scheme over OF has order p.
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Proof. LetG be a simplep-group scheme overOF . Thenp·G = 0. Let ε1, . . . , εs
denote generators of the group O∗F /(O

∗
F )
p. Let G′ be the product of G by all its

Gal(F/Q)-conjugates, byµp and by the Katz-Mazur group schemes Tε1, . . . , Tεs .
The group schemeG′ is a p-group scheme overOF . Its points generate an exten-
sion L of F that is Galois over Q by construction. SinceG′ has p-power order, it
is étale at the primes not dividing p and hence condition 2 is satisfied. The field L
satisfies condition 4 becauseG′ is killed byp so that [10, Cor.3.3.2] applies. Since
the points of the group scheme Tεi generate the field F(ζp, p

√
εi), condition 3 is

also satisfied.
Therefore, by assumption, P = Gal(L/F(ζp)) is a p-group. Since the sum-

mands of G′ are defined over F , the group P acts on each summand of G′(F )
and in particular on the p-groupG(F). We conclude that P has a non-trivial fixed
point in G(F). Since P is a normal subgroup of Gal(L/F), the P -invariants are
a Galois submodule of G(F). The Zariski closure of the corresponding F -group
scheme is a flat closed subgroup scheme of G. Since G is simple, it is equal to
G. This implies that P acts trivially onG(F) and hence that the Galois action on
G(F) factors through � = Gal(F (ζp)/F ).

The group � is cyclic of order a divisor of p − 1. The Fp[�]-module G(F)
is therefore a product of 1-dimensional eigenspaces. Since G is simple, there is
only one such eigenspace and G has order p, as required.

LetR be a Noetherian ring, let p ∈ R and letGrR denote the category of finite
flat R-group schemes. Let R̂ = lim← R/pnR and let C be the category of triples

(G1,G2, θ) where G1 is a finite flat R̂-group scheme, G2 is a finite flat R[ 1
p

]-

group scheme and θ : G1 ⊗R̂ R̂[ 1
p

] −→ G2 ⊗R[ 1
p

] R̂[ 1
p

] is an isomorphism of

R̂[ 1
p

]-group schemes. Morphisms in C are pairs of morphisms of group schemes
that are compatible with the morphisms θ .

Proposition 2.3. Let R be a Noetherian ring and let p ∈ R. The functor
GrR −→ C that sends an R-group scheme G to the triple (G ⊗R R̂,G ⊗R
R[ 1

p
], id ⊗R R̂[ 1

p
]) is an equivalence of categories.

Proof. The proposition is an immediate consequence of [3, Thm.2.6]. Here
M. Artin proves a similar equivalence of categories for finitely generated
R-modules rather than finite flatR-group schemes, but the result for group schemes
follows directly from functoriality.

Corollary 2.4. LetR be a Noetherian ring, letp ∈ R and letG andH be two finite
flat group schemes over R. There is a natural exact “Mayer-Vietoris” sequence

0 −→ HomR(G,H) −→ HomR̂(G,H)× HomR[ 1
p

](G,H)

−→ HomR̂[ 1
p

](G,H)
δ−→ Ext1

R(G,H) −→ Ext1
R̂
(G,H)

× Ext1
R[ 1

p
]
(G,H) −→ Ext1

R̂[ 1
p

]
(G,H)
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where δmaps a R̂[ 1
p

]-morphism ϕ : G −→ H to the extension ofG byH that cor-
responds to the triple ((H×G)R̂, (H×G)R[ 1

p
], θ)where θ(h, g) = (h+ϕ(g), g).

Proof. Since this result plays a central role in our computations, we present its
proof in some detail. Since R̂ ×R[ 1

p
] is faithfully flat over R, the first morphism

is injective. Exactness at the second group in the sequence is a direct consequence
from Prop.2.3. To show that the sequence is exact at the third group, we observe
that for ϕ ∈ HomR̂[ 1

p
](G,H) the extension δ(ϕ) is trivial if and only if there exists

f ∈ HomR[ 1
p

](G,H) such that the morphism (H×G)R̂[ 1
p

] −→ (H×G)R̂[ 1
p

] given

by (h, g) �→ (h+(f +ϕ)(g), g) can be extended to a morphismψ over R̂. This in
turn is equivalent to the existence of a pair (ψ, f ) ∈ Ext1

R̂
(G,H)×Ext1

R[ 1
p

]
(G,H)

mapping to ψ − f = ϕ in Ext1
R̂[ 1

p
]
(G,H).

To prove exactness at the group Ext1
R(G,H), letX be an extension ofG byH

over R. Suppose that f and f ′ are isomorphisms of X with the trivial extension
H × G over R̂ and R[ 1

p
] respectively. Over the ring R̂[ 1

p
] the morphism f ′f −1

is an automorphism of the extension H × G. In other words, f ′f −1(h, g) =
(h + ϕ(g), g) for some ϕ ∈ HomR̂[ 1

p
](G,H) and hence δ(ϕ) = [X]. Finally,

suppose that X and X′ are extensions of H by G over the rings R̂ and R[ 1
p

] re-

spectively. Let θ : X −→ X′ be an isomorphism over R̂[ 1
p

]. Then the R-group
scheme that corresponds via Prop.2.3 to the triple (X,X′, θ) is an extension ofH
by G over R that maps to the pair (X,X′) ∈ Ext1

R̂
(G,H)× Ext1

R[ 1
p

]
(G,H).

This completes the proof of the corollary.

In the applications, R is the ring of integers of a number field F , the element
p is a prime number, and G and H are p-group schemes. Then G and H are
étale over R[ 1

p
] and we can identify them with their Galois modules. The Galois

action is unramified outside p. The ring R̂ is a finite product of finite extensions
of Zp over which we can apply the theory of Oort-Tate [20], Raynaud [15] and
Fontaine [8,9]. Finally, the ring R̂[ 1

p
] ∼= F ⊗ Qp is a product of p-adic fields.

Over each of these fields the group schemes can be identified with their local
Galois modules. Recently Fabrizio Andreatta extended Cor.2.4 by constructing a
natural long exact sequence involving the higher Ext-groups [2].

For the sake of simplicity we formulate the next two propositions for com-
plex number fields F only. This is fine for our main application, which is the
field F = Q(ζf ). The assumption only makes a difference when p = 2. In this
case one should replace the class numberhF by the so-called narrow class number.
We do not need this and leave the generalization to arbitrary F to the reader.

Proposition 2.5. (Condition (B)) Let F be a complex number field of class num-
ber hF and let p be a prime for which

gcd(p − 1, hF ) = 1.
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If either of the following conditions is satisfied, the only group schemes of order p
over the ring of integers OF are µp and Z/pZ.

(a) p is prime in OF .
(b) p is odd and unramified in F . Moreover, the sequence

O∗F −→ (OF/pOF )
∗ N−→(Z/pZ)∗ −→ 0

is exact. Here N : OF −→ Z −→ Z/pZ denotes the norm map reduced
mod p.

(c) the p-the root of unity ζp is in OF and 1 − ζp is prime in OF . Moreover the
reduction map O∗F −→ (OF/(1− ζp)OF )∗ is surjective.

Proof. Let G be a p-group scheme of order p over OF . The proof makes use
of the local results in the Oort-Tate paper [20] and of Proposition 2.3 above.
Alternatively one can apply [20, Thm.3].

Part (a) is the statement of the last corollary of [20].
Since gcd(p−1, hF ) = 1, the conditions of (b) imply by class field theory that

every Dirichlet character of F of order dividing p−1 that is unramified outside p
factors through Gal(F (ζp)/F ). Since Aut(G) has order p − 1, this implies that
the Galois group acts on the points of G through a power ωi of the Teichmüller
character ω. Let p be a prime of F dividing p. Since p is unramified, it follows
from [20, p.15, Remark 5] that over the completion at p, the group scheme G is
isomorphic to Z/pZ,µp or an unramified twist of these group schemes. Therefore
either ωi or ω1−i is unramified at p. The character ω has order p − 1 and since
p �= 2, it is non-trivial and hence ramified at p. It follows that i = 0 or 1. When
i = 0, the Galois action is trivial and hence G is constant over each completion.
By Prop.2.3 it is isomorphic to Z/pZ over OF . Similarly, when i = 1 we have
that G ∼= µp.

In case (c), class field theory and the fact that gcd(p − 1, hF ) = 1 imply that
every character of of F of order dividing p − 1 that is unramified outside p is
trivial. Therefore the Galois group acts trivially on the points ofG. By [20, p.14]
the Hopf algebra ofG over the completion ÔF at the prime (1− ζp) has the form
ÔF [X]/(Xp − aX) for some divisor a of p. Since the points ofG are rational, a
must be a (p − 1)-th power in ÔF . Therefore a = 1 or −p times the (p − 1)-th
power of a unit, corresponding to the group schemes Z/pZ and µp respectively.
Proposition 2.3 implies then that G ∼= Z/pZ and µp over OF .

This proves the proposition.

Proposition 2.6. (Condition (C)) Let F be a complex number field and let p be a
prime.

(i) If p does not divide the class number of F , then any extension overOF of con-
stant p-group schemes by ane another is constant and every extension over
OF of diagonalizable p-group schemes by one another is diagonalizable.
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(ii) Suppose that p does not divide the class number of F(ζp). If either of the
following conditions is true, every extension

0 −→ Z/pZ −→ G −→ µp −→ 0

is split.
1. The absolute ramification index ep satisfies ep < p − 1 for all primes p

of F over p.
2. We have that ζp ∈ F and there is only one prime p over p in F .

Proof. (i) See also [10, section 3.4.3]. Suppose that there is an exact sequence

0 −→ C1 −→ G −→ C2 −→ 0

with C1 and C2 constant. Then G is étale and its points generate an unramified
abelian p-extensionL ofF . Since p does not divide the class number hF , we have
that L = F , so thatG is constant by Galois theory. This proves the first statement
of (i). The second follows by Cartier duality from (i).

To prove part (ii), we observe that Z/pZ is étale while µp is connected at
the primes over p. This implies that HomOF⊗Zp (µp,Z/pZ) = 0. Since µp and
Z/pZ are flat, it follows that HomOF (µp,Z/pZ) = 0. Moreover, any extension
of µp by Z/pZ is split over OF ⊗ Zp, since over the completions at the primes
over p the connected components of G give sections µp −→ G. It follows that
G is killed by p over OF ⊗ Zp. Since G is flat, it is also killed by p over OF .
This implies that the extension L obtained by adjoining the points of G to F(ζp)
has degree dividing p and is unramified at all primes. Since p does not divide the
class number of F(ζp), it follows that L = F(ζp). Therefore the exact sequence
of Galois modules is split over F and hence G is split over OF [ 1

p
].

Therefore, by Cor.2.4 there is an exact sequence

0 −→ HomOF [ 1
p

](µp,Z/pZ) −→ HomF⊗Qp
(µp,Z/pZ)

−→ Ext1
OF
(µp,Z/pZ) −→ 0

If ep < p − 1 for all primes p over p, the p-th roots of unity are not contained
in any of the completions at p. This implies that HomF⊗Qp

(µp,Z/pZ) = 0 and
hence Ext1

OF
(µp,Z/pZ) = 0 as required. If ζp ∈ F and there is only one prime

over p, the first and second group in the exact sequence have order p. It follows
that Ext1

OF
(µp,Z/pZ) vanishes as required.

This proves the proposition.

Proposition 2.6 does not discuss extensions of the form

0 −→ µp −→ G −→ Z/pZ −→ 0.

over rings of integersOF of number fields F . These may be non-trivial when the
ring OF contains units of infinite order. The group schemes constructed by Katz
and Mazur [11, Interlude 8.7] provide examples of such non-trivial extensions.
See [12, p.58, Prop.4.1] for the case F = Q.
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3. Cyclotomic fields

In this section we investigate conditions (A), (B) and (C) of Theorem 2.1.
Before doing this, we recall the following group theoretic facts. These are useful
in reducing the computations below.

Lemma 3.1. Let � be a finite group. Let �′ denote its commutator subgroup and
let �′′ denote the commutator subgroup of �′. Then �′′ admits no subgroups
H �= �′′ that are normal in � and for which �′′/H is cyclic of order prime to
[�′ : �′′].

Proof. LetH ⊂ �′′ be a a normal subgroup of� for which�′′/H has order prime
to [�′ : �′′]. Consider the exact sequence of groups

1 −→ �′′/H −→ �′/H −→ �′/�′′ −→ 1.

Since the orders of �′/�′′ and �′′/H are coprime, the sequence splits. Conjuga-
tion induces a homomorphism h : � −→ Aut(�′′/H), because �′′ and H are
normal subgroups of �. Since Aut(�′′/H) is abelian, �′ is contained in the kernel
of h. Therefore �′/�′′ acts trivially on �′′/H . It follows that �′/H is abelian and
hence that �′′ = H as required.

Corollary 3.2. Let � be a finite group satisfying
– �′/�′′ is a 2-group;
– #�′′ < 25.

Then either �′′ is a 2-group or 9 divides the order of �′′.

Proof. First of all, we note that �′′ has order less than 60, so that it is solvable.
Let H ⊂ �′′ be the minimal subgroup for which �′′/H is abelian of odd order. It
is characteristic and hence normal in �. Since #�′′ < 25, Lemma 3.1 implies that
either �′′/H has order 9, in which case the proof is complete, or �′′ = H . In the
latter case �′′/�′′′ is a 2-group.

If�′′/�′′′ is cyclic, thenM = �′′′/�′′′′ is a group of odd order. Since #M < 25,
an application of Lemma 3.1 to the group �′/�′′′′ shows that M has order 9 or is
trivial. In either case the proof is complete. If �′′/�′′′ is not cyclic, it has order
at least 4 and hence #�′′′ ≤ 6. An application of Lemma 3.1 to �′ shows that
�′′′/�′′′′ is a 2-group. If the order of �′′′/�′′′′ is 1 or 4, the group �′′′′ is clearly
trivial and we are done. If the order is 2, the group �′′′′ has odd order and an
application of Lemma 3.1 to the group �′′ shows that �′′′′ is trivial as well.

This completes the proof of the corollary.

We deal with the casesf = 1, 3 and 4 by observing that the three corresponding cy-
clotomic fields are subfields of Q(ζ12). For each of the remaining conductors f we
choose a suitable prime p. Since we employ Odlyzko’s discriminant bounds [12]
to verify condition (A), it is important that p is small. For f = 5, 7, 8, 9, 11, 12
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and 15 we choose p = 2, 2, 3, 2, 2, 3 and 2 respectively. In this section we do not
discuss the exceptional cases cases f = 7 and 11. These are dealt with in sections
4 and 5 respectively.

The fact that conditions (B) and (C) are satisfied for f = 5, 8, 9, 12 and 15
follows from Propositions 2.5 and 2.6. We leave the easy verifications to the reader
and concentrate on condition (A). We show that it too is satisfied in each case so
that Theorem 2.1 applies and Theorem 1.1 follows for each conductor f in the
list.

For the fields L of Proposition 2.2 we first use Odlyzko’s discriminant bounds
to transform the bound on the root discriminant of the extension L of F = Q(ζf )
into an upper bound for the degree of L over Q. By Condition (A) the field L
contains the extension F ′ = F( p√O∗F ) of F . In all eight cases Odlyzko’s bounds
luckily imply that [L : F ′] < 60, so that Gal(L/F ′) is solvable. We use class field
theory and group theory to show that Gal(L/F ′) is a p-group. This implies that
Gal(L/F(ζp)) is a p-group, which is precisely what we need to know to be able
to apply Prop.2.2 to verify condition (A).

All computations can easily be done by hand. For class numbers of cyclotomic
fields, see L.C. Washington’s book [21, Ch.11]. For discriminant bounds, see the
tables in J. Martinet’s paper [12].

Case. f = 5. In this case p = 2 and δL < 4 · 53/4 = 13.375 . . .. From the table
in [12] we read that [L : Q] ≤ 42. We have the following inclusions

Q ⊂
4

Q(ζ5) ⊂
4

Q(ζ20,
√
ε) ⊂

≤2
L,

where ε denotes the unit (1+√5)/2 of Z[ζ5]. We conclude that Gal(L/Q(ζ5)) is
a 2-group.

Case. f = 8. In this case p = 3 and δL < 4 · 33/2 = 20.785 . . .. From the table
in [12] we read that [L : Q] < 900. We have the following inclusions

Q ⊂
4

Q(ζ8) ⊂
2

Q(ζ24) ⊂
3

Q(ζ24,
3
√
ε) ⊂

≤37
L,

where ε denotes the unit 1 + √2 of Z[ζ8]. Let � = Gal(L/Q(ζ24)). The class
number of Q(ζ24) is 1. There are two primes p and p′ over 3 in Z[ζ24]. They satisfy
p2p′ = (√−3). The units ζ24 and 1 − ζ24 and their Galois conjugates generate a
subgroup of index 3 inside the group

(Z[ζ24]/(3))∗ ∼= F∗9 × F∗9 × F9 × F9.

We briefly explain how to do this short computation. Other similar calculations
in this section are left to the reader. Let ζ denote the 8th root of unity ζ 9

24 ∈
Z[ζ24]. Since X4 + 1 ≡ (X2 +X − 1)(X2 −X − 1) (mod 3), we have that, say,
ζ 2 + ζ − 1 ≡ 0 (mod p) and ζ 2 − ζ − 1 ≡ 0 (mod p′). For each of the order 8
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cyclic groups (Z[ζ24]/p)∗ and (Z[ζ24]/p′)∗ we choose the image of ζ as a genera-
tor. Since ζ24 ≡ ζ (mod

√−3), we identify the image of ζ24 in (Z[ζ24]/(
√−3))∗

with the vector (1, 1) in Z/8Z× Z/8Z. Since

1− ζ24 ≡ 1− ζ ≡ −ζ 2 ≡ ζ 6 (mod p),

≡ 1− ζ ≡ −ζ−1 ≡ ζ 3 (mod p′),

the image of 1 − ζ24 is identified with the vector (6, 3). Since the vectors (1, 1)
and (6, 3) generate the additive group Z/8Z× Z/8Z, the images of the units ζ24
and 1− ζ24 generate the unit group (Z[ζ24]/(

√−3))∗.

It remains to deal with the 3-part. The 8th powers of the units ζ24 and 1− ζ24
are contained in it. Clearly ζ3 = ζ 8

24 is a cube root of unity. Put π = ζ3 − 1. The
conjugates of 1− ζ a24 are of the form 1− ζ a(1+ π)a for a ∈ (Z/24Z)∗. We have
that

(1− ζ a(1+ π)a)8 ≡ (1− ζ a)8 − 8aπζ a(1− ζ a)7 ≡ 1+ aζ a

1− ζ a π (mod π2).

The multiplicative group (Z[ζ24]/(3))∗ modulo the subgroup generated by the
units ζ24 and 1 − ζ24 and their conjugates is isomorphic to the additive group
Z[ζ24]/(

√−3)modulo the subgroup generated by 1 and by the numbers aζ a

1−ζ a for
a ∈ (Z/24Z)∗. Equivalently, it is isomorphic to the additive group of the ring
F3[X]/(X4 + 1) modulo the subgroup generated by 1 and by the elements aXa

1−Xa .
It suffices to take a = 1 and 5 and the quotient group turns out to have order 3.
This completes the computation.

It follows from class field theory that the ray class field of Q(ζ24) of conduc-
tor (3) = p2p′2 is an extension of degree dividing 3. The relative discriminant of
K = Q(ζ24,

3
√
ε) over Q(ζ24) is equal to 9. Therefore, by the conductor discri-

minant formula, K is equal to the ray class field of conductor (3). Let K ′ be the
maximal subfield ofLwhich is an abelian extension of Q(ζ24). ThenK ⊂ K ′. IfK ′

were strictly larger than K , then there would exist characters of Gal(K ′/Q(ζ24))

of conductor pap′b with either a or b at least 3. The conductor discriminant for-
mula then implies that δK ′ ≥ 376/72 · δQ(ζ24) = 4 · 314/9 which contradicts the fact
that δK ′ ≤ δL < 4 · 33/2. We conclude that �′ = Gal(L/K) is the commutator
subgroup of � = Gal(L/Q(ζ24)).

Consider �′/�′′. It is the Galois group of the maximal abelian extension of
K inside L. The root discriminant of K is equal to 37/6 · 4 ≈ 14.411. Therefore
by Odlyzko’s bounds, the absolute degree of its Hilbert class field is at most 60
and the class number hK of K satisfies hK < 60/24 and hence hK ≤ 2. Since
Gal(K/Q(ζ24)) is cyclic of order 3 and Q(ζ24) has class number 1, the class
number hK cannot be equal to 2. Therefore hK = 1. Since K is totally ramified
over Q(ζ24) at the primes over 3, the residue fields of these primes are the same
and, just like Q(ζ24), the field K does not admit any extensions that are at most
tamely ramified at the primes over 3.



426 R. Schoof

This implies that �′/�′′ and hence �/�′′ are 3-groups. However, �/�′ is cy-
clic and this implies that �′/�′′ is trivial. Since the group �′ has order at most 37,
it is solvable and we conclude that �′ itself is trivial. Therefore Gal(L/Q(ζ24))

has order 3 and is a 3-group as required.

Case. f = 9. In this case p = 2 and δL < 4 · 33/2 = 20.785 . . .. From the table
in [12] we read that [L : Q] < 900. We have the following inclusions

Q ⊂
6

Q(ζ9) ⊂
2

Q(ζ36) ⊂
4

Q(ζ36,
√
ε1,
√
ε2) ⊂≤18

L,

where ε1 and ε2 denote a basis for the unit group Z[ζ9]∗ modulo torsion. Let
� = Gal(L/Q). Since the root discriminant of Q(ζ36·2) = 4 · δQ(ζ9) > δL, the
field Q(ζ36) is the largest abelian extension of Q contained in L and hence the
commutator subgroup �′ of � is equal to Gal(L/Q(ζ36)).

The class number of Q(ζ36) is 1 and a short computation shows that the group

(Z[ζ36]/(2))∗ ∼= F∗64 × F64

modulo the group of units generated by the global units ζ36, 1 − ζ36 and their
conjugates, has order 4. Since the conductor of K = Q(ζ36,

√
ε1,
√
ε2) is (2), it

follows from class field theory thatK is equal to the ray class field of conductor 2
of Q(ζ36). If Q(ζ36) admitted an abelian extension insideLwhich is strictly larger
thanK , this extension would have conductor divible by (1+ i)3. By the conductor
discriminant formula its root discriminant would be at least 217/8 ·δQ(ζ9) > δL. This
is impossible and we conclude that K is the largest abelian extension of Q(ζ36)

insideL. The Galois group�′ = Gal(L/Q(ζ36)) is the commutator subgroup of�
and the commutator subgroup �′′ of �′ satisfies #�′′ ≤ 18.

By Cor.3.2, �′′ and hence �′ are either 2-groups, in which case we are done,
or the order of �′′ is divisible by 9. To see that the second possibility cannot occur,
we distinguish two cases. If #�′′ = 9, The fieldK admits an abelian extension of
degree 9 inside L that is at most tamely ramified at the prime over 2. This exten-
sion has absolute degree 432 and, by the conductor discriminant formula, its root
discriminant is equal to 267/35 ·33/2 = 18.876 . . .. Odlyzko’s discriminant bounds
imply then that its absolute degree is less than 250, a contradiction. On the other
hand, if #�′′ = 18, the field L is an abelian degree 9 extension of a quadratic
extension K ′ of K . It has absolute degree 864. Let p denote the unique prime
over 2 inK and suppose that the conductor ofK ′ is pa . Then the root discriminant
ofK ′ is equal to 2a/16+7/4 · 33/2. Since δK ′ ≤ δL < 4 · 33/2, we have that a ≤ 3. A
final application of the conductor discriminant formula to the tame extension L
of K ′ shows that δL ≤ 2287/14433/2 = 20.684 . . .. Odlyzko’s bounds imply then
that [L : Q] < 800, a contradiction.

This completes the proof in this case.
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Case. f = 12. In this case p = 3 and δL < 18. From the table in [12] we read
that [L : Q] < 170. We have the following inclusions

Q ⊂
4

Q(ζ12) ⊂
3

Q(ζ36) ⊂
3

Q(ζ36,
3
√
ε) ⊂

≤4
L

where ε = 1 − ζ12 generates the unit group Z[ζ12]∗ modulo torsion. Consider
K = Q(ζ36,

3
√
ε). Let π = 1 − ζ9 denote the unique prime over 3 in Q(ζ36) and

let πa be the conductor ofK over Q(ζ36). By the conductor discriminant formula
the root discriminant of K is then equal to 31+a/9δQ(ζ12). Since K ⊂ L, we have
that 1 + a/9 < 3/2, i.e., a ≤ 4. This implies that δK ≤ 313/9 · √12 ≈ 16.935.
Therefore, by Odlyzko’s bounds, the Hilbert class field of K has absolute degree
at most 120. This implies that the class number of K satisfies hK ≤ 120/36. In
other words hK ≤ 3. Since the class number of Q(ζ36) is 1, the class number ofK
is not 2. In addition, since the unit 1− ζ36 generates the unit group of F9, the field
K does not admit any abelian extensions that are unramified outside 3 and at most
tamely ramified at 3. This implies that [L : K] divides 3 and the proof in this case
is complete.

Case. f = 15. In this case p = 3 and, under GRH, we have δL < 53/4 · 9 =
30.094 . . .. From the table (under GRH) in [12] we read that [L : Q] < 2400. We
have the following inclusions

Q ⊂
8

Q(ζ15) ⊂
81

K ⊂
≤3

L

where K denotes the extension of Q(ζ15) obtained by adjoining the cube roots
of the units of Z[ζ15]. To prove that Gal(L/Q(ζ15)) is a 3-group, it suffices to
show that [L : K] �= 2. Suppose [L : K] = 2. Then the 3-Sylow subgroup of
Gal(L/Q(ζ15)) is normal. This implies that Q(ζ15) admits a quadratic extension
inside L. Since the class number of Q(ζ15) is 1 and since the multiplicative group
F∗81 of the residue field of the unique prime over 3 is generated by the units ζ15
and 1 − ζ15, it follows from class field theory that the field Q(ζ15) admits no
quadratic extension that is unramified outside 3. This contradiction shows that
Gal(L/Q(ζ15)) is a 3-group, as required.

4. The case f = 7

In this section we discuss the exceptional case f = 7. We put F = Q(ζ7) and
OF = Z[ζ7]. Since we do not want to use Odlyzko’s stronger discriminant bounds
that are only valid under GRH, we are forced to work with the prime 2. The com-
plications for f = 7 are caused by the fact that 2 splits in F : we have that 2 = ππ
with π = −ζ7 − ζ 2

7 − ζ 4
7 = 1+√−7

2 ∈ OF . By [20, Introduction], there are there-
fore four simple group schemes of order 2 over OF . Apart from Z/2Z and µ2

there is the group scheme Gπ = Spec(A) where A = OF [X]/(X2 − πX), the
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comultiplication being given byX �→ 1⊗X+X⊗1−πX⊗X. The other group
scheme Gπ is both the Galois conjugate and the Cartier dual of Gπ . The group
scheme Gπ is isomorphic to Z/2Z over the completion at π and to µ2 over the
completion at π . For Gπ it is the other way around. It follows that condition (B)
of Theorem 2.1 is not satisfied for f = 7 and p = 2. It turns out that condition
(C) is not satisfied either: there is a non-split exact sequence

0 −→ Z/2Z
j−→Gπ ×Gπ −→ µ2 −→ 0. (∗)

Here the Hopf algebra homomorphism corresponding to j is the morphism

OF [X, Y ]/(X2 − πX, Y 2 − πY) −→ OF [T ]/(T 2 − T )
given by X �→ πT and Y �→ πT . Note that both group schemes Gπ and Gπ are
already defined over the quadratic subring Z[π ] of OF .

The proof that we give in this section is a modification of the proofs given
in sections 2 and 3. First we use Prop.2.2 to verify condition (A) and provide a
substitute for (B).

Theorem 4.1. Up to isomorphism there are precisely four simple 2-group schemes
over the ring Z[ζ7]. They are Z/2Z, µ2, Gπ and Gπ . All have order 2.

Proof. Let L be as in Proposition 2.2. We show that Gal(L/F) is a 2-group.
We have that δL < 75/6 · 4 = 20.245 . . .. From the table in [12] we read that
[L : Q] < 600. We have the following inclusions

Q ⊂
6

Q(ζ7) ⊂
2

Q(ζ28) ⊂
4

Q(ζ28,
√
ε1,
√
ε2) ⊂≤12

L,

where ε1 and ε2 are generators for the unit group Z[ζ7]∗ modulo torsion. Let
� = Gal(L/Q). Since the root discriminant of Q(ζ28·2) = 4 · δQ(ζ7) > δL, the
field Q(ζ28) is the largest abelian extension of Q contained in L and hence the
commutator subgroup �′ of � is equal to Gal(L/Q(ζ28)). We wish to show that
�′ is a 2-group.

The class number of Q(ζ28) is equal to 1. There are two primes p and p′ over 2
in Z[ζ28]. The units ζ7 and 1− ζ28 generate the group

(
Z[ζ7]/pp′

)∗ ∼= F∗8 × F∗8.

By class field theory, the field Q(ζ28) admits no extension that is unramified
outside 2 and at most tamely ramified at 2. Therefore �′/�′′ is a 2-group.

Since #�′′ ≤ 12, it follows from Cor.3.2 that either �′ is a 2-group, in
which case we are done, or �′′ has order 9. To exclude the second possibil-
ity, we first note that the absolute degree of L would be 432. Moreover, the
field K = Q(ζ28,

√
ε1,
√
ε2) is contained in the ray class field of conductor (2)

of Q(ζ28) and L is an abelian extension of K that is at most tamely ramified at
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the primes over 2. It follows from the conductor discriminant formula that the
root discriminant of L satisfies δL ≤ 267/36 ·75/6 = 18.386 . . .. Odlyzko’s bounds
imply then that [L : Q] < 200, a contradiction.

Therefore, by Prop.2.2, all simple 2-group schemes over Z[ζ7] have order 2.
Since 2 = ππ in Z[ζ7], it follows from the discussion in [20, Introduction] that
the only group schemes of order 2 are the ones listed. This proves the Theorem.

Next we study extensions of the four simple group schemes by one another
and provide a substitute for condition (C).

Proposition 4.2. Over the ring OF = Z[ζ7] we have the following.

(i) Every extension of a constant 2-group scheme by a constant 2-group scheme is
constant. Every extension of a diagonalizable 2-group scheme by a
diagonalizable 2-group scheme is diagonalizable.

(ii) Ext1
OF
(µ2,Z/2Z) has order 2. The exact sequence (*) represents the non-

trivial class.
(iii) Ext1

OF
(Gπ,Z/2Z) = Ext1

OF
(Gπ,Z/2Z) = 0 and Ext1

OF
(µ2,Gπ) = Ext1

OF

(µ2,Gπ) = 0.
(iv) Ext1

OF
(Gπ,Gπ) = Ext1

OF
(Gπ,Gπ) = 0 and Ext1

OF
(Gπ,Gπ) = Ext1

OF

(Gπ,Gπ) = 0.

Proof. Recall that F = Q(ζ7). The ring ÔF = OF ⊗ Z2 is the product of the
two completions Oπ and Oπ at π and π respectively. Both rings Oπ and Oπ are
unramified cubic extensions of Z2.

Since F has class number 1, part (i) follows from Prop.2.6 (i). To prove (ii)
one observes that over the ring ÔF the group schemeµ2 is connected while Z/2Z
is étale. Therefore HomÔF

(µ2,Z/2Z) and hence HomOF (µ2,Z/2Z) vanish. In
addition, any extension

0 −→ Z/2Z −→ G −→ µ2 −→ 0

is split over the ring ÔF ∼= Oπ × Oπ by the connected components. It fol-
lows that the field extension H of F generated by the points of G is everywhere
unramified. Since the class number of F is 1, we have that H = F . In other
words, the extensionG is locally as well as generically split. The Mayer-Vietoris
exact sequence of Cor.2.4 provides us therefore with an exact sequence

0 −→ HomOF [ 1
2 ](µ2,Z/2Z) −→ HomF⊗Q2(µ2,Z/2Z)

−→ Ext1
OF
(µ2,Z/2Z) −→ 0.

The group HomOF [ 1
2 ](µ2,Z/2Z) has order 2. On the other hand, since there are

two primes over 2 in F , the Q2-algebra F ⊗ Q2 is a product of two fields and
hence the order of HomF⊗Q2(µ2,Z/2Z) is 4. It follows that Ext1

OF
(µ2,Z/2Z)
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has order 2. Since the scheme Gπ × Gπ is connected, the exact sequence (*) is
not split and therefore it provides the non-trivial extension class. This proves (ii).

To prove (iii), let G be an extension of Gπ by Z/2Z over OF :

0 −→ Z/2Z −→ G −→ Gπ −→ 0.

Since the Oπ -group scheme Gπ is connected, the groups HomOπ (Gπ,Z/2Z)
and hence HomOF (Gπ,Z/2Z) vanish. Over Oπ the extension becomes 0 −→
Z/2Z −→ G −→ µ2 −→ 0. Therefore it is split by the connected component.
It follows that G is killed by 2 over Oπ . Since G is flat, it is also killed by 2
overOF . OverOπ the group schemeGπ is isomorphic to Z/2Z. This implies that
G is étale over Oπ . It follows that the field L obtained by adjoining the points
of G to F is unramified at all primes. Since the class number of F is 1, we have
that L = F and we see that the Galois action on G is trivial and hence that G is
split over OF [ 1

2 ]. By Galois theory G is then also split over Oπ .
In other words, G is generically split as well as locally split. By Cor.2.4 we

have an exact sequence

0 −→ HomOπ (Gπ,Z/2Z)× HomOF [ 1
2 ](Gπ,Z/2Z) −→

−→ HomF⊗Q2(Gπ,Z/2Z) −→ Ext1
OF
(Gπ,Z/2Z) −→ 0.

The groups HomOπ (Gπ,Z/2Z) and Hom
OF

[
1
2

](Gπ,Z/2Z) both have order 2 and

the group HomF⊗Q2(Gπ,Z/2Z) has order 4.We deduce that Ext1
OF
(Gπ,Z/2Z) =

0.
We conclude that Ext1

OF
(Gπ,Z/2Z) = 0 as well, and hence, by duality,

Ext1
OF
(µ2,Gπ) = Ext1

OF
(µ2,Gπ) = 0

as required.
Finally we prove (iv). First we consider extensions of Gπ by Gπ :

0 −→ Gπ −→ G −→ Gπ −→ 0.

Over the ringOπ the extension becomes 0 −→ Z/2Z −→ G −→ µ2 −→ 0 and
is split by the connected component. It follows that G is killed by 2. In addition,
adjoining the points of G to F gives a field extension H of degree at most 2 over
F , which is unramified outside π .

Over the ringOπ the extension looks like 0 −→ µ2 −→ G −→ Z/2Z −→ 0.
We compute Ext1

Oπ
(Z/2Z, µ2) by means of the exact sequence of fppf sheaves

0 −→ Z −→ Z −→ Z/2Z −→ 0. This gives an exact sequence

0 −→ µ2(Oπ) −→ Ext1
Oπ
(Z/2Z, µ2) −→ Ext1

Oπ
(Z, µ2) −→ 0.
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It follows from the Kummer sequence that Ext1
Oπ
(Z, µ2) is isomorphic to O∗π/

(O∗π)
2. The same computation over the quotient field Fπ of Oπ gives rise to the

following commutative diagram with exact rows

0 −→ µ2(Oπ) −→ Ext1
Oπ
(Z/2Z, µ2) −→ O∗π/(O

∗
π)

2 −→ 0




0 −→ µ2(Fπ) −→ Ext1
Fπ
(Z/2Z, µ2)

g−→ F ∗π/(F
∗
π )

2 −→ 0.

Here g is the Kummer map: if Fπ(
√
α) is the field generated by the points of an

extension in Ext1
Fπ
(Z/2Z, µ2), then g maps the class of the extension to α ∈ F ∗π

modulo squares. Since our G is an Oπ -group scheme, α is in O∗π . This implies
that the conductor of Fπ(

√
α) over Fπ is at most π2.

We conclude from all this that the field H generated by the points of G,
has conductor at most π2 over F . The class number of F is 1 and a short
computation shows that the units of OF generate the group O∗π/(1 + (π2)). It
follows then from class field theory that H = F . This implies that G is gener-
ically split. It follows that G is also split over the local field Fπ . Since the left
and rightmost vertical arrows in the diagram above are injective, so is the map
Ext1

Oπ
(Z/2Z, µ2) −→ Ext1

Fπ
(Z/2Z, µ2). It follows that G is also split over the

ring Oπ .
ThereforeG is locally split as well as generically split. It follows from Cor.2.4

that there is an exact sequence

0 −→ HomOF (Gπ,Gπ) −→ HomÔF
(Gπ,Gπ)× Hom

OF

[
1
2

](Gπ,Gπ) −→
−→ HomF⊗Q2(Gπ,Gπ) −→ Ext1

OF
(Gπ,Gπ) −→ 0

A computation of the groups involved gives the exact sequence

0 −→ 0 −→ (0× F2)× F2 −→ F2
2 −→ Ext1

OF
(Gπ,Gπ) −→ 0

implying that Ext1
OF
(Gπ,Gπ) = 0 and, by symmetry, that Ext1

OF
(Gπ,Gπ) = 0

as required.
Finally we consider extensions of Gπ by itself:

0 −→ Gπ −→ G −→ Gπ −→ 0.

Over the ring Oπ the extension looks like 0 −→ µ2 −→ G −→ µ2 −→ 0 and
over Oπ like 0 −→ Z/2Z −→ G −→ Z/2Z −→ 0. The absolute Galois group
of F acts on G(F) via a character χ of order at most 2 which is only ramified
at π . Then it acts on the points of the dual group via a character χ ′ that is unrami-
fied outside π . If G(F) were cyclic of order 4, then χ ′χ = ω4. Here ω4 denotes
the Teichmüller character giving the action on the 4th roots of unity. Since the
character ω4 has conductor 4, the conductors of χ and χ ′ are equal to π2 and
π2 respectively. We already saw above that the ray class fields of F of conductor
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π2 and hence of conductor π2 are trivial. This implies that ω4 = χ ′χ = 1, a
contradiction. Therefore G is killed by 2.

Since G is killed by 2, the Galois group acts on G(F) via a quadratic char-
acter χ that is unramified at π and for which ω2χ

−1 is unramified at π . Since
the Teichmüller character ω2 is trivial, this means that the action is everywhere
unramified and therefore trivial. We conclude thatG is generically split. Since the
Galois action on G is trivial and since G is étale over Oπ and multiplicative over
Oπ , the group schemeG is by Galois theory also split over the ringsOπ andOπ .
So,G is split both locally and generically. By Cor.2.4, there is an exact sequence

0 −→ HomOF (Gπ,Gπ) −→ HomÔF
(Gπ,Gπ)× HomOF [ 1

2 ](Gπ,Gπ) −→
−→ HomF⊗Q2(Gπ,Gπ) −→ Ext1

OF
(Gπ,Gπ) −→ 0.

A computation of the groups involved gives the exact sequence

0 −→ F2 −→ F2
2 × F2 −→ F2

2 −→ Ext1
OF
(Gπ,Gπ) −→ 0,

showing that Ext1
OF
(Gπ,Gπ) = 0 and, by symmetry, that Ext1

OF
(Gπ,Gπ) = 0

as required.

Corollary 4.3. Let G be a 2-group scheme over Z[ζ7]. Then it admits a filtration

0 ⊂ G1 ⊂ G2 ⊂ G
withG1 diagonalizable,G/G2 étale andG2/G1 isomorphic to a product of group
schemes isomorphic to Gπ and Gπ .

Proof. The proof is a variation on the proof of Theorem 2.1. We filter G with
closed flat subgroup schemes Gi in such a way that the subquotients are sim-
ple. By Theorem 4.1, the simple 2-group schemes are isomorphic to Z/2Z, µ2,
Gπ or Gπ . By Proposition 4.2, we can modify the filtration as follows. If for
some index i there are successive steps Gi−1 ↪→ Gi ↪→ Gi+1 in the filtration
with Gi/Gi−1

∼= Z/2Z and Gi+1/Gi
∼= Gπ or Gπ , then we apply Prop.4.2 (iii)

we replace Gi by another subgroup scheme G′i with Gi−1 ↪→ G′i ↪→ Gi+1

so that G′i/Gi−1
∼= Gπ or Gπ and Gi+1/G

′
i
∼= Z/2Z. If on the other hand

Gi/Gi−1
∼= Z/2Z and Gi+1/Gi

∼= µ2, then there are two possibilities. If the
extension

0 −→ Z/2Z −→ Gi+1/Gi−1 −→ µ2 −→ 0

is split, then we replaceGi by a subgroup schemeG′i withGi−1 ↪→ G′i ↪→ Gi+1

so that G′i/Gi−1
∼= µ2 or Gπ and Gi+1/G

′
i
∼= Z/2Z. If the extension is not split,

we apply Prop.4.2 (ii) we replace Gi by a subgroup scheme G′i with Gi−1 ↪→
G′i ↪→ Gi+1 so thatGi/Gi−1

∼= Gπ andGi+1/Gi
∼= Gπ . Loosely speaking, “we

can either push the subquotient Z/2Z to the right, or make it disappear”.
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This means that we can modify the filtration in such a way that we end up with
a filtration

0 ⊂ G2 ⊂ G
for which G/G2 is filtered with subquotients isomorphic to Z/2Z, while G2 ad-
mits a filtration without subquotients isomorphic to Z/2Z. We have “pushed all
subquotients isomorphic to Z/2Z to the right”. Similarly, applying Cartier duality,
we can push all subquotients µ2 occurring in the filtration ofG2 to the left. To be
sure, this process does not introduce any subquotients isomorphic to Z/2Z. The
result is a filtration

0 ⊂ G1 ⊂ G2 ⊂ G
whereG1 is an extension of group schemes isomorphic toµ2, the quotientG/G2 is
an extension of group schemes isomorphic to Z/2Z andG2/G1 admits a filtration
with group schemes isomorphic to Gπ and Gπ . It follows then from Prop.4.2 (i)
that G1 is diagonalizable and that G/G2 is constant. Moreover, Prop.4.2 (iv) im-
plies thatG2/G1 is a product of copies ofGπ andGπ . This proves the Corollary.

Proposition 4.4. There are no non-zero abelian varieties over F = Q(ζ7) with
good reduction everywhere.

Proof. Let A be the Néron model over OF = Z[ζ7] of an abelian variety with
good reduction everywhere and let n ≥ 1. By Corollary 4.3 the 2-group scheme
A[2n] admits a filtration

0 ⊂ G1 ⊂ G2 ⊂ A[2n]

with G1 diagonalizable, A[2n]/G2 étale and G2/G1 isomorphic to a product of
group schemes isomorphic to Gπ and Gπ . Since G2/G1 is annihilated by 2 and
since the group structure of A[2n](F ) is (Z/2nZ)2g, the order of G2/G1 is at
most 22g. As in the proof of Theorem 2.1, we note that the abelian varietiesA/G2

and Adual/G∨1 are all isogenous to A. Therefore they all have the same number
of points modulo a prime ideal of OF as A itself. It follows that the orders of the
group schemes G1 and A[2n]/G2 are bounded independently of n. This implies
that the order of A[2n] remains bounded as n→∞, but this is impossible unless
A = 0 as required.

5. The case f = 11

In this section we discuss the exceptional case f = 11. We study 2-group schemes
over Z[ζ11]. The main complication is the fact that Condition (A) of Theorem 2.1 is
not satisfied: there exists a simple 2-group schemeE of order 4 over Z[ζ11]. It is al-
ready defined over the subringR = Z[α], whereα = −ζ11−ζ 3

11−ζ 4
11−ζ 5

11−ζ 9
11 =

1+√−11
2 , and can be described in any of the three following ways.
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– LetE1 be the F4-vector space scheme [15, Ex.3.b] over R̂ = R⊗Z2
∼= Z2[ζ3]

with Hopf algebra R̂[T ]/(T 4−2T ). LetE2 be the R[ 1
2 ]-group scheme whose

corresponding Galois module is a 2-dimensional F2-vector space on which
Gal(Q/Q(

√−11)) acts irreducibly through the ray class group of Q(
√−11)

of conductor 2. Since 2 is inert in Q(
√−11) this ray class group has order 3.

Since the ray class field of conductor 2 of Q2(
√−11) = Q2(ζ3) is obtained by

adjoining a cube root of 2, there is an isomorphism ϕ : E1(Q2)
∼=−→E2(Q2)

of local Galois modules. The equivalence of categories of Prop.2.3 implies
then that there exists a groupscheme E over R corresponding to the triple
(E1, E2, ϕ). The group scheme E is self-dual, local-local over R̂ and admits
an automorphism of order 3 that turns it into an F4-vector space scheme overR.

– Alternatively one can construct the group schemeE as the 2-torsion subgroup
scheme of the Néron model E over R of the elliptic curve

Y 2 + Y = X3 −X2 − 7X + 10.

This is the curve 121D in the notation in the Antwerp Tables [4]. It is 121B
in J. Cremona’s Table [7]. The curve E admits complex multiplication by the
ring R and its reduction type at the prime

√−11 is I ∗0 . The component group
is of type 2× 2.

– Finally, although not very useful, we can describe the group scheme E
completely explicitly. Let f (X) = X3 − αX2 − αX + 1 ∈ R[X]. Then
E = Spec(R[X]/(g(X)) where

g(X) = Xf (X + α) = X4 + 2αX3 + (2α − 4)X2 − 2X.

The group law is given by

x + y + xy(6α − 14+ 5(α − 4)(x + y)+ 4α(x2 + y2)+ (16α − 9)xy

+(α + 9)(x2y + xy2)+ 2αx2y2)

and the automorphism of E given by

x �→ (5+ α)x + 3(1+ α)x2 − (1+ α)x3,

is of order 3.

We fix some notation. LetF = Q(ζ11) andOF = Z[ζ11].We write ÔF for the com-
pletion ofOF at the unique prime over 2 and F̂ for its quotient field. LetK denote
the ray class field of Q(

√−11) of conductor (2). We have thatK = Q(
√−11, β)

where β is a zero of the polynomial f above: it satisfies β3− αβ2− αβ + 1 = 0.
Since f (α) = −αα+1 = −2, the element π = α−β generates the unique prime
ofK over 2. We have that (π)3 = (2). The composite fieldH = FK = Q(ζ11, β)

is the ray class field of conductor (2) of F .
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Proposition 5.1. (GRH)The only simple 2-power order group schemes over Z[ζ11]
are Z/2Z, µ2 and E.

Proof. Let G be a simple 2-power order group scheme over OF = Z[ζ11]. Then
2 · G = 0. Let G′ be the product of the Galois conjugates of G by the group
scheme E and by the Katz-Mazur group schemes Tε. Here ε runs through an F2-
basis {−1, ε1, ε2, ε3, ε4} of the unit group O∗F modulo squares. Let L be the field
obtained by adjoining the points ofG′ to F . By Fontaine’s Theorem we have that
δL < δQ(ζ11) · 4 = 119/10 · 4 = 34.619 . . .. Odlyzko’s discriminant bounds give
(under GRH) that [L : Q] < 10000. We have the following inclusions of fields.

K ⊂
5

H ⊂
2

H(i) ⊂
24

K ′ ⊂
≤10

L.

/
3

/
3

/
3

Q(
√−11)

5⊂ F
2⊂ F(i)

Here K ′ = F(i,√ε1,
√
ε2,
√
ε3,
√
ε4).

Claim. Gal(L/H) is a 2-group.

To prove this we put � = Gal(L/Q(
√−11)). The subfield H(i) = Q(ζ11, i, β)

is an abelian extension of Q(
√−11). By class field theory any larger abelian ex-

tension inside L would have conductor at least (8) and hence root discriminant at
least 213/6 · 119/10, contradicting Fontaine’s bound. Therefore H(i) is the largest
abelian extension of Q(

√−11) inside L and the commutator subgroup of � is
equal to �′ = Gal(L/H(i)).

The root discriminant of H(i) is equal to 119/1024/3 = 21.809 . . . and Od-
lyzko’s bounds imply that the degree of its Hilbert class field is at most 170.
This implies that the class number of H(i) is at most 2. There is only one prime
over 2 in H(i). Its residue field is F210 and the multiplicative group of this field
is generated by the units ζ11, 1 − ζ44 and β. We briefly explain why. The group
#F∗1024 has order 3 · 11 · 31. Clearly ζ11 has order 11. Since f (1) = 1, we have
that β �≡ 1 (mod 2). Since the image of β is contained in the subfield F22 , it has
order 3. Finally, the image of the unit (1 − ζ44)

33 is congruent to the norm of
1− ζ11 ∈ F210 to the subfield F25 , which is (1− ζ11)(1− ζ−1

11 ) �= 1. Therefore it
has order 31. It follows, by class field theory, that H(i) does not admit any odd
degree abelian extensions that are unramified outside 2. This implies that �′/�′′

is a 2-group.
Since K ′ is abelian over H(i), we have that [�′ : �′′] ≥ 16 and hence #�′′ ≤

10. Cor.3.2 implies therefore that either �′′ is a 2-group in which case the claim
follows, or �′′ has order 9. To exclude the second possibiliy, we observe that K ′

is the fixed field of �′′, so that the Galois group ϒ = Gal(K ′/K(i)) acts on �′′

by conjugation. The group ϒ has order 80. It is isomorphic to the semi-direct
product of Z/5Z by F4

2, the group (Z/5Z) acting non-trivially on F4
2. Since the
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order of Aut(�′′) is not divisible by 5, all elements in ϒ of order 5 are contained
in the kernel of the natural map ϒ −→ Aut(�′′). Therefore ϒ , being generated
by its 5-Sylow subgroups, acts trivially on �′′. Since the orders of ϒ and �′′ are
coprime, this implies that there is an extensionK(i) ⊂ L′ ⊂ Lwith Gal(L′/K(i))
abelian of order 9, that is unramified outside the unique prime over 2. Since the
root discriminant of K(i) is 111/224/3 = 8.35 . . ., Odlyzko’s bounds imply that
the class number of K(i) is 1. Since there lies only one prime over 2 in K(i) and
since the multiplicative group of its residue field has order 3, the field L′ cannot
exist by class field theory.

This proves that �′′ and hence Gal(L/H) are 2-groups and the claim follows.

Since the group scheme G is simple, its points G(F) are fixed by the 2-
group Gal(L/H) and the absolute Galois group of F acts onG(F) via the group
� = Gal(H/F), which is of order 3. Since irreducible F2[�]-modules are of
order 2 or order 4, we conclude that G has order 2 or order 4. If the order of G
is 2, it follows from [20, Thm.3] thatG ∼= Z/2Z orG ∼= µ2. Here we use the fact
that the class number of F is 1 and that 2 is a primitive root modulo 11.

If the order of G is 4, the group � acts non-trivially on G(F) and therefore
the points of G and E constitute isomorphic Galois modules. In other words,

there is an isomorphism ϕ : G
∼=−→E over the ring OF [ 1

2 ]. Since E is local-local
at 2, we conclude from Raynaud’s paper [15, 3.3.5] that there is an isomorphism

ϕ′ : G
∼=−→E over ÔF as well. By composing the isomorphismϕwith an automor-

phism of E, we can ensure that the isomorphisms ϕ, ϕ′ agree over F̂ . Therefore
the equivalence of categories of Prop.2.3 implies that the group schemes E and
G are isomorphic over OF . This proves the Proposition.

Next we prove a substitute for Prop.2.6. Note that we do not assume GRH
here.

Proposition 5.2. Over OF = Z[ζ11] we have the following

(i) Every extension of a constant 2-group scheme by a constant 2-group scheme is
constant. Every extension of a diagonalizable 2-group scheme by a
diagonalizable 2-group scheme is diagonalizable.

(ii)
Ext1

OF
(µ2,Z/2Z) = Ext1

OF
(E,Z/2Z) = Ext1

OF
(µ2, E) = 0.

(iii) Any extension of E by itself splits.

Proof. Since the class number of F is 1, part (i) follows from Prop.2.6 (i). The
fact that Ext1

OF
(µ2,Z/2Z) = 0 follows from Prop.2.6(ii). To prove the other two

statements of part (ii), consider an extension of E by Z/2Z:

0 −→ Z/2Z −→ G −→ E −→ 0.

Since over the ring ÔF , the group scheme E is local while Z/2Z is étale, the
connected component splits the sequence. This implies that G is killed by 2.
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Moreover, the field extension obtained by adjoining the points ofG to F is unra-
mified and therefore trivial. We conclude that G is locally and generically split.
Since there is only one prime over 2 and since HomF̂ (E,Z/2Z) = 0, it follows
from the Mayer-Vietoris sequence of Cor.2.3 thatG is actually split overOF . The
fact that Ext1

OF
(µ2, E) = 0 follows by duality. This proves (ii).

The proof of part (iii) takes up the rest of the paper. It involves a calculation
with Honda systems that we give in section 6. We first consider extensions ofE by
itself over the ring ÔF . The elliptic curve E given by Y 2+Y = X3 is supersingular
in characteristic 2. Its 2-torsion points generate the extension F̂ ( 3

√
2) of F̂ . This

field is equal to Ĥ = F̂ (β), the completion of H at the unique prime over 2. It
follows that the Galois modules associated to E[2] and E are isomorphic. By [15,
3.3.5] the two local-local group schemes E[2] andE are isomorphic over ÔF . For
each of the three automorphism τ of E , there is an extension E[4]τ of E by E
given by

0 −→ E[2] −→ E[4]
τ ·[2]−→ E[2] −→ 0

Here [m] : E −→ E denotes the multiplication by m morphism and E[m] is its
the kernel. The extensions E[4]τ are non-trivial and pairwise non-equivalent as
extensions of abelian groups.

For later reference we remark that theX-coordinates of the 4-torsion points of
the elliptic curve E are zeroes of the polynomial 2X6 + 10X3 − 1. It follows that
the 4-torsion points generate the bi-quadratic extension Ĥ (

√−1, 4
√−3) of Ĥ .

The three quadratic characters have conductor π4 over Ĥ .

Claim 1. The group Ext1
ÔF
(E,E) is generated by the extensions that are killed

by 2 and by the extensions E[4]τ .

Let � = Gal(Q2/F̂ ). From the spectral sequence Hp(�,Extqab(E,E)) �⇒
Extp+q

F̂
(E,E) we deduce the following commutative diagram with exact rows

0 −→ Ext1
ÔF ,2

(E,E) −→ Ext1
ÔF
(E,E) −→ cok −→ 0



0 −→ Ext1

F̂ ,2
(E,E) −→ Ext1

F̂
(E,E) −→ Ext1

ab(E,E)
�

Here the index ‘2’ means ‘annihilated by 2’. Any extension G of E by E over
ÔF that is killed by 2 over F̂ , is itself killed by 2. Therefore the left hand square
is Cartesian and the rightmost vertical arrow is injective. Since the �-modules
Ext1

ab(E,E) and Homab(E,E) are dual to one another, the order of Ext1
ab(E,E)

�

is equal to #Homab(E,E)
� = 4 . It follows that the index of Ext1

ÔF ,2
(E,E) in

Ext1
ÔF
(E,E) is at most 4. Since the images of the extensions E[4]τ are all distinct

in Ext1
ab(E,E), the claim follows.
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Claim 2. The points of E generate the cyclic cubic extension H = F(β) of F .
The points of an extension G of E by E over OF generate a field extension of H
that is a composite of quadratic extensions of conductor at most π4.

Only the statement about the conductors needs proof. This is a local question. Re-
call that Ĥ = F̂ (β) is the quotient field of ÔH , the completion ofOH atπ = α−β,
the unique prime over 2. IfG is locally one of the extensions E[4]τ , we are done,
because in that case its points are either rational or generate the bi-quadratic
extension Ĥ (

√−1, 4
√−3) of Ĥ of conductor π4.

On the other hand, ifG is an extension of E by E over ÔF that is killed by 2,
we apply the results of the calculation of section 6. Proposition 6.4 says that the
points of G lying over a non-zero point a of E generate a Galois extension of Ĥ
of degree 4, exponent 2 and relative discriminant 4. Therefore all characters of
this extension have conductor dividing π2.

An arbitrary extension G of E by E is the sum in Ext1
ÔF
(E,E) of these two

types of extensions. Since G(F) is a subquotient of the product of the groups of
points of its summands, the characters of the field extension of Ĥ generated by
the points of G have conductor at most π4. This implies Claim 2.

Claim 3. (i) The ray class field of H of conductor π3 is equal to H itself.
(ii) The ray class field ofH of conductorπ4 is the fieldK ′ = H(i,√ε1,

√
ε2,
√
ε3,√

ε4).

Proof. The root discriminant of H is equal to 22/3119/10 = 15.715 . . . and Od-
lyzko’s discriminant bounds imply that the degree of the Hilbert class field is at
most 56. Since [H : Q] = 30, this implies that the class number of H is 1. We
saw in the proof of Prop. 5.1 that the units ζ11, 1− ζ44 and β generate the multi-
plicative group of the residue field F210 of the unique prime over 2. This implies
that the ray class field of H of conductor π is equal to H . Therefore the ray class
group of conductor π2 is isomorphic to V = (1+ (π))/(1+ (π2))modulo global
units. The Galois group Gal(H/Q) is a semi-direct product of Gal(H/F) ∼= F∗4
by Gal(F/Q) ∼= Gal(F210/F2). Since (π) is the unique prime over 2, it acts
on V ∼= F210 and it does so in the obvious way. We have that V = V1×V2, where
V1 is the submodule ofV of the fixed points of the order 5 subgroup Gal(H/K) and
V2 ⊂ F210 is the kernel of the trace map to the subfield F22 . The Gal(H/Q)-mod-
ules V1 and V2 are irreducible of order 4 and 44 respectively. Since the unit β ∈ K
has the property that β3 �≡ 1 (mod π2), its cube generates V1. Finally, we observe
that the image of the unit u = (ζ11 − β)2

10−1 in V is not Gal(H/K)-invariant,
since

u = (ζ11 − α + π)2
10−1 ≡ (ζ11 − α)2

10−1 + (210 − 1)(ζ11 − α)2
10−2π (mod π2),

≡ 1+ π

ζ11 − α (mod π2),
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so that σ(u)/u �≡ 1 (mod π2) for any generator σ of Gal(H/K). Therefore the
Galois module generated by β3 and u inside V is strictly larger than V1. It follows
that u and β3 generate V and hence that the ray class group of conductor π2 ofH
is trivial.

The ray class group of H of conductor π3 is isomorphic to W = (1 + (π))/
(1 + (π3)) modulo global units that are congruent to 1 (mod π). Since W/W 2

is isomorphic to V = (1 + (π))/(1 + (π2)) and since the ray class group of
H of conductor π2 is trivial, the ray class group of conductor π3 is also trivial.
This proves the first statement.

Since the field K ′ has conductor at most π4 over H , the ray class field of
conductor π4 has degree at least 25. On the other hand,−1 ≡ 1+ 2 (mod 4) and
the (210−1)-th powers of the cyclotomic units (ζ a11−1)/(ζ11−1) are congruent to

(
ζ a·2

9

11 − 1

ζ 29

11 − 1

)2
ζ11 − 1

ζ a11 − 1
≡ ζ

a/2
11 − 1

ζ
1/2
11 − 1

· ζ
1/2
11 + 1

ζ
a/2
11 + 1

≡ 1+ 2

(
1

ζ
1/2
11 − 1

− 1

ζ
a/2
11 + 1

)
(mod 4).

Therefore the ray class group of conductor π4 is isomorphic to the quotient of the
additive group F210 modulo by the subgroup generated by 1 and by the elements

1
ζ

1/2
11 −1
− 1

ζ
a/2
11 +1

for a ∈ (Z/11Z)∗. This group has order 25.

The claim now follows from class field theory.

End of proof. By Claims 2 and 3, the points of any extensionG ofE byE overOF
generate an extension L of H contained in the ray class field K ′. Therefore the
natural action of the Galois group � = Gal(H/F) of order 3 on Gal(L/H) is
trivial. Locally, in the group Ext1

ÔF
(E,E), the extensionG is equivalent to a sum

[E[4]τ ]+[G̃]. Here G̃ is an extension that is killed by 2 and τ is either an automor-
phism of order 3 of the elliptic curve E , in which case E[4]τ is the extension of E
by E introduced above, or τ = 0 in which case E[4]τ denotes the split extension.
Let L̂, L̂′ and L̂′′ denote the extensions of Ĥ generated by the points of G, E[4]
and G̃ respectively. Each of L̂, L̂′ and L̂′′ is contained in the composite of the
other two.

If τ �= 0, the field L̂′ is the totally ramified quartic extension Ĥ (i, 4
√−3)

of Ĥ . This is a Galois extension of Q2(
√−3). The natural action of the group

Gal(Ĥ /F̂ ) on the Galois group Gal(L̂′/Ĥ ) is trivial. Since the global Galois group
� = Gal(H/F) acts trivially on Gal(L/H), the local Galois group Gal(Ĥ /F̂ )
acts trivially on Gal(L̂/Ĥ ). Since L̂′′ ⊂ L̂′L̂, the group� ∼= Gal(Ĥ /F̂ ) also acts
trivially on Gal(L̂′′/Ĥ ).

On the other hand, since G̃ is killed by 2, the extension L̂′′ has conductor
at most π2 over Ĥ . This follows from Prop.6.4 of the next section. Since Ĥ is
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tame over F̂ , any generator σ of � has the property that σ(π)/π is congruent
to a non-trivial cube root of unity modulo π . It follows that � acts without fixed
points on the group (1 + (π))/(1 + (π2)). By class field theory, L̂′′ is therefore
actually an unramified extension of Ĥ . This implies that the order 5 Galois group
of Ĥ over K̂ = Q2(β) acts trivially on Gal(L̂′′/Ĥ ). Since Gal(Ĥ /K̂) also acts
trivially on Gal(L̂′/Ĥ ) and since L̂ ⊂ L̂′L̂′′, we deduce that Gal(Ĥ /K̂) acts triv-
ially on Gal(L̂/Ĥ ) as well. Since L is totally ramified over F , this implies that
the global Galois group � = Gal(H/K) acts trivially on Gal(L/H). It follows
that L ⊂ H(i) and hence locally that L̂ ⊂ Ĥ (i). Since L̂′ ⊂ L̂L̂′′, it follows that
the ramification index of L̂′ over Ĥ is at most 2. A contradiction.

It follows that τ = 0 and hence thatG is killed by 2. By Prop.6.4 and the fact
that the ray class field of H of conductor π2 is equal to H itself, the action of
Gal(L/H) on its points is trivial. In other words,G is generically trivial. SinceG
is local-local, it is by Raynaud [15, 3.3.5] locally determined by its Galois mod-
ule. This implies thatG is also locally trivial. Since there is only one prime lying
over 2, it follows from the Mayer-Vietoris sequence in Cor.2.4 that the extension
G is trivial over OF .

This proves the Proposition.

Theorem 5.3. (GRH) There are no non-zero abelian varieties over Q(ζ11) with
good reduction everywhere.

Proof. Let A be the Néron model of an abelian variety of dimension g with good
reduction everywhere. The same arguments as in the proof of Cor.4.3 show that
Prop.5.1 and Prop.5.2 imply that the group scheme A[2n] admits a filtration over
Z[ζ11] with closed flat subgroup schemes

0 ⊂ G1 ⊂ G2 ⊂ A[2n]

withG1 diagonalizable,G2/G1 a product of group schemes isomorphic toE and
A[2n]/G2 constant. By Prop.5.2 (iii), the group G2/G1(F ) is annihilated by 2.
Therefore the order of G2/G1(F ) is at most 22g. We reduce the abelian variet-
iesA/G2 andAdual/G∨1 modulo a prime q of Z[ζ11]. Since they are both isogenous
toA, they have as many points asAmodulo q. It follows that the orders ofG1 and
A[2n]/G2 are bounded independently of n. This implies that the order of A[2n]
remains bounded as n→∞. This is impossible unless A = 0 as required.

6. A local group scheme of order p4

In this section we do a local computation with Honda systems. The main result,
Proposition 6.3, is used in section 5. See [8,9] and especially [6, Ch.1] for Honda
systems.
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Let p be a prime and let k be a finite field of characteristic p. LetW denote the
ring of Witt vectors over k and let K be the quotient field of W . Let σ : W −→
W denote the Frobenius automorphism of W . It is determined by the fact that
σ(x) ≡ xp (mod p) for all x ∈ W . The Dieudonné ring Dk = W [F, V ] is the
ring generated by FrobeniusF and VerschiebungV . We have thatFV = VF = p
and that Fa = σ(a)F and V a = σ−1(a)V for all a ∈ W . If k �= Fp, the ring
Dk is not commutative. Let CWk denotes the group functor of Witt covectors and
let ĈWk be the associated formal k-group scheme [6,9]. For any k-algebra R, the
group CWk(R) admits a unique Dk-module structure for which the Teichmüller
lift [x] of x ∈ k acts as [x]a = (. . . , xp−na−n, . . . , xp−1

a−1, xa0) and for which
Fa = (. . . , a

p
−n, . . . , a

p

−1, a
p

0 ) and V a = (. . . , a−n−1, . . . , a−2, a−1). Note that
this implies that pa = (. . . , ap−n−1, . . . , a

p

−2, a
p

−1). We also recall the definition
of the Hasse-Witt exponential. Let W denote the ring of integers of K . Then
exp : ĈWk(W/pW) −→ K/pW is the group homomorphism given by

exp(. . . , a−n, . . . , a−1, a0) =
∑

n≥0

p−nãp
n

−n,

where ã−n is any lift of a−n to W .
A local-local group scheme over W is a finite flat local commutative group

scheme whose Cartier dual is also local. There are no such group schemes overW
of order p. In this section we study local-local group schemes E over W of or-
der p2. Using the theory of Honda systems we determine the extensions of the
group schemesE by themselves that are killed by p. For p = 2, this computation
is an essential ingredient in the proof of Theorem 5.3.

Proposition 6.1. Let E be a local-local group scheme over W of order p2. Then

(i) E is killed by p. The corresponding Honda system (M,L) is given by M =
ke1⊕ke2 andL = ke1 with Frobenius and Verschiebung morphismsF and V
given by

V =
(

0 0
1 0

)
, F =

(
0 0
λ 0

)
,

for some λ ∈ k∗. The isomorphism class of (M,L) only depends on the image
of λ in k∗ modulo (k∗)σ

2−1 = (k∗)p2−1.
(ii) The points of E form the Galois module {a ∈ W/pW : ap

2 + pλ̃pa ≡
0 (mod p2)} with addition law a + a′ + λ−p�(ap, a′p). Here �(x, y) de-
notes the Witt polynomial ((x + y)p − xp − yp) /p. The points generate the

fieldK(ζp+1,
p2−1
√
pλ̃p), which is a totally ramified extension of degreep2−1

over K(ζp+1). Here λ̃ denotes a lift of λ to W .

Proof. (i) If E is not killed by p, then the same is true for M , so that M =
W/p2W . Since E is local-local, both F and V are nilpotent [6, Def.2.1]. There-
fore pM ⊂ ker V . Since V is injective when restricted to L, we must have that
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L = 0. Since the natural map L/pL −→ M/FM an isomorphism. This implies
that F is surjective, a contradiction.

Therefore M is killed by p and is a module over Dk/pDk = k[F, V ]. It can
be equipped with a k-basis so that M = ke1 ⊕ ke2, L = ke1, the Verschiebung
operator V satisfies V e1 = e2 and V e2 = 0. This implies that the Frobenius
operator F kills e2. On the other hand F e1 = λe2 for some λ ∈ k∗. Replacing
the basis vactors e1, e2 by tpe1 and te2 respectively, preserves all relations, but
replaces λ by λt1−p

2
. This proves (i).

(ii) The action of Gal(K/K) on the points of the group scheme E is induced by
its action on HomDk(M, ĈWk(W/pW)). Since V e1 = e2, any Dk-homomor-
phism ϕ from M to ĈWk(W/pW) is determined by ϕ(e1). Since V 2e1 = 0 and
F e1 = λe2 = λV e1, we have that

ϕ(e1) = ( . . . , 0, 0, ap

λ
, a )

for a certain a ∈ W/pW satisfying ap
2 = 0. The Galois module E(K) is

isomorphic to the subgroup of homomorphisms ϕ that map L to the kernel of
the Hasse-Witt exponential. These correspond precisely to the Witt covectors
( . . . , 0, 0, ap

λ
, a ) for which ap

2 + pλpa ≡ 0 (mod p2). This proves the
Proposition.

The group schemes E are Fp2 -vector space schemes in the sense of
Raynaud [15]. The different values for λ correspond to unramified twists. The
p-torsion points of supersingular elliptic curves curves overW are group schemes
of this type.

From now on we fix λ ∈ k∗. The next theorem describes the extensions of E
by itself that are killed by p in terms of Honda systems.

Proposition 6.2. Any extension

0 −→ E −→ G −→ E −→ 0

of p-group schemes over W that is killed by p corresponds to an extension of
Honda systems

0 ←− (M,L)
f←− (M,L) g←− (M,L) ←− 0

where M = ke1 × ke2 × ke′1 × ke′2 and L = ke1 ⊕ ke2 and f (x1, x2, x
′
1, x
′
2) =

(x2, x
′
2) and g(x1, x2) = (x1, 0, x2, 0) respectively and with Frobenius and

Verschiebung morphisms F and V of the Honda system (M,L) given by

F =





0 −λβp 0 0
0 0 0 0
λ λδ 0 0
0 λ 0 0



 , V =





0 0 0 0
0 0 0 0
1 0 0 β

0 1 0 0



 ,

for some β, δ ∈ k. Two extensionsG andG′ are isomorphic if and only if (β, δ) =
(β ′, δ′) in the additive group k × (k/(σ 2 − 1)k).
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Proof. Since G is killed by p, the underlying Dk-module of the Honda system
(M,L) is a vector space of dimension 4 over k. We choose a basis {e1, e2, e′1, e′2}
for M as follows: the vectors e1 and e′1 are the basis vectors for the Honda sub-
module (M,L) asociated to the quotient group scheme E of G. In other words,
L = ke1 and e′1 = V e1. We lift a generator for the submodule L of the quotient
Honda system (M,L) corresponding to the subgroup scheme E to M and call
it e2. Finally we let e′2 = V e2. In this wayL = ke1⊕ke2. The choice of the vector
e2 is unique up to vectors in ke1. Then

V e′1 = 0,

F e1 = λe′1,
V e′2 = αe1 + βe′1,
F e2 = λe′2 + γ e1 + δe′1,

for certain α, β, γ, δ ∈ k. From the fact that FV e′2 = 0 and VF e2 = 0 we deduce
that α = 0 and that λβp + γ = 0 respectively. It is convenient to replace δ by
δ/λ. This gives the formulas

V e′2 = βe′1,
F e2 = λe′2 − λβpe1 + λδe′1

for certain β, δ ∈ k. Finally we investigate the ambiguity in the choice of the basis
vector e2. Replacing e2 by e2 + rpe1 and e′2 by e′2 + re′1 for any r ∈ k, preserves
all relations, except that it replaces δ by δ+ rp2 − r . Therefore only the image of
δ ∈ k/(σ 2 − 1)k is determined by the extension class of G. It is not difficult to
see that for every β ∈ k and δ ∈ k/(σ 2− 1)k, there is a unique extension classG.

This proves the proposition.

Next we investigate the Galois modules G(K). We fix a lift λ̃ ∈ W of λ. By
Prop.6.1 (ii) we may identify the elements of the Galois module E(K) with the
set {a ∈ W/pW : ap

2 + pλ̃pa ≡ 0 (mod p2)}.

Proposition 6.3. Let G be an extension of E by E with parameters β and δ as in
the previous proposition. For every zero a ∈ W of the polynomial Xp

2 + pλ̃pX,
the field K ′a generated by the points of G that map to the point a (mod pW) in
E(K ′) is a Galois extension of K ′ of degree dividing p2. It is generated by the
zeroes of the polynomial

f (X) =
(
Xp + λ̃β̃pa − δ̃ap

)p
+ λ̃ppX − λ̃pβ̃p2

appp−1 ∈ Ka[X].

Here β̃ and δ̃ denote fixed lifts toW of β and δ respectively. Moreover, the zeroes
of the polynomial f (X) are distinct modulo p.
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Proof. Since the points of G that map to a are a coset of the subgroup formed
by the points of the subgroup scheme E, the field K ′a contains K ′. Moreover,
K ′a is a Galois extension of K ′ and for any point g ∈ G mapping to a, the map
Gal(K ′a/K

′) −→ E(K) given by σ �→ σ(g)− g is an injective homomorphism.
This shows that Gal(K ′a/K

′) is a group of order dividing p2.
We study the Dk-morphisms from M to ĈWk(W/pW), that map the

submodule L into the kernel of the Hasse-Witt exponential. These morphisms
form a Gal(K/K)-module isomorphic to G(K).

Since V e1 = e′1 and V e2 = e′2, any such morphism ϕ is determined by the
images of e1 and e2. Since V e′1 = 0, we have that V 2e1 = 0 and V 3e2 = V 2e′2 =
Vβe′1 = 0. This implies that

ϕ(e1) = ( . . . , 0, 0, 0, b, a ) ,

ϕ(e2) = ( . . . , 0, 0, c′, b′, a′ ) ,

for certain a, b, a′, b′, c′ ∈ k. The facts that VF e1 = VF e2 = VF e′1 = VF e′2 =
0, that F e1 = λe′1 = λV e1 and that V 2e2 = V e′2 = βe′1 = βV e1 give rise to the
following five relations

bp = 0, b′p = 0, c′p = 0, ap = λb, c′ = βb.

Finally, we have the relation

F e2 = λe′2 − λβpe1 + λδe′1
= λV e2 − λβpe1 + λδV e1.

Since b′p = c′p = 0, we have that Fϕ(e2) = ( . . . , 0, 0, a′p ). On the other
hand, Fϕ(e2) = ϕ(F e2) is equal to the following sum of Witt covectors

( . . . , 0, c′, b′ ) [λ]+ ( . . . , 0, b, a ) [−λβp]

+ ( . . . , 0, 0, b ) [λδ]

= ( . . . , 0, λ1/pc′, λb′ )+ ( . . . , 0, −λ1/pβb, −λβpa )
+ ( . . . , 0, 0, λδb )

= ( . . . , 0, λ1/pc′, λ(b′ + δb) )+ ( . . . , 0, −λ1/pβb, −λβpa )
= ( . . . , 0, λ1/p(c′ − βb), λ(b′ + δb − βpa)+�(λ1/pc′,−λ1/pβb) ) .

Recall that �(x, y) is the Witt polynomial ((x + y)p − xp − yp) /p. Equating
both covectors, we find once again that c′ = βb. Substituting this relation into�,
we obtain the term �(λ1/pβb,−λ1/pβb). It vanishes since bp = 0. Equating the
rightmost coordinates gives us therefore the relation

a′p = λ(b′ + δb − βpa).
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We use these relations to eliminate the variables b, b′ and c′ in the expresssions
for ϕ(e1) and ϕ(e2):

ϕ(e1) = ( . . . , 0, ap

λ
, a ) ,

ϕ(e2) = ( . . . , 0, β a
p

λ
, βpa + a′p

λ
− δ ap

λ
, a′ ) .

It follows that the points of G correspond to pairs (a, a′) satisfying the condition
that ϕ maps L to the kernel of the Hasse-Witt exponential. This translates into the
following four relations.

ap
2 ≡ 0 (mod p),

(λ̃β̃pa + a′p − δ̃ap)p ≡ 0 (mod p),

a + 1

p

(
ap

λ̃

)p
≡ 0 (mod p),

a′ + (a
′p + λ̃β̃pa − δ̃ap)p

pλ̃p
+ 1

p2

(
β̃
ap

λ

)p2

≡ 0 (mod p).

Here β̃ and δ̃ denote lifts of β and δ to W . The first two relations show that the
third and the fourth make sense. The third relation is equivalent to the relation
ap

2+pλ̃pa ≡ 0 (mod p2). It is consistent with the definition of a. We rewrite the
last term in the last relation as−β̃p2

appp−2. Note that this term is zero modulo p
when p > 2. We find that a′ is a zero of the polynomial

pX + λ̃−p
(
Xp + λ̃β̃pa − δ̃ap

)p
− β̃p2

appp−1 (mod p2).

This shows that the zeroes of the polynomial f (X) generate the extensionK ′a . In
addition, since there are exactly p2 points in G(K) mapping to a in E(K), there
are exactly p2 different zeroes of f (X) modulo p.

This proves the proposition.

Finally we compute the discriminant of the extension K ′a of K ′ of Prop.6.3.
Since ap

2 + λ̃ppa = 0, either a = 0 or the valuation of a is 1/(p2− 1) times that
of p. In the first case the polynomial f (X) of Prop.6.3 is equal to Xp

2 + λ̃ppX,
which is the equation of the subgroup scheme E ofG. It follows that our descrip-
tion ofG(K) is compatible with the one of the Galois module E(K) of Prop. 6.1.
From now on we assume that a �= 0 and we normalize the valuation v by putting
v(a) = 1. This implies that v(p) = p2 − 1.

Proposition 6.4. Let G be an extension of E by E with parameters β and δ as in
Proposition 6.2. Let ap

2 + λ̃ppa = 0 and suppose that a �= 0.

(i) If β = δ = 0, then f (X) = Xp2 + λ̃ppX and the field K ′a is equal to K ′.
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(ii) If δ is not zero in k/(σ 2 − 1)k, but β = 0 and we take β̃ = 0, then the
polynomial f (X) is equal to

f (X) =
(
Xp − δ̃ap

)p
+ λ̃ppX,

and the extension K ′a is unramified over K ′.
(iii) If β �= 0, the polynomial f (X) is irreducible over K ′ and the field K ′a is a

totally ramified Galois extension of type p × p over K ′. The discriminant
of K ′a over K ′ is equal to pp times a unit. The non-trivial characters have
conductor ap.

Proof. We have that G ∼= E × E whenever β = δ = 0. Part (i) is then clear,
since we can take β̃ = δ̃ = 0 To prove (ii), Let x ∈ W denote a zero of f (X).
Then pv(xp − δap) = v(p)+ v(x) and both sides are finite. This easily implies
that we cannot have v(x) < v(a) or v(x) > v(a). Therefore v(x) = v(a) = 1.
Taking β̃ = 0 and putting x = ay, we obtain the relation

λ̃ppay + (apyp − apδ̃)p = 0.

Dividing by ap, we see that −y + (yp − δ̃)p ≡ 0 (mod p/a). This gives rise
to the étale relation yp

2 − y − δ̃p ≡ 0 (mod p/a). It follows that the action of
Gal(K/K) on G(K) is unramified when β = 0. On the other hand, Gal(K ′a/K

′)
has exponent p. Since by assumption δ is not zero in k/(σ 2 − 1)k, it follows that
the field K ′a is an unramified degree p extension of K ′.

To prove (iii), we first show that K ′a is totally ramified of degree p2. Let x be
a zero of f (X) and let y = xp + aβpλ− δap. Then

λ−pyp = β̃p2
appp−1 − px.

If v(x) < 1/p we definitely also have that v(px) < v(appp−1) so that v(px) =
pv(y). Moreover, v(y) = v(xp), so that p2 − 1 + v(x) = p2v(x) and hence
v(x) = 1. This contradicts our assumption. On the other hand, if v(x) > 1/p,
we have that v(y) = v(a) = 1. On the other hand, yp is divisible by p so that
v(y) > (p2 − 1)/p which is absurd. Therefore v(x) = 1/p.

This implies that v(px) < v(appp−1) so that v(yp) = p2 − 1 + v(x) =
p2 − 1 + 1/p. It follows that the valuation of π = xy/ap is equal to 1/p2.
Therefore K ′ ⊂ K ′a is totally ramified and f (X) is irreducible over K ′.

In order to compute the discriminant of K ′a over K ′, we let x + t denote a
second zero of f (X), distinct from x. This zero also has valuation 1/p and hence
v(t) ≥ 1/p. Then

f (x + t) = λ̃pp(x + t)+
(
(x + t)p + λ̃βpa − λ̃pδ̃ap

)p
− λ̃pβ̃p2

appp−1 = 0,

≡ λ̃pp(x + t)+ (tp + y)p − λ̃pβ̃p2
appp−1 ≡ 0 (mod p2),
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Next we subtract the relation f (x) = λ̃ppx + yp − λ̃pβ̃p2
appp−1 = 0 and com-

pute the result modulo a2p. Since y has valuation equal to p − 1/p + 1/p2 and
since v(t) ≥ 1/p, we have that (tp+y)p ≡ tp2 +yp (mod a2p) and we find that

pt + λ̃−ptp2 ≡ 0 (mod a2p).

Since f (X) has distinct zeroes modulo p, we have that t �≡ 0 (mod p). Therefore
t has the same valuation as a and we let t = sa. We divide by ap and find that

sp
2 − s ≡ 0 (mod a).

Let τ ∈ Gal(K ′a/K
′). We study the effect of τ on the uniformizer π introduced

above. Suppose that τ(x) = x + sa (mod a2) for some s ∈ K . We have

τ(y) = (x + sa)p + a(β̃pλ̃+ δ̃ap−1) (mod ap+1),

= xp + spap + a(β̃pλ̃+ δ̃ap−1) (mod ap+1),

= y + spap (mod ap+1).

Therefore τ(y/ap−1) = y/ap−1 + spa (mod a2) and

τ(
xy

ap−1
) ≡

( y

ap−1
+ asp

)
(x + sa) (mod a2)

and hence
τ(π) ≡ π + s y

ap−1
+ xsp (mod a).

Since v(y/ap−1) = 1 − 1/p + 1/p2 > 1/p = v(x), we see that the valuation
of τ(π) − π is equal to v(x) = 1/p. Therefore the minimum polynomial of
π has discriminant equal to (xp

2(p2−1)) = (ap(p2−1)) = (pp). Since the ring of
integers OK ′a is equal to OK ′[π ], this is also the relative discriminant of the field
K ′a over K ′.

This proves the Proposition.
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[11] Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves, Annals of Math. Studies 108,

Princeton University Press, Princeton 1985
[12] Martinet, J.: Petits discriminants des corps de nombres, in J.V. Armitage, Journées Arith-

metiques 1980, CUP Lecture Notes Series 56, Cambridge University Press, Cambridge
1981

[13] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math. IHES 47, 33–186 (1977)
[14] Mazur, B., Wiles, A.: Class fields of abelian extensions of Q. Invent. Math. 76, 179–330

(1984)
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