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1. Introduzione.

Un aspetto importante della teoria dei numeri € lo studio delle equazioni “Diofantee”. Sono
equazioni, spesso polinomiali, a coefficienti interi di cui si cercano soluzioni intere o razionali.
Anche se i problemi originali riguardano solo numeri in Z o Q, vedremo che spesso si affrontano
introducendo una classe piu generale di numeri, quella dei numeri algebrici su Q. Lo studio degli
anelli e dei corpi che contengono numeri algebrici su Q fa parte della teoria algebrica dei numeri.
Se cio & per vari aspetti comodo e naturale, d’altra parte comporta anche nuove difficolta. In questa
introduzione ne diamo alcuni esempi seguendo la storia del soggetto.

Diofanto di Alessandria visse in Egitto nel terzo secolo d.c. e si interesso a vari problemi
riguardanti i numeri razionali. Dei 13 “libri” che scrisse su questi argomenti, oggi se ne conoscono
solo 6. I suoi libri erano tradotti e conosciuti in Europa sin dal medioevo [21]. L’equazione pitagorea
X2 +Y? = Z2, ben conosciuta anche assai prima di Diofanto, rappresenta un esempio significativo
del tipo di problemi trattati nei suoi libri. Tutti sanno che soluzioni X,Y, Z € Z di tale equazione
sono ad esempio 3,4,5 oppure 5,12,13. Una caratterizzazione completa delle soluzioni & data dal
teorema seguente.

Teorema (1.1). Tutte le soluzioni X,Y,Z € Z~o con mcd(X,Y, Z) = 1 della equazione

X2 4+vY? =22
sono date da
X =a? - b2,
Y = 2ab,
Z =a® + b

(o con X eY scambiati) dove a,b € Z soddisfano a > b > 0 e mcd(a,b) = 1.

Dimostrazione. Si verifica facilmente che X = a®> —b%, Y = 2ab e Z = a® + b? sono effettivamente
soluzioni dell’equazione X2+Y?2 = Z2. Dobbiamo dimostrare ora che ogni soluzione & di questo tipo.
Siano dunque X,Y,Z € Zs( con mcd(X,Y,Z) = 1 e X2+ Y? = Z2. Siccome mcd(X,Y,Z) = 1
almeno uno di X e Y ¢ dispari. Se tutti e due fossero dispari, avremmo

Z2=X24Y?=1+4+1=2 (mod 4),

mentre il quadrato Z2 pud solo essere congruente a 1 o 0 modulo 4. Dunque, precisamente uno fra,
X e Y e dispari e, a meno di scambiare X e Y, possiamo assumere X dispari.
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Scriviamo ) ) )
V2 =27%- X2
C)z_Z—XZ+X

2 2 2

Osserviamo innanzitutto che (Z — X)/2 e (Z + X)/2 sono interi perché Z e X sono entrambi
dispari. Un divisore comune di (Z — X)/2 e (Z + X)/2 dividerebbe la loro somma uguale a Z, la
loro differenza uguale a X ed anche Y, dato da Z2 — X? = Y2. Dal fatto che med(X,Y,Z) = 1

segue dunque che
d Z—-X Z+X 1
m =1.
¢ 2 7 2

Adesso utilizziamo il seguente principio:

Se il prodotto di due interi coprimi é una potenza n-sima, allora P)

gli interi stessi sono, a meno del segno, potenze n-esime.

Questo fatto si verifica facilmente scrivendo gli interi come prodotto di numeri primi e sfruttando
I'unicita di tale decomposizione
Poiché (Z + X) e (Z — X) sono positivi, esistono due interi a e b tali che

Z+X
2 %
Z-X
— b2,
2

Chiaramente si possono prendere a,b > 0 e siccome med(X,Y, Z) = 1 vale anche mcd(a,b) = 1.
Sommando e sottraendo le equazioni otteniamo rispettivamente Z = a2+ b2 e X = a? —b? (dunque
a > b) e successivamente Y = 2ab. Questo conclude la dimostrazione.

Pierre de Fermat (1601-1665) fu magistrato a Tolosa in Francia e matematico famoso che
contribui al calcolo differenziale, alla teoria della probabilita e alla teoria dei numeri [25]. Fermat
fece un passo in piu rispetto a Diofanto. I problemi che considerava erano, in un senso che potrebbe
essere precisato (vedi Weil [83, Ch.II)), effettivamente piu difficili di quelli considerati da Diofanto.
Spesso non pubblicava le sue dimostrazioni, ma si sa che ebbe, ad esempio, metodi per risolvere
I'equazione X2 — dY? = 1 per d € Z~g. Il suo “metodo” piu famoso & il metodo della discesa
infinita. Con questo metodo, per dimostrare ad esempio che una certa equazione non ha soluzioni
intere, si dimostra che, a partire da una ipotetica soluzione, se ne pud sempre costruire una piu
“piccola”. Siccome non esistono interi positivi arbitrariamente piccoli questo fatto implica che non
esistono soluzioni. Questa idea & anche oggigiorno, pur in un linguaggio diverso, uno dei metodi
piu efficaci per risolvere le equazioni Diofantee [53 §9, 54 p.148]. Il prossimo teorema & un esempio
di utilizzazione del metodo della discesa infinita.

Teorema (1.2). (P. de Fermat) Le uniche soluzioni intere della equazione
X4 + Y4 — Z2

sono quelle banali, ossia quelle con XY Z = 0.

Dimostrazione. Supponiamo che esista una soluzione non banale. Sia X,Y, Z una tale soluzione
con |Z| > 0 minimale. Allora med(X,Y,Z) =1 e possiamo anche assumere X,Y, Z > 0. Mediante
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la riduzione modulo 4, si pud vedere che precisamente uno fra X e Y deve essere dispari. Diciamo
che X & dispari. Per il Teorema 1.1 esistono interi a > b > 0 con mcd(a,b) = 1 tali che

X2 =q2 12
Y? = 2ab,
Z =a%+ b2

Studiamo la prima equazione X2 +b% = a2. Siccome mcd(a, b, X) = 1, possiamo applicare un’ altra
volta il Teorema 1.1, ottenendo

X =2 —d?,
b = 2cd,
a=c?+d?,

per certi interi ¢ > d > 0. Sostituiamo queste espressioni di a e b nella equazione Y2 = 2ab sopra:

Y? = 2ab = 2(2cd) (¢ + d?),

(g)z =c-d-(*+d?).

Troviamo un prodotto di tre fattori coprimi che & un quadrato. Per il principio (P) esistono interi
U,V,W tali che

c=U?
d="V?,
A +d>=w>
E facile verificare che med(U, V, W) =1 e che
Ut+vit=w2

Abbiamo cosi trovato una nuova soluzione della nostra equazione! Possiamo vedere infine che
W # 0 e verificare che |W| < W? = ¢®> + d? = a < a® < |Z|, contro l'ipotesi di minimalita di Z.
Dunque non ci sono soluzioni non-banali e la dimostrazione & completa.

Fermat fece tante affermazioni senza darne dimostrazione. Spesso possiamo immaginare che
ne avesse davvero una dimostrazione, ma qualche volta non ¢ cosi chiaro. Affermo, per esempio,
che & possibile scrivere un numero primo p # 2 come somma di due quadrati se e soltanto se
p =1 (mod 4). Tale fatto fu dimostrato quasi 100 anni dopo, nel 1754, da Eulero. Fermat affermo
anche che ogni intero positivo & somma di 4 quadrati. Questo “non inelegans theorema” (secondo
Eulero) fu dimostrato da Lagrange solo nel 1770. Perd Fermat pensd anche che tutti i numeri

F,=22" 11

fossero numeri primi. E vero che Fy, ..., Fy sono primi, ma Fulero trovo nel 1732 che il numero
primo 641 divide F5 = 4294967 297. Oggigiorno si sa che almeno per 5 < k < 21 i numeri F; non
sono primi [50]. Non si sa se Fyy, un numero con pitt di 1 millione di ciffre decimali, sia primo o
meno. Dunque, Fermat non ebbe sempre ragione ...

La piu famosa affermazione di Fermat & che per tutti gli interi n > 3 I’equazione

X" +Y" = 2"



ha solo soluzioni intere banali i.e. soluzioni X,Y,Z con XY Z = 0. Sulla sua copia del libro di
Diofanto, ove spesso annoto osservazioni e generalizzazioni, scrisse di aver trovato una dimostrazione
mirabile di questo fatto, ma che, purtoppo, il margine era troppo stretto per contenerla:

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos
et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem
nomines fas est dividere cuius rei demonstrationem mirabilem sane detexi.
Hanc marginis exiguitas non caperet.

Prima o poi tutti i quesiti di Fermat sono stati risolti, eccetto questo, 'ultimo. Neppure oggi
si sa dimostrare completamente questa affermazione.

E una semplice conseguenza, del Teorema 1.2 che I'equazione X*+Y* = Z* ha soltanto soluzioni
banali. Dunque 1'ultimo teorema di Fermat € vero per n = 4. Per n = 3 venne dimostrato da Eulero
nel 1743, mentre Lagrange, a 75 anni, lo dimostro per n = 5 nel 1789. Il teorema & vero anche per
n = 6. Segue dal fatto che 6 = 3 - 2 e che il teorema vale per n = 3. In generale vale il seguente
fatto.

Proposizione (1.3). L’ultimo teorema di Fermat & vero se e soltanto se per ogni primo p # 2
Pequazione

XP+YP=2"
ha soltanto soluzioni intere banali i.e. soluzioni X,Y,Z con XY Z = 0.

Dimostrazione. Poiché la condizione & chiaramente necessaria, basta dimostrarne la sufficienza.
Sia n un intero maggiore di 2. Dimostreremo che non ci sono soluzioni non banali della equazione
X" +Y"™ = Z™. Distinguiamo due casi. Supponiamo prima che n sia divisibile per un primo p > 2.
Se z,v, z € una soluzione, possiamo scrivere

(xn/p)p + (yn/p)p — (zn/p)p,

da cui risulta che z"/? y"/? z"/P & una soluzione di X? + Y? = Z?. Ma allora deve essere banale
i.e. (a:yz)"/p = 0, da cui zyz = 0. Supponiamo ora che n non sia divisibile per un primo p > 2.
Allora n & una poten m Boapehbc b BHS Mpbheubh uzibpb b M phe vobssiamo KBS h re

z >, "">2> ;" > ;" ; n

(2 = (2 (2



Proposizione (1.4). L’anello Z[i] degli interi di Gau$# é un dominio a fattorizzazione unica. Il
gruppo delle unita Z[i]* é formato dagli elementi {1,—1,1,—i}.

Dimostrazione. Per I’'Eserc.1.B I’anello Z[3] ¢ un annello Euclideo rispetto alla norma N : Z[i] —

Z, data da N(a + bi) = a® + b?. In particolare, & un dominio principale. Siccome ogni dominio

principale ¢ un dominio a fattorizzazione unica, la prima parte della proposizione ¢ dimostrata.
La seconda affermazione segue dall’ Eserc.1.A(iv).

Teorema (1.5). L’ unica soluzione X,Y € Z della equazione
X3=v%4+1

edatadaX =1eY =0.

Dimostrazione. Sia X,Y una soluzione. Se X fosse pari, avremmo Y2 = X3 — 1 = —1 (mod 4)
il che & impossibile. Allora X & dispari. Nell’anello Z[i], scriviamo

X3 = (Y +i) (Y —4).

Un divisore comune di (Y +3) e (Y —1) in Z[i] dividerebbe la loro differenza uguale a 2i e dunque 2.
Tale divisore dividerebbe anche X3, che & della forma 2k + 1 per un intero k. Di consequenza,
dividerebbe anche 1. Cosi il massimo comun divisore di (Y +4) e (Y — i) & 1. Per la Prop.1.4,
l’anello Z[i] € un dominio a fattorizzazione unica e possiamo dunque applicare il “principio” (P):
poiché sono coprimi e il loro prodotto & un cubo, (Y +1:) e (Y — ) sono il prodotto di un’unita per
un cubo. Per la Prop.1.4 il gruppo delle unita di Z[¢] &€ uguale a {£1,+i}. Dunque il suo ordine
€ 4 e ogni unita risulta quindi un cubo.
Concludiamo allora che esiste a + bi € Z[i] tale che

Y +i=(a+ b

Non abbiamo bisogno di una formula analoga per (Y —i). Per la parte reale e la parte immaginaria
di (Y + ¢) troviamo rispettivamente:

Y =a® — 3ab?,

1 = 3a®b— b°.
La seconda relazione ci da b(3a®2 — %) = 1. Dunque b = 1 e 3a2 —1 = 1 oppure b = —1 e
3a? — 1 = —1. Solo la seconda possibilitd, b = —1 e a = 0, ci fornisce una soluzione dell’equazione

X3=Y2%2+4+1ledessaeY =0, X =1 come richiesto.
Cerchiamo adesso di risolvere un’equazione del tutto simile:
X3 =Y?+61.

Se X fosse pari avremmo Y2 = X3 — 61 = —1 (mod 4) il che & impossibile. Se X fosse divisibile
per il primo 61, allora lo sarebbe anche Y. Ma questo ¢ impossibile perché X3 sarebbe divisibile
per 613 mentre Y2 + 61 soltanto per 61. Dunque X non risulta divisibile né per 2 né per 61.

Nell’ anello Z[+/—61] scriviamo

X3 = (Y +v/—61)(Y — v/—61).

Un divisore comune § € Z[/—61] di (Y ++/—61) e (Y —+/—61) dividerebbe 21/—61 e dunque anche
2 - 61. Il divisore ¢ dividerebbe poi X2 perché Y2 4 61 = X3. Siccome 2 e 61 non dividono X,
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si ha che med(X3,2-61) = 1. Esistono dunque a,b € Z tali che X3a + 2 - 61b = 1. 1l divisore §
dividerebbe allora 1. Segue allora che med(Y + v/—61,Y —/—61) = 1.

Adesso applichiamo il “principio” (P) e troviamo che Y + y/—61 & un unitd per un cubo. Le
unita di Z[v/—61] sono 1 e —1 (Eserc.1.C). In particolare, sono esse stesse dei cubi. Esiste allora

a + by/—61 € Z[\/—61] tale che
Y + V=61 = (a +bv/—61)>.

Segue che
Y =a® -3 61ab?,

1 = 3a%b — 61b°.

E facile vedere che la seconda equazione b(3a® — 61b?) = 1 non ha soluzioni a,b € Z. Lo stesso si
vorrebbe concludere per I'equazione X2 = Y2 + 61. Invece non & cosi, come dimostra I'ugualianza

53 =82 4+ 61

Che cosa & successo? Il problema ¢ che in questo caso il principio (P) non puo essere utilizzato
perché lanello Z[+/—61] non ¢ a fattorizazzione unica. Eccone un esempio esplicito:

62 =231
= (14 v/=61)(1 — v/=61)

sono due fattorizzazioni di 62 nell’ anello Z[\/—61]. Verifichiamo che i vari fattori sono elementi
irriducibili in Z[+/—61]. Utilizzando le proprieta della norma N : Z[v/—61] — Z dell’ Eserc.1.C
si vede che N(2) = 22, N(31) = 312 e N(1 & +/—61) = 2-31. Se gli elementi 2,31 e 1 &+ /=61
non fossero irriducibili, conterrebbero fattori non banali a + by/—61 con norma uguale a 2 o 31.
Significherebbe che le equazioni Diofantee a® + 61> = 2 oppure a2 + 615> = 31 avrebbero soluzioni
a,b € Z. Si verifica facilmente invece che tali soluzioni non esistono.

Kummer trovo che per p = 23 la proprieta della fattorizzazione unica non vale per anello Z[(,].
Oggigiorno si sa dimostrare [80,Chpt.11] che tale proprieta vale in Z[(,] solo per i primi p < 19. Per
risolvere questo tipo di problemi, nei suoi studi sull’ ultimo teorema di Fermat, Kummer introdusse
nel 1847 certi elementi irriducibili “virtuali”. Li chiamo “elementi ideali” inventando pili o meno la
nozione di ideale. Come vedremo, nella terminologia moderna, i suoi elementi irriducibili “virtuali”
sono ideali primi che non sono principali. Mancano cioe degli elementi irriducibili che li generano.

Utilizzando la sua teoria degli ideali, Kummer riusci a dimostrare 1'ultimo teorema di Fermat
per una classe di numeri primi assai grande. Esiste una congettura che afferma che tale classe
contiene il 61% dei numeri primi [80, Ch.I]. Il risultato principale di Kummer ¢ stato il seguente
teorema.

Teorema (1.6). (E.E. Kummer 1847) Sia p # 2 un primo. Se p non divide i numeri di Bernoulli
By, By, ...,B,_3, I'equazione
XP+YP =27

ha soltanto soluzioni intere con XY Z = 0.

I numeri di Bernoulli By, sono definiti dalla serie



Intervengono anche come valori della funzione ¢ di Riemann sui numeri pari k& > 2:
o .
1 (2
-3
2.k

I numeri di Bernoulli sono numeri razionali e siccome h(X) = X/(e*X — 1) + X/2 = $coth(%) &
una, funzione pari, tutti i By con k > 3 dispari, sono uguali a zero. Eccone alcuni

1 1 1 1
By = — By = —— Bs = — Be = ——
2 6’ 4 307 6 42’ 8 305
5 691 7 3617
Biyov=—, Bia=———, Biyu=-, Big=—-,...
10 667 12 27305 14 65 16 510 )

Vedi [1,80] per numeri di Bernoulli successivi. I numeri primi che dividono il denominatore di By,
sono minori o uguali a k + 1. Si dice allora che un numero primo p divide un numero di Bernoulli
By, con k > p — 1 se divide il suo numeratore. Si vede che il teorema di Kummer non vale per i
primi dati da 691 e 3617. I soli numeri primi minori di 100, per i quali non vale, sono 37, 59 e 67.
Daremo in sezione 13 una dimostrazione completa del Teorema 1.6.

A tutt’oggi nel 1991, utilizzando il Teorema 1.6 di Kummer e certe sue varianti [79], I'ultimo
teorema di Fermat & stato dimostrato per tutti i primi p < 150000 (Vede [73,79]). Nel 1983 il
matematico tedesco G. Faltings ha dimostrato un teorema assai profondo e generale di geometria
algebrica aritmetica [24,6,7]. Tale risultato implica fra 1’altro che per ogni p ’equazione (X/Z)? +
(Y/Z)? =1 ha soltanto un numero finito di soluzioni razionali X/Z e Y/Z. Sfortunatamente perd
la sua dimostrazione non & “effettiva”: non da una stima né della quantitd né della grandezza
delle possibili soluzioni. Nel 1988 I'americano K. Ribet [61] ha dimostrato che 'ultimo teorema
di Fermat e conseguenza di certe congetture sull’ aritmetica delle curve ellittiche su Q: con una
soluzione non-banale di X? + Y? = ZP si puo costruire una curva ellittica con proprieta molto
strane. Secondo le cosidette congetture “standard”, che a buona ragione sono ritenute vere dai
matematici, questa curva non puo esistere.

L’ultimo teorema di Fermat, in sé forse un problema naive, & stato molto importante per lo
sviluppo della teoria dei numeri e dell’ algebra moderna. Matematici come R. Dedekind (1831—
1916), D. Hilbert (1862-1943) e E. Noether (1882-1955), generalizzando le idee e i risultati di
Kummer nella teoria dei numeri, hanno creato un’intera parte dell’algebra [10,18,24].

Questo corso consiste di due parti. Nella prima parte trattiamo la teoria fondamentale: intro-
duciamo i corpi di numeri ed i loro anelli degli interi. Gli anelli che abbiamo visto sopra ne sono
degli esempi. Anche se gli anelli Z[i], Z[v/—61] e gli anelli Z[(,] sembrano essere molto diversi fra
loro, sono tutti esempi di una classe importante di anelli, i cosidetti anelli di Dedekind. Diamo una
trattazione unificata di questi anelli ed introduciamo i due importanti invarianti ad essi associati:
il gruppo delle unita e il gruppo di classi. In section 7 we prove the finiteness of the class group
of the ring of integers of a number field and Dirichlet’s Unit Theorem. Testi consigliati per questi
argomenti sono anche il libro di Stewart [72], quello di Ono [58] e quello di Samuel [65]. In section 8
we give three examples, illustrating the theory. Finally we calculate the residue of the Dedekind
¢-function ((s) at s = 1. The answer will involve all the arithmetical invariants that have been
discussed in the previous sections.

In the second part we will assume that the reader knows the basic results of Galois Theory. In
section 10 we discuss decomposition groups and inertia groups associated to prime ideals. In the
next sections we introduce Dirichlet L-series. We use them to prove Dirichlet’s famous theorem
on primes in arithmetic progressions. In section 12 we focus our attention on the field of the p-th
roots of unity, where p is an odd prime. Our results will be used in the final section, where we give
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a proof of Theorem 1.6, che implica 'ultimo teorema di Fermat in molti casi. Per questi argomenti
si vedano, ad esempio, il libro di L.C. Washington [80] e ’approcio storico di H.M. Edwards [23].

During the preparation of these notes, Lenstra’s Amsterdam syllabus [49] was very useful.
Some of the exercises are his. The second part owes much to the book of Borevi¢ and Shafarevic
[8]. For the algebra that we will use see Lang’s book [L41], or the Bourbaki volumes [9]. Sometimes
we will use well known facts from elementary number theory. These can be found in the book by
Hardy and Wright [29]. Per la storia della teoria dei numeri si veda l'articolo di H-W. Lenstra [34] o
il libro di André Weil [83], nel quale si discute la storia fino al 1800. Per la storia della matematica
si consiglia “Elements d’histoire des Mathématiques” di N. Bourbaki [10].

Nel corso di queste note adotteremo le seguenti convenzioni: ogni anello possiede un’identita 1;
gli omomorfismi f di anelli soddisfanno sempre f(1) = 1; se R ¢ un anello ed a € R allora («)
oppure R indica I’ideale principale genarato da «; il gruppo delle unitd di R & indicato da R*;
i corpi sono sempre corpi commutativi. Gli esercizi con ’asterisco sono piu difficili o richiedono
maggiori conoscienze.

(1.A) Sia Z[i] = {a + bi : a,b € Z} Panello degli interi di Gauss. Sia N : Z[{] — Z la norma definita da
N(a + bi) = a® + b*. Dimostrare che
(i) N(aB) = N(a)N(8) per o, € Z[i].
(ii) se a divide g allora N(a) divide N(B).
(iii) « & una unita in Z[i] se e soltanto se N(a) = 1.
(iv) il gruppo delle unita di Z[i] & uguale a {1, +i}.
(1.B) Dimostrare che I'anello Z[4] & Euclideo rispetto alla norma N(a + bi) = a® + b>.
(1.C) Sia Z[v/—61] = Z[X]/(X?+61). Sia N : Z[\/—61] — Z la norma definita da N(a+by/—61) = a®+61b°.
Dimostrare che:
(i) N(af) = N(a)N(B) per a,f € Z[y/=6T]
(ii) se a divide g allora N(a) divide N(B).
(iii) o & una unitd in Z[/—61] se e soltanto se N(a) = 1.
(iv) il gruppo delle unita di Z[/—61] & uguale a {£1}.
(1.D) Dimostrare che I’anello Z[/=2] = Z[X]/(X? + 2) & Euclideo.
(1.E) Dimostrare che tutte le soluzioni X,Y € Z di X? +2 =Y? sono X = 45, Y = 3. (utilizzare 1.C)
(1.F) Dimostrare che tutte le soluzioni di Y2+4 = X® sono X =5,Y = +1le X = 2, Y = £2. (Distinguere
due casi: Y dispari o pari. Nel secondo caso dividere per 2 + 23, il massimo comun divisore di Y + 23
eY — 29)
(1.G) Dimostrare che 6 =2-3 e 6 = (1 + v/=5) - (1 — v/=5) sono due fattorizzazioni in fattori irriducibili
nell’anello Z[v/=5]. Concludere che Z[/=5] non ammette fattorizzazione unica.
(1.H)*Dimostrare che Panello Z[H:,ﬂ] non & Euclideo. (Nell’ Eserc.7.D dimostriamo communque che & un
anello principale).
(1.1)*Lo scopo di questo esercizio ¢ dimostrare che per i numeri primi p # 2 vale: p = 1 (mod 4) se e
soltanto se p = a® + b* per certi a,b € Z. Sia p # 2 un primo.
(i) Dimostrare che se p = a® + b* per a,b € Z allora p = 1 (mod 4).
Sia ora p =1 (mod 4). Dimostrare che:
(ii) esiste z € Z con |z| <p/2 e 2? +1 =0 (mod p).
(iii) 'ideale (z — 4, p) C Z[3] & generato da un solo elemento .
(iv) N(7) = p. Concludere che esistono a,b € Z tali che p = a® + b*. (utilizzare 1.A)
(1.J)*Dimostrare che per numeri primi p # 3 vale: p = 1 (mod 3) se e soltanto se p = a® + ab + b* per certi
a,b € Z. (utilizzare 'anello Z[(3] dove (3 & una radice cubica dell’unita, e copiare Eserc.1.I).
(1.K) Sia H = R+ iR + jR + kR lalgebra dei quaternioni di Hamilton. Per z = a + bi + c¢j + dk € H
definiamo Z = a — bi — ¢j — dk.
(i) Dimostrare che Tr(z) = £ + z = 2a e N(z) = 2% = a® + b* + ¢* + d*. Dimostrare che N(zy) =
N(@)N(y) e Tr(s + ) = Tr(z) + Tr(y).



(ii) Dimostrare che linsieme {a + bi + ¢j + dk € H : a,b,c,d € Z oppure a,b,c,d € % +Z} e
un sottoanello di H. E I’anello degli interi di Hurwitz. Provare che per ogni intero z si ha
Tr(z),N(z) € Z.

(1.L)*Lo scopo di questo esercizio & di dimostrare che ogni intero & somma di 4 quadrati. Dimostrare che

(i) per ogni y € H esiste z nell’anello degli interi di Hurwitz tale che N(z — y) < 1. Concludere che
gli interi di Hurwitz formano un anello Euclideo non commutativo, ossia che per tutti gli interi z
e y # 0 esistono interi ¢, r tali che z = gy + r con N(r) < N(y).

(ii) per ogni primo dispari p esistono z,y € Z con |z|, [y| < p/2 e z*> + y*> = —1 (mod p) (Contare i
sottoinsiemi {—z? : z € Z/pZ} e {y* + 1:y € Z/pZ} di Z/pZ).

(ii) lideale sinistro (p, 1+ zi + yj) nell’anello degli interi di Hurwitz & generato da un’elemento solo:
.

(iv) Concludere che N(7w) = p e che p &€ somma di 4 quadrati. Concludere che ogni intero positivo &
somma di 4 quadrati.

(1.M)*(Stewart [S,p.23]) Lo scopo di questo esercizio & dimostrare che ’equazione di Ramanujan X? +7 = 2"
ha solo soluzioni X,n € Z>o per n = 3,4,5,7,15 (e X =1,3,5,11,181) (Nagell). Dimostrare che

(i) 1'unico valore di n pari per il quale esistono soluzioni & n = 4. Sia X2 +7 = 2™ con n > 5 dispari.

Siam=n—-2em= HTﬁ Dimostrare che
) Panello Z[n] ¢ Euclideo e, utilizzando il principio (P), che #™ = i%.
) —v/=7 =7™ — @™ ( Per determinare il segno di £1/—7 calcolare modulo 7).
v) —2™' =m (mod 7) e dunque m = 3, 5,13 (mod 42) (Prendere la parte immaginaria di (iii)).

) Sia m1 = ma (mod 42). Dimostrare che se mi = m» (mod 7*) per I > 1, allora 7™ —
™2 = 7™ (m1 — ma)yv/—7 (mod 7°T1). Concludere che mi1 = m2 (mod 7) implica che mi =
ma (mod 7*?1) e finire la dimostrazione.

2. Number fields.

In this section we will discuss number fields. We will introduce discriminants and the real vector
space F' ® R associated to a number field F. No knowledge of Galois Theory is assumed. We will
prove the Theorem of the Primitive Element and this will, instead of Galois Theory, suffice for our
purposes.

Definition. A number field F is a finite field extension of Q. The dimension of F' as a Q-vector
space is called the degree of F. It is denoted by [F : Q).

Examples of number fields are Q, Q(7), Q(v/2), Q(V/3,/7) of degrees 1,2,4 and 6 respectively.
Another example is the field Q((,) where (,, denotes a primitive n-th root of unity. Its degree is
#(n), where ¢p(n) = #((Z/nZ)*) is the ¢-function of Euler. This will be proved in section 10. The
following theorem says that every number field can be generated by one element only.

Theorem (2.1). (Theorem of the primitive element.) Let F' be a finite extension of Q. Then
there exists o € F' such that F = Q(«).

Proof. It suffices to consider the case where F' = Q(«, 3). The general case follows by induction.
We must show that there is § € F' such that Q(«, ) = Q(6).

We will take for 6 a suitable linear combination of @ and g: let f(T) = f&, (T') the minimum
polynomial of « over K. Let n = deg(f) and let @ = a3, as,...,a, be the zeroes of f in C. The
a; are all distinct. Similarly we let g(7') = fflin(T) the minimum polynomial of 5 over K. Let
m = deg(g) and let 8 = B4, 02,...,Bm be the zeroes of g in C. Since Q is an infinite field, we can

find A € Q* such that

a; —

(0
Ak )

for 1 <i<mnand for 2 <j <m,



or equivalently,
a+ A8 # a; + AB; for 1 <4 <nandfor2<j<m.

Put
0=a+ 6.

The polynomials h(T) = f(0 — AT) and g(T') are both in Q(6)[T] and they both have g as a zero.
The remaining zeroes of g(T') are fa, ..., [, and those of h(T') are (6 — o;)/A for 2 < i < n. By
our choice of A, we have that 3; # (0 — o;)/A for all 1 < i < n and 2 < j < m. Therefore the gcd
of h(T') and ¢g(T') is T — S. Since g(T), h(T) € Q(0)[T"] we have that T'— 5 € Q(0)[T’]. This implies
that 8 € Q(#) and hence that a € Q(@). It follows that Q(«, 8) = Q(f) as required.

Corollary (2.2). Let F be a finite extension of degree n of Q. There are exactly n distinct field
homomorphisms ¢ : FF — C.

Proof. By Theorem 2.1 we can write f = Q(«) for some a. Let F be the minimum polynomial
of @ over Q. A homomorphism ¢ from F to C is determined by the image ¢(a) of a. We have
that 0 = ¢(f(a)) = f(é(@)). In other words, ¢(«a) is a zero of f(T'). Conversely, every zero € C
of f(T') gives rise to a homomorphism ¢ : FF — C given by ¢(«) = 8. This shows that there are
exactly as many distinct homomorphism F — C as the degree n of f, as required.

Proposition (2.3). Let F be a number field of degree n over Q. Let wy,...,w, € F. Then
Wi, ...,w, form a basis for F' as a Q-vector space if and only if det(¢(w;))4,i # 0. Here i runs from
1 to n and ¢ runs over all homomorphisms ¢ : F — C.

Proof. First of all, note that by Cor.2.2, the matrix (¢(w;))¢,; is a square matrix! Suppose that
there exists a relation ) . \;w; = 0 with \; € Q not all zero. Since ¢(A) = X for every A € Q (see
Exer.2.A), We see that ). X\jp(w;) = 0 for every ¢ : F — C. This implies that det(¢(w;))g,s = 0.

To prove the converse, we write F' = Q(«) for some a. Consider the Q-basis 1, o, a2, ..., a"~
For this basis the the matrix (¢(w;))e,; is a Vandermonde matrix with determinant equal to a
product of terms of the form (¢1(a) — ¢2(cr)) with ¢1 # ¢2. Since the zeroes ¢(a) € C of the
minimum polynomial of « are all distinct, this determinant is not zero.

So, for the basis 1,a,a?,...,a"~! the theorem is valid. For an arbitrary Q-basis wy,...,wy,
there exists a matrix M € GL,(Q) such that

w1 1
w2 (6]
. =M .
-1
Wn a”

applying the homomorphisms ¢ : F' — C one obtains

(B(wi)gi = M($())g,i
and therefore ‘
det((p(wi))g,i) = det(M) - det((¢(a))g,i) # 0,
as required. This proves the proposition.

The number field Q admits a unique embedding into the field of complex numbers C. The
image of this embedding is contained in R. In general, a number field F' admits several embeddings
in C, and the images of these embeddings are not necessarily contained in R. We generalize the
embedding @ : Q — R as follows.
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Let F' be a number field and let a € F be such that F' = Q(«). In other words F = Q[T']/(f(T))
where f(T') denotes the minimum polynomial of a. We put

F@R =R[T]|/(f(T)).

In these notes, F' ® R is just our notation for the R-algebra R[T"]/(f(7")). This algebra is actually
the tensor product of F' over Q with R, but we will not use this interpretation. There is a natural
map

:F— FRR.

Since C is an algebraically closed field, the polynomial f(T) € QI[T] factors completely over
C. Let’s say it has precisely r; real zeroes (i,...,[8,, and re pairs of complex conjugate zeroes
YisViy--- Vg, Yre- We have the canonical isomorphism

FQR —SR™ x C"

given by (B, ..., Br s Y15+ - -+ )- ldentifying these spaces, we obtain an explicit description
of the map &:

Definition (2.4). Let F' be a number field. With the notation above, the map @
®:F—R" xC"™

is defined by
CI)("B) = (¢1 (3’1)’ ey Oy (CC), ¢T1+1($)’ ooy Praytr (:C))

where the ¢; : F — C are determined by ¢;(c) = ; for 1 < i < ry and ¢, +i(a) = ~; for
1< < rs.

For completeness we let ¢, +r,+i(c) = 7; for 1 < i < r9. Notice that the map ® is obviously
injective.

Example. Let « = v/ 2 be a zero of T* — 2 € Q[T] and let F = Q(c). The minimum polynomial
of a is T* — 2. It has two real roots ++v/2 and two complex conjugate roots +iv/2. We conclude
that r1 = 2 and ro = 1. The homomorphisms ¢; : FF — C are determined by

p1(cx)
p2(a) = V2,
$3(a) = iV/2,
paa) = —iv/2.
The map
®:F —-FR=RxRxC
is, given by

B(z) = (¢1(2), ¢2(2), $3(x)).

Lemma (2.5). Let F be a number field of degree n. The map ® : F — F ® R maps a Q-basis
of F' to an R-basis of F ® R. The image of F is, in the usual topology of F @ R = R™ x C™, a
dense subset.
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Proof. We identify the real vectorspace C with R? by means of the usual correspondence z <>
(Re(z),Im(z)). Let wy,...,w, be a Q-basis of F. Then

Q)(wz) = ( .. ,(f)k(wi), feey Re(ngl (wi)),Im(ngl(wi)), .. .),

where k denotes a “real” index whenever 1 < k < r; and [ denotes a “complex” index whenever
r1+1<1<ry+ry. We put the vectors ®(w;) in an n x n-matrix:

w1 cer Gr(w1) ... Redi(wr1) Imgy(wr)
> wa _ - ¢k (w2) e Redn (w2) Im¢l (wg)
wn)  Neo Gulwn) .. Redilwn) Tmi(wn)

The first 1 columns correspond to the homomorphisms ¢ : F — R and the remaining 2r, to the
real and imaginary parts of the remaining non-conjugate homomorphisms ¢; : F — C. Using the
formula Re(z) = (2 + Z)/2 and Im(z) = (2 — Z)/27 one sees that the determinant of this matrix is
equal to

(27:)_T2 det(qﬁk (wj))k,j.

By Prop.2.3 its value is different from zero. Since the image of ® is a Q-vector space and contains
an R-basis, it is obviously dense. This proves the lemma.

Let F be a number field of degree n and let £ € F. Multiplication by z is a Q-linear map
M, : F — F. With respect to a Q-basis of F', one can view M, as an n X n-matrix with rational
coeflicients.

Definition (2.6). Let F' be a number field of degree n and let x € F. The characteristic polynomial
& an(T) €Q[T) of z is

¢ (T) =det(T-1d — M,).

char

Writing f% . (T) =T" 4 ap_1T" ' +... 4 a1T + ag, we define the norm N(z) and the trace Tr(z)
of = by

N(z) = N(M;) = (=1)"ao,

Tr(z) = Tr(M;) = —an—1.

It is immediate from the definitions that Tr(z) and N(z) are rational numbers. They are well
defined, because the characteristic polynomial, the norm and the trace of z do not depend on
the basis with respect to which the matrix M, has been defined. One should realize that the
characteristic polynomial f3 . (7'), and therefore the norm N(z) and the trace Tr(z) depend on the
field F' in which we consider z to be! We don’t write Trr(x) or Ng(z) in order not to make the
notation to heavy. The norm and the trace have the following, usual properties: N(zy) = N(z)N(y)

and Tr(z + y) = Tr(z) + Tr(y) for every z,y € F.

Example. Let F = Q(+v/2) and let z = v/2 = (v/2)% € F. We take {1, v/2,v/2, (v/2)?} as a Q-basis
of F. With respect to this basis, the multiplication by x is given by the matrix M,

0 0 0

OO OoON

00 2
10 0
0 1 0

It is easily verified that the characteristic polynomial of z is f%, (T) = T* — 4T2 + 4, its norm is
N(z) = 4 and its trace is Tr(z) = 0. If we consider, on the other hand, z = v/2 in F = Q(v/2),
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then the characteristic polynomial of z = /2 is f&__ (T) = T? — 2, its norm N(z) = 2 and its trace
Tr(z) = 0.

Proposition (2.7). Let F' be a number field of degree n and let € F. Then
(i)
ghar(T) = H (T - ¢($))

¢:F—C

(ii)
fcxhar(T) = mm( )[F Q)]

(iii) N(z) =[], ¢(z) e Tr(z) = >_, ¢(z), where the product and the sum run over all embeddings
¢: F— C.

Proof. (i) We have the following commutative diagram:

F 2 F®R

lm l(@m,...,mﬁw (2))

F 2 F®R

where the righthand arrow is the multiplication by ¢;(z) on the i-th coordinate of FF @ R =
R @ C"~2. If the i-th coordinate is “complex”, we identify C with R? via z <+ (Re(z),Im(z)). In
this way, the multiplication by ¢;(z) can be represented by a 2 x 2-matrix

(S ot

with eigenvalues ¢;(z) and ¢y, 4i(z) = ¢;(z). Altogether we find an n x n-matrix which is almost
diagonal with eigenvalues the ¢;(x) for 1 < 7 < n. Since the characteristic polinomial of M, does
not depend on the basis, the result follows.

(ii) Let g(T') € Q[T] be an irreducible divisor of f3_ (7). We conclude from (i) that g(7") has one
of the ¢;(x) as a zero. Since g has rational coefficients, we have that

$i(g(x)) = g(¢i(x)) =0

and hence, since ¢; is an injective field homomorphism that g(z) = 0. Therefore fZ. divides g
and by the irreducibility we have that g = f2; . Since g was an arbitrary irreducible divisor of the
characteristic polynomial, it follows that f% (7) is a power of fZ. . Finally, the degree of f3 . 1i
n = [F : Q] and the degree of fZ. is [Q(z) : Q]. This easily implies (ii).

(iii) This is immediate from (i). The proof of the proposition is now complete.

Next we introduce discriminants.

Definition (2.8). Let F' be a number field of degree n and let wy,ws,...,w, € F. We define the
discriminant A(wy,ws,...,w,) € Q by

Awr,wa, .y wn) = det(Tr(wiw)1<i,j<n)-

The basic properties of discriminants are contained in the following proposition.
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Proposition (2.9). Let F' be a number field of degree n and let wy,ws,...,w, € F. then
(i)
A((“)17 wa, ... 7wn) = det(¢(wl))12,¢ € Q
(ii)) A(wy,ws,...,w,) # 0 if and only if wi,ws, ...,w, is a basis for F' as a vector space over Q.
(iii) If w) = Y5, Nijw; with Xij € Q for 1 < 4,5 < n, then one has that

A(w),wh, ... ,wh) = det(/\ij)zA(wl,uQ, ey Wh)-

Proof. (i) The determinant is rational, because its entries are traces of elements in F' and therefore
rational numbers. From Prop.2.7(iii) one deduces the following equality of matrices

(0i(w)))i,5(0i(w))) sk = (Tr(wiwk))i,k

and (i) easily follows.
(ii) Immediate from Prop 2.3.
(iii) We have the following matrix product

(Xi) (05 (W) ik = (oi(wr))i,k

and (iii) follows from (i).
This finishes the proof of prop.2.9.

In the sequel we will calculate several discriminants. Therefore we briefly recall the relation of
our discriminants to the discriminants and resultants of polynomials.

Let K be a field, let b,c € K* and let 1,082,...,8, € K and v1,72,...,7s € K. Put
g(T) =b[I;_(T — ;) and h(T) = c[[;_,(T — ;). The Resultant Res(g,h) of g and h is defined
by

' S
Res(g,h) = b°c" [ [ [T (8: —)-
i=1j=1
Resultants can be calculated efficiently by means of an algorithm, which is very similar to the
Euclidean algorithm in the polynomial ring K[T]. See Exer.2.0 for the details. Discriminants of

polynomials are closely related to resultants. Let o, ...,a, € K. Let f(T) =[]/, (T—a;) € K[T.
The discriminant Disc(f) of f is defined by

Disc(f) = H (o; — aj)°.

1<i<j<n

By differentiating the relation f(T') = [];_,(T — «;) one finds that f'(e;) = H?#(ai — o) and one
deduces easily that

n(n—1)

Disc(f) = (=1)" 7 Res(f, f').

Proposition (2.10). Let F' be a number field of degree n. Let o € F and let f = f%,,. denote its
characteristic polynomial. Then

n(n—1)

AQ,q,...,a" 1) = Disc(f) = (=1) TN (@) = (=1) " Res(f, f').

Proof. The first equality follows from Prop.2.7(i) and the Vandermonde determinant in Prop.2.9(i).
The second follows by differentiating both sides of the equation f(T) = [[}_,(T — ¢;(«)), substi-
tuting ¢;(«) for T' and applying Prop.2.7(iii). The third equality has been explained above.
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Example (2.11). (Cyclotomic Polynomials) For any m € Z>; we define inductively the Cyclo-
tomic polynomial ®,,(T) by

xm—1=]] ®aT)
d|lm
The first few are given by
®(T) =T — 1,
35(T) =T +1,
O3(T) =T*+T +1,
®4(T) = T? +1,
O5(T)=T*+ T3+ T? +T +1,
@6(T) =

The degrees of the cyclotomic polynomials satisfy ., deg(®4) = deg(T™ — 1) = m and therefore
one has that deg(®,,) = ¢(m) where ¢(m) = #((Z/mZ)*) denotes the ¢-function of Euler.
One establishes inductively that for a prime power /¥ one has that

Ou(T) =T" "0 4" 0=2) ot g

Since @5« (T + 1) is an Eisenstein polynomial, we see that ®; is irreducible and that the degree of
the field Q(¢) over Q is I*~1(I — 1). Here ¢ denotes a zero of ®;; it is a primitive /*-th root of
unity. To calculate the discriminant of ®;x(T"), we differentiate the relation

k
[[eu@) =1" -1
=0

and substitute (. This gives
k—1 k_
FQOET 1) =0t
Next we take norms in the field Q({;x). The norm of ¢ is 1. To calculate the norm of ¢ = ¢ —1,

we observe that Clk_l is a primitive I-th root of unity. Therefore the mininimum polynomial of ¢ is
&,(T + 1). By Prop.2.7(ii) we see that N(¢) = ®(1)"" " =" ", We conclude from Prop 2.10 that

lk—l

Disc(®p ) = £~ R T =0 — gt T RI—k-1),

Here the sign is given by (—1)*¢=1/2 except when I™ = 4. In this case the sign is —1. See Exer.3.L
for the discrimiant of ®,,(T), for arbitrary m.

(2.A) Let ¢ : Q — C be a field homomorphism. Show that ¢(g) = ¢ for every ¢ € Q.

(2.B) Find an element o € F = Q(V/3,v/—5) such that F = Q(a).

(2.C) Let F' = Q(V/5). Give the homomorphism & : F — F ® R explicitly.

(2.D) Let F' be a number field with , > 1, i.e. F’ admits an embedding into R. Show that the only roots
of unity in F' are £1.

(2.E) Let F be a number field of degree n and let z € F. Show that for ¢ € Q on has that

Tr(gz) = qTr(z),
Tr(q) = ng,
N(q) = ¢".
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(2.M)

(2.P)

(2.Q)

Show that the map Tr : FF — Q is surjective. Show that the analogous statement for the norm
N: F* — Q” is, in general, false.

Let F' be a number field of degree n and let a € F'. Show that for ¢ € Q one has that N(a—q) = f§...(2)-
Show that for ¢, € Q one has that N(q — ra) = r" f§...(q/7).

Let a = (5 + (5 ' € Q(¢5) where (5 denotes a primitive 5th root of unity. Calculate the characteristic
polynomial of a € Q({5).

Prove that Disc(T™ — a) = n"a""'. Compute Disc(T? + bT + ¢) and Disc(T? + bT + c).

Let f(T) = T° =T +1 € Z[T)]. Show that f is irreducible. Determine 71,72 and the discriminant of f.
Consider the field Q(v/3,v/5). Compute A(1,v/3,v/5,v/15) and A(1,v/3,v5,v3 + V/5).

Let K be a field and let f € K[T]. Show that f has a double zero if and only if Disc(f) = 0. Let
h € Z[T] be a monic polynomial. Show that it has a double zero modulo a prime p if and only if p
divides Disc(f).

Let F' be a number field of degree n. Let a € F. Show that

A(17 Q.. ., an_l) = det((pH-j-z)i,j)-

Here py denotes the power sum ¢1(a)® + ... + ¢n(a)*. The ¢; denote the embeddings F — C.
(Newton’s formulas) Let K be a field and let a1, as,...,0, € K. We define the symmetric functions
sk of the a; by

[[T-a)=T" =T " + 5T 2 ...+ (=1)"sn.
=1

We extend the definition by putting s = 0 whenever k > n. We define the power sums p by
n
pk=2af for k£ > 0.
i=1

Show that for every k > 1 one has that
(‘Ukksk = Pk — Pk—151 + Pk—282 — Pr—383 + ....

In particular
S1 =DP1
—282 = p2 — p151
383 = p3 — p2s1 + p1s2
—484 = ps — p351 + P252 — P183

555:...

(Hint: Take the logarithmic derivative of []}_, (1 — a;T).)
Show that the polynomial T° 4+ T° — 2T 4 1 € Z[T] is irreducible. Compute its discriminant. (Hint:
use Exer.2.M)
(Resultants) Let K be a field and let a1,...,ar € K. Put g =b[[;_, (T — a;) and let h,h' € K[T] be
non-zero polynomials of degree s and s’ respectively. Suppose that A = h' (mod g).

(i) Show that Res(g, h) = (—1)"°Res(h, g).

(ii) Show that Res(g, h) = b° Ha:g(a):O h(a).
(iii) Show that b* Res(g, h) = b°Res(g, h')
(iv) Using parts (i) and (ii), find an efficient algorithm, similar to the Euclidean algorithm in the ring

K|[T] to calculate resultants of polynomials.

Consider the extension L = F,,(¥/X, ¥/Y) of the field K = F,(X,Y). Show that the theorem of the
primitive element does not hold in this case. Show that there are infinitely many distinct fields F' with
KCFcCL.
Let K be a finite extension of degree n of a finite field F,. Show
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(i) there exists @ € K such that K = Fg(a).
(ii) there are precisely n distinct embeddings ¢; : K — Fy,.
(iii) the discriminant A(wi,...,wn) = det(Tr(w;w;)s,;) is not zero if and only if wi,...,wy is an Fy-
basis for K. Here the definition of the trace Tr(a) of an element @ € K is similar to Def.2.6.
(Hint: copy the proof of Prop.2.9)

3. Rings of integers.

In section 2 we have introduced number fields F' as finite extensions of Q. They admit natural
embedings into certain finite dimensional R-algebras F'® R, which are to be seen as generalizations
of the embedding Q — R. In this section we generalize the subring of integers Z of Q: every number
field F' contains a unique subring Op of integral elements.

Definition. Let F' be a number field. An element x € F' is called integral if there exists a monic
polynomial f(T) € Z[T] with f(z) = 0. The set of integral elements of F' is denoted by Op.

It is clear that the integrality of an element does not depend on the field F' it contains. An
example of an integral element is i = /—1, since it is a zero of the monic polynomial T?+1 € Z[T.
Every n-th root of unity is integral, since it is a zero of 7™ — 1. All ordinary integers n € Z are
integral in this new sense because they are zeroes of the polynomials 7" — n.

Lemma (3.1). Let F' be a number field and let € F. the following are equivalent
(i) z is integral.

(ii)) The minimum polynomial =, (T') of z over Q is in Z[T).

(iii) The characteristic polynomial f% . (T) of x over Q is in Z[T.

(iv) There exists a finitely generated subgroup M # 0 of F such that tM C M.

Proof. (i)=(ii) Let = be integral and let f(T") € Z[T] be a monic polynomial such that f(z) = 0.

The minimum polynomial fZ. (T') divides f(T) in Q[T]. Since the minimum polynomial of z is

monic, we have that f(7T) = ¢(T') f&;,(T) with g(7") € Q[T] monic. By Gauf’ Lemma (Exer.3.A)
we have that both fZ. (T) and ¢(T') are in Z[T] as required.

(ii)=>(iii) This is immediate from Prop.2.7(ii).

(iii)=(iv) Let n be the degree of f3 . (T) = >, a;T*. Let M be the additive group generated by

char
2 n—1 n—1 _ n —

1,z,z%,...,2" ". The finitely generated group M satisfies M C M because z - x
Q12" V= . . —aix—ag € M.

(iv)=(i) Let M # 0 be generated by ey, es,..., e, € F. Since zM C M there exist a;; € Z such
that

m
Te; = Zaijej forall1 <i<m,
j=1

in other words

ail ai12 - A1m €1 €1

a1 ao2 - a2m €9 ()
=T

am1 Am2 --- Omm €m €m

Since M # 0, at least one of the e; is not zero. This implies that the determinant det(a;; —z-Id) =0
and that the monic polynomial

f(T) = det(aij -T- Id) S Z[T]
vanishes in . This proves the lemma.
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Proposition (3.2). The set Of of integral elements of a number field F' is a subring of F.

Proof. It is easy to see that it suffices to show that z +y and zy are integral whenever z and y are
integral. Let therefore =,y € F be integral. By Lemma 3.1 there exist non-trivial finitely generated
subgroups M; and M5 of F, such that zM; C M; and yMs C Ms. Let ey, es,...,e be generators
of My and let fy, fo,..., fm be generators of M5. Let M3 be the additive subgroup of F' generated
by the products e; f; for 1 <i <l and 1 <j <m. It is easy to see that (z 4+ y) M3 C M3 and that
xyMs3 C Ms. This conludes the proof of Prop.3.2

In section 4 we will encounter a more general notion of “integrality”: if R C S is an extension
of commutative rings, then x € S is said to be integral over R, if there exists a monic polynomial
f(T) € R[T] such that f(z) = 0. Integers of rings of number fields are, in this sense, integral
over Z.

It is, in general, a difficult problem to determine the ring of integers of a given number field.
According to Prop.2.1, every number field F' can be written as F' = Q(«) for some « € Z. A similar
statement for rings of integers is, in general false: there exist number fields F' such that O # Z[c/]
for any a € Op. For example, the field Q(+/20) has Z[+/20, v/50] as a ring of integers and this ring
is not of the form Z[a] for any « (see Exer.6.G). There do, in fact, exist many number fields F' for
which Op is not of the form Z[a] for any «. For instance, it was recently shown by M.-N. Gras
[28], that “most” proper subfields of the cyclotomic fields have this property.

For quadratic fields however, the rings of integrs are generated by one element and the calcu-
lations are rather easy:

Example (3.3). Let F' be a quadratic number field. Then
(i) There exists a unique squarefree integer d € Z such that F = Q(\/d).
(i) Let d be a squarefree integer. The ring of integers O of F = Q(/d) is given by

Op = Z[Vd] ifd =2 or 3 (mod 4),

1++4d

:Z[ 7

] ifd=1 (mod 4).

Proof. (i) For any @ € F — Q one has that F' = Q(«). The number « is a zero of an irreducible
polynomial f(T) € Q[T of degree 2 and, obviously, F = Q(v/d) where d is the discriminant of f.
The field Q(\/g) does not change if we divide or multiply d by squares of non-zero integers. We
conclude that F = Q(v/d) for some squarefree integer d. The uniqueness of d will be proved after
the proof of part (ii).
(ii) Let o € F = Q(Vd). Then a can be written as o = a + bv/d with a,b € Q. It is easily
verified that the characteristic polynomial is given by f% . (T) = T? — 2aT + (a® — db®) Therefore,
a necessary and sufficient condition for o = a + bv/d to be in Op, is that 2a € Z and a® — db? € Z.

It follows that either a € Z or a € % + Z. We write b = u/v with u,v € Z, v # 0 and
ged(u,v) = 1. If @ € Z, then b>d € Z. and we see that v? divides u?d. Since ged(u,v) = 1, we
conclude that v? divides d. Since d is squarefree, this implies that v> = 1 and that b € Z. If
a € 3 +Z, then 4du?/v? € Z. Since ged(u,v) = 1 and d is squarefree this implies that v? divides 4.
Since a € % + Z, we have that b ¢ Z and v? # 1. Therefore v> =4 and b € % + Z. Now we have
that a,b € % + Z, and this together with the fact that a®> — db? € Z is easily seen to imply that
(d—1)/4 € Z.

We conclude, that for d = 1 (mod 4) one has that Op = {a +bVd: a,b € Z or a,b € 3 + Z}.
Equivalently, O = Z[l"'T‘/E]. In the other cases one has that Op = Z[/d].

(i)"* Tt remains to finish the proof of (i). According to (ii) the smallest b € Qs for which there
exists an a € Q such that a4 bv/d is in the ring of integers of Q(v/d) is 1 if d = 2 or 3 (mod 4) and
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1/2ifd =1 (mod 4). So the squarefree integer can be recovered from Op. Therefore d characterizes
the field F. This finishes the example.

Next we discuss discriminants of integral elements w1, ...,w, € F.

Proposition (3.4). Let F be a number field of degree n.
(i) Ifw1,...,wp, € Op then A(ws,...,wy) € Z.
(ii) Elements wn,...,w, € Op generate Op as an abelian group if and only if0 # A(w1,...,wy) €
Z has minimal absolute value.
(iii) There exists wy, . ..,w, that generate Op. For such a basis one has that Op = ®"_,w;Z. The
value A(w1,...,wy,) is independent of the basis.

Proof. (i) Clearly the discriminant A(wy,...,w,) is in Or. By Prop.2.9(i) it is in Q. Since Z is
the ring of integers of Q, we conclude that it is actually in Z.

(ii) Suppose wy,...,w, generate O as an abelian group. Let wi,...,w) be any n elements in
Op. There exist integers \;; € Z such that wj = >7_; Aijjw; for 1 < j < n. By Prop.2.9(iii) we
have that A(w],...,w),) = det(X\ij)2A(wi,--.,wy). Since det();;)? is a positive integer, it follows
that the discriminant A(ws,...,w,) is minimal. Conversely, suppose |A(ws,-..,w,)| is minimal.
If wy,...,w, do not generate the group OF, there exists z = ). A\;w; € O, but not in the group
generated by the w;. This implies that \; € Z for some i. After adding a suitable integral multiple
of w; to z, we may assume that 0 < \; < 1. Now we replace w; by z in our basis. One checks easily
that |A(w1,..., T, ..., wn)| = A2|A(wy, ..., w,)| which is integral by (i), non-zero, but smaller than

A(ws,...,wy). This contradicts the minimality and proves (ii).
(iii) There exists an integral basis wy, . ..,w, for F over Q. This basis has a non-zero discriminant
and by an (i) integral one. By (ii) it suffices to take such a basis with minimal |A(wy,...,wy)|- It

follows that Op = @ w;Z. The discriminant does not depend on the basis by Prop.2.9(iii).

Corollary (3.5). let F' be a number field with ring of integers Op. Then
(i) Every ideal I # 0 of O has finite index [OF : IJ.

(ii) Every ideal I of O is a finitely generated abelian group.

(iii) Every prime ideal I # 0 of Op is maximal.

Proof. Let I # 0 be an ideal of Op. By Exer.3.E, the ideal I contains an integer m € Z-,.
Therefore mOpr C I. By Prop.3.4(iii), the additive group of OF is isomorphic to Z™, where n is
the degree of F. It follows that Or/I, being a quotient of Op/(m) = Z™/mZ™ is finite.

(ii) Let I be an ideal of Op. Since the statement is trivial when I = 0, we will assume that I # 0
and choose an integer m € Zs( in I. By (i), the ring Or/mOp is finite and therefore the ideal
I (mod mOF) can be generated, as an abelian group, by, say, a1, ..., ar. It follows easily that the
ideal I is then generated by sy, ...,a, and mws, ..., mw,, where the w; are a Z-basis for the ring
of integers Op.

(iii) Let I # 0 be a prime ideal of Op. By (i), the ring O /I is a finite domain. Since finite domains
are fields, it follows that I is a maximal ideal.

As a consequence of Cor.3.5, the following definition is now justified:
Definition. Let F' be a number field and let I # 0 be an ideal of the ring of integers of Op of F.
We define the norm N(I) of the ideal I by

N(I) = [OF : I} = #(Or/1).

Another application of Prop.3.4 is the following. Let F' be a number field of degree n and let
wi,...,w, € F. By Prop.2.9(iii) the discriminant A(wy,ws,...,w;,) does not depend on wy, ..., wn,,
but merely on the additive group these numbers generate. This justifies the following definition.
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Definition. Let F be a number field of degree n. the discriminant of F is the discriminant
A(wi,ws, . ..,wy) of an integral basis wy,ws,...,w, of Op.

Since 1 is a Z-basis for Z, we see that the discriminant of Q is 1. As an example we calculate
the discriminant of a quadratic field.

Example (3.6). Let F' be aquadratic field. By Example 3.3 there exists a unique squarefree
integer d such that F = Q(v/d). If d = 2 or 3 (mod 4), the ring of integers of F is Z[v/d]. We take
{1,V/d} as a Z-base of Op. Then

_ Tr(1-1)  Tr(l1-vd) \ _ 2 0 _
AQ(\/E)_det(Tr(l-\/E) Tr(\/a-\/c_i))_det<0 2d)_4d'

If d =1 (mod 4), the ring of integers of F is Z[1+2‘/‘_i]. We take {1, 1+T‘/E} as a Z-base of Or. Then

_ Te(1-1) W)\ 2 1) L
Aa(ﬂ>—det(ﬁ(1.1+2\/a) Te(ityd . Levay | T 1 ep )=

In general, it is rather difficult to calculate the discriminant and the ring of integers of a
number field. We will come back to this problem in section 6. The following proposition is often
very useful.

Proposition 3.7. Let F' be a number field of degree n. Suppose wi,ws,...,w, € Op have the
property that A(wy,ws,...,wy) is a squarefree integer. Then Op = ), w;Z. In particular, if
there exists @ € Op such that the discriminant of fY. (T') is squarefree, then Op = Z[a] and
Arp =A(l,a,...,a" 1) = Disc(f",,)-

Proof. Tt follows from Prop.2.9(iii) that A(wy,ws,...,w,) = det(M)2Ar, where M € GLy(Z) is
the matrix expressing the w; in terms of a Z-base of Op. Since det(M)? is the square of an integer,
(i) follows.

If we take the powers 1,a, a2, ...,a" ! for wy,ws,...,w,, the result in (ii) follows from (i) and
the fact, proved in Prop.2.10, that A(1,q,...,a"" 1) = Disc(f%,,)-

Example. Let a be a zero of the polynomial f(T) = T3 — T — 1 € Z[T]. Since f(T) is irreducible
modulo 2, it is irreducible over Q. Put F = Q(«). By Prop.2,7(ii), the characteristic polynomial
of « is also equal to f(T'). In order to calculate the discriminant of f, one can employ various
methods. See Exer.2.0 for an efficients algorithm involving resultants of polynomials. Here we just
use the definition of the discriminant. Let’s calculate

Tr(1)  Tr(e) Tr(e?)
Al o, 0?) = | Tr(a) Tr(e?) Tr(e?)
Tr(a?) Tr(e®) Tr(a?)

The trace of 1 is 3. By Prop.2.7(iii), we see that Tr(a) is equal to the coefficient at 72 and
hence 0. In general, the traces Tr(a*) are equal to the power sums pr = ¢1(a)* + ¢o()* + d3(a)*
for £ > 0. The Newton relations (see Exer.2.M) relate these sums to the coefficients s; of the
minimum polynomial of c.

We have that Tr(a?) = ps = —2s5+p15s—1= —2-(—1)+0 = 2. We obtain the other values of
Tr(o*) by using the additivity of the trace: Tr(a®) = Tr(a+1) = 0+3 = 3 e Tr(a?) = Tr(a®+a) =
2 + 0 = 2. Therefore

A(l,a,0?) = = —23.

N O W
w N O
N W N



By Prop.3.7 we can now conclude that the ring of integers of Q(«) is Z[«] and that the discriminant
AqQq.) is equal to —23.

(3.A)

(3.M)

Prove Gauf}’ Lemma: let R be a unique factorization domain with field of fractions K and let f € R[T]
be a monic polynomial. If f =g -h in K[T], with g and h monic polynomials, then g, h € R[T].
Let F' be a number field and let o € F. Show that there exist an integer 0 # m € Z such that
ma € OF.
Show that for every number field F' there exists an integral element oo € Or such that F' = Q(«).
Let F' be a number field. Show that the field of fractions of Op is F.
Let F' be a number field. Show that every ideal I # 0 of OF contains a non-zero integer m € Z.
Let F' be a number field and let @ € Or. Show that N(a) = %1 if and only if « is a unit of the ring
OrF.
Let F' C K be an extension of number fields. Show that Ox N F = Op.
Let F' be a number field. Let r1 be the number of distinct embeddings F' <— R and let 2r2 be the
number of remaining homomorphisms F' < C. Show that the sign of Ap is (—1)"2.
Determine the integers and the discriminant of the number field Q(a) where « is given by a®+a—1 = 0.
Let F' and K be two quadratic number fields. Show that if Arp = Ak, then FF = K.
Let n > 1 be an integer and let {,, denote a primitive n-th root of unity. Show that {, — 1 is a unit if
and only if n is not the power of a prime. (Hint: substitute T'=1in (T"—1)/(T—1) = Hd|n,d7é1 ®(T)
and use Example 2.11)
*The goal of this exercise is to calculate the discriminant of the n-th cyclotomic polynomial &,(T).
For n € Z>1 let u(n) denote the Mobius function: for squarefree integers n we have that p(n) is the
number of primes dividing n. For all other n one has that p(n) = 0.

(i) For n > 1 prove that 3, du(n/d) = ¢(n).

(ii) Show that

a(1) = [J(z? - 1)/,

d|m

(iii) Let ¢ denote a primitive m-th root of unity. Prove that

o) [ €= =m

d|m,d#m

(Hint: write T™ — 1 = ®&,,(T)G(T), differentiate and put T' = ¢.)

(iv) Show that
I « -0+ =1J -1

d|m,d#£m p|lm

where (, denotes a primitive p-th root of unity in Q((m). Show that

¢(m)
Disc(@m(T)) = (~1)2%™ <L> :
I1

plmpp_1

(Hint: see Example 2.11.)
*(Stickelberger 1923) Let F' be a number field of degree n. Let {wi,ws,...,wn} be a Z-basis for
the ring of integers of F'. Let ¢; : F' — C be the embeddings of F' into C. By S, we denote the
symmetric group on n symbols and by A, the normal subgroup of even permutations. We define
AT =3 4 s oilwr@) and A™ =37 o, T, 0i(wr(i)). Prove, using Galois theory, that
AT+ A" e ATA™ are in Z. Conclude that Ap = (AT + A7)?> —4ATA™ =0or 1 (mod 4).
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4. Dedekind rings.

In this section we will introduce Dedekind rings (Richard Dedekind, German mathematician 1831
1916). Rings of integers of number fields are important examples of Dedekind rings. We will show
that the fractional ideals of a Dedekind ring admit unique factorization into prime ideals.
Definition. A commutative ring R is called Noetherian if every sequence of ideals of R

ILCcLc...CI,C...

stabilizes, i.e. if there exists an index iy such that I, = I, for all © > 1.

Lemma (4.1). Let R be a commutative ring. The following are equivalent:
(i) Every R-ideal is finitely generated.
(ii) R is Noetherian.
(iii) Every non-empty collection §2 of R-ideals contains a maximal element i.e. an ideal I such that
no ideal J € Q contains I properly.

Proof. (i) = (ii) Let I; C I C ... C I; C ... be a sequence of ideals of R. Suppose the union
I = U;>; is generated by aq,...,a,. For every ay there exists an index ¢ such that oy € I;.
Writing N for the maximum of the indices %, we see that ai € Ix for all k. Therefore I = Iy and
the sequences stabilizes.

(ii) = (iii) Suppose 2 is a non-empty collection without maximal elements. Pick I = I; € Q.
Since I; is not maximal, there exists an ideal Iy € €2 such that I; Cx I. Similarly, there exists an
ideal I3 € Q such that I, Cx I3. In this way we obtain a sequence I; C I C ... C I; C ... that
does not stabilize. This contradicts the fact that R is Noetherian

(iii) = (i) Let I be an ideal of R and let Q be the collection of ideals J C I which are finitely
generated. Since (0) € Q, we see that  # () and hence contains a maximal element J. If J # I, we
pick z € T — J and we see that the ideal J + (z) properly contains J and is in €. This contradicts
the maximality of J. We conclude that I = J and the proof of the lemma is complete.

Almost all rings that appear in mathematics are Noetherian (Emmy Noether, German math-
ematician 1882-1955). Every principal ideal ring is clearly Noetherian, so fields and the ring Z are
Noetherian rings. According to Exer.4.A., the quotient ring R/I of a Noetherian ring R is again
Noetherian. Finite products of Noetherian rings are Noetherian. The famous “Basissatz” [33] of
Hilbert (David Hilbert, German mathematician 1862-1943) affirms that the polynomial ring R[T]
is Noetherian whenever R is.

Non-Noetherian rings are often very large and sometimes pathological. For instance, the ring
R[X;,X;, X3,...] of polynomials in countably many variables over a commutative ring R is not
Noetherian.

Definition. Let R C S be an extension of commutative rings. An element x € S is called integral
over R, if there exists a monic polynomial f(T) € R[T]| with f(z) = 0. A domain R is called
integrally closed if every integral element in the field of fractions of R is in R.

Using this terminology, one can say that the integers of number fields are, in fact, integers
over Z. Let F be a number field. By Exer.3.D, the field of fractions of the ring of integers Or of
F' is precisely equal to F. Therefore, rings of integers are by definition integrally closed. Other
examples of integrally closed rings are provided by Exer.4.C: every unique factorization domain is
integrally closed.

Definition. Let R be a commutative ring. The height of a prime ideal P = P, of R is the
supremum of the integers n for which there exists a chain

PhCcPCPC...CP,CR
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of distinct prime ideals in R. The Krull dimension of a ring is the supremum of the heights of the
prime ideals of R.

For example, a field has Krull dimension 0 and the ring Z has dimension 1 (Wolfgang Krull,
German mathematician 1899-1971). In general, principal ideal rings that are not fields, have
dimension 1. It is easy to show that for every field K, the ring of polynomials K[X1,..., X,] has
dimension at least n. The notion of dimension originates in algebraic geometry: the ring of regular
functions on an affine variety of dimension n over a field K has Krull dimension equal to n.

Definition. A Dedekind ring is a Noetherian, integrally closed domain of dimension at most 1.

By Exer.4.H, every principal ideal domain R is a Dedekind ring. Its dimension is 0 if R is a field
and 1 otherwise. The following proposition gives us many examples of Dedekind rings.

Proposition (4.2). Let F' be a number field. Then the ring of integers Op of F' is a Dedekind
ring.

Proof. The ring OF is integrally closed by definition. By Cor.3.5(ii), every ideal is a finitely gen-
erated abelian group. We conclude from Lemma(4.1) that Op is a Noetherian ring. By Cor.3.5(iii)
every non-zero prime ideal is maximal. This implies that the dimension of Of is at most 1. This
proves the proposition.

Definition. Let R be a Dedekind ring with field of fractions K. A fractional ideal of R (or K) is
an additive subgroup I of K for which there exists « € K such that «l is a non-zero ideal of R.

Proposition (4.3). Let R be a Dedekind ring with field of fractions K. Then
(i) Every non-zero ideal of R is a fractional ideal.
(ii) If I and J are fractional ideals, then IJ = {35 a;f; : a; € I, B; € J} is a fractional ideal.
(iii) For every o € K* the set (o) = aR = {ar : r € R} is a fractional ideal. Such a fractional
ideal is called a principal fractional ideal.
(iv) For every fractional ideal I, the set I"' = {a € K : ol C R} is a fractional ideal.

Proof. (i) is obvious.

(ii) If oI C R and BJ € R then ofIJ C R.

(iii) This follows from the fact that «='T = R.

(iv) Let a # 0 be any element in I. Then al~! C R is an ideal. This proves the proposition.

Theorem (4.4). Let R be a Dedekind ring and let Id(R) be the set of fractional ideals of R. Then
(i) The set Id(R) is, with the multiplication of Prop.4.3(i), an abelian group. The neutral element
is R and the inverse of a fractional ideal I is I™1.
(ii) We have

R

DOZ
p

Id(R)

where p runs over the non-zero prime ideals of R. More precisely: every fractional ideal can
be written as a finite product of prime ideals (with exponents in Z) in a unique way.

Proof. Since the theorem is obvious when R is a field, we will suppose that R is not a field. We
suppose, in other words, that R has Krull dimension 1. The proof will be given in six steps:

(i) Every non-zero ideal of R contains a product of non-zero prime ideals of R.

Suppose that there exists an ideal that does not contain a product of non-zero prime ideals.
So, the collection € of such ideals is not empty. Since R is Noetherian, we can, by Lemma 4.1 find
an ideal I € 2 such that every ideal J that properly contains I is not in 2. Clearly I is not prime
itself. Therefore there exist z,y ¢ I such that zy € I. The ideals I + (z) and I + (y) are strictly
larger than I and hence contain a product of non-zero prime ideals. Say p1 -...-p, C I + (z) and
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pio...pl C T+ (y). Now we have py«...-ppi-...-p, C (I +(2))(I + (y)) C I contradicting the
fact that I € Q.

(ii) For every ideal I with 0 # I # R one has that R C I™1.

Let M be a maximal ideal with i C M C R. Since I~ D M'* D R~! = R it suffices to prove
the statement for I = M a maximal ideal. Let 0 # a € M. By part (i) there exist prime ideals
p; such that py -...-p, C (a) C M. Let us assume that the number of prime ideals r in this
product, is minimal. Since M itself is a prime ideal, one of the primes p;, say p;i, is contained in
M. Sinds R has Krull dimension 1, we conclude that p; = M. By minimality of » we see that
p2-...-pr C (a) ¢ M and we can pick b € py - ...-p, but b & (a). So, b/a € R, but b/a € M~
because bM C pa - ... p.M C (a). This proves (ii).

(iii) MM~ = R for every maximal ideal M of R.

Since R € M~! we have that M ¢ MM~ C R. If one would have that M = MM~! then
every x € M~ satisfies tM C M. Since M is finitely generated over R, it follows from Exer.4.E
that z is integral over R. Since R is integrally closed this would imply that M~! C R contradicting
(ii). We conclude that M # MM ~! and hence that MM ~! = R as required.

(iv) IT~! = R for every ideal I # 0 of R.

Suppose I is an ideal with II~! # R. Suppose, moreover, that I is maximal with respect to
this property. Let M be a maximal ideal containg I. Since R C M ~!, we have that I C IM~! C
MM~1 C R. We see that IM~1! is an ideal of R. If we would have that TM~! = I, then, by
Exer.4.G, M~! would be integral, which is impossible. We conclude that IM~! = I is strictly
larger than I. Therefore IM~*(IM~')~! = R. This implies that M~}(IM~1)=! C I~1. Finally:
R =IM~'IM~')=! c IT7! C R whence II~! = R contradicting the maximality of I. This
proves (iv).
(v) Every fractional ideal is a product of prime ideals with exponents in Z.

Suppose I C R is an ideal which cannot be written as a product of prime ideals. Suppose
that I is maximal with respect to this property. Let M be maximal ideal I C M C R. Then
ICIM~'CR. Since M~! ¢ R we see that TM~! is strictly larger than I. So IM~! is a product
of primes and therefore, multiplying by M, so is I. This contradiction shows that every integral
ideal I of R is a product of prime ideals. By definition, every fractional ideal is of the form a=1I
where o € R and I is an ideal of R. We conclude that every fractional ideal is a product of prime
ideals, with exponents in Z.

(vi) The decomposition into prime ideals is unique.

Suppose [[p™ with n, # 0. This gives us a relation Ip = J where I and J are ideals in R
and J is a product of primes different from p. However, since p is prime we have that J C p and
therefore p contains a non-zero prime ideal different from itself. This is impossible and the proof
of Theorem 3.4 is now complete.

It is easy to see that the ideals of R are precisely the fractional ideals that have a prime ideal
decomposition [ p™ with non-negative exponents. When R is a Dedekind ring and p is a non-zero
prime ideal in R, we denote for every fractional ideal I by

ord,(I)
the exponent n,, of p in the prime decomposition of I. For x € F* we denote by
ordy(z)

the exponent ord,((z)) occuring in the prime decomposition of the principal fractional ideal (z).
The following corollary is a generalization of the “Principle (P)” used in the introduction.
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Corollary (4.5). Let R be a Dedekind domain, let N € Zsq and let I, 15,..., I, be non-zero
ideals of R which are mutually coprime i.e. for which I; + I; = R whenever i # j. If

Iy Iye...- I, =JN
for some ideal J of R, then there exists for every 1 < i < m, an ideal J; such that J~ = I;.

Proof. By Theorem 4.4 we can decompose the ideals I; into a product of distinct prime ideals p; ;:

ng
— €4,
I = Hpm‘ '
j=1

We have that

m n;
LI Ly =[[]] ey =7V
i=1j5=1
Since the ideals I; are mutually coprime, all the prime ideals ideals p; ; are distinct. By Theorem 4.4,
the group of fractional ideals is a sum of copies of Z. We conclude that all the exponents e; ; are
divisible by N and hence that the ideals I; are N-th powers of ideals, as required.

Definition. Let R be a Dedekind ring with field of fractions K. We define a map
0: K* — Id(R)

by 6(«) = («). The image of @ is the subgroup PId(R) of principal fractional ideals and the kernel
of 0 is precisely the group of units R* of R. The cokernel of 8 is called the class group of R:

CIl(R) = cok(0) = Id(R)/PId(R).
In other words, there is an exact sequence
0— R* — F* -5 1d(R) — CI(R) — 0.

The class group of a Dedekind ring measures how far R is from being a principal ideal domain.
Fields and, more generally, principal ideal domains have trivial class groups. The analogue of the
class group in algebraic geometry is the Picard group.For a smooth algebraic curve this is the
divisor group modulo its subgroup of principal divisors [30, p.143].

One can show [14], that every abelian group is isomorphic to the class group CI(R) of some
Dedekind domain R. We will show in section 7 that the class groups of rings of integers of number
fields are always finite.

Proposition (4.6). Ilet R be a Dedekind ring. The following are equivalent:
(i) The class group CI(R) is trivial.

(ii) Every fractional ideal of R is principal.

(iii) R is a principal ideal domain.

(iv) R is a unique factorization domain.

Proof. The implications (i) = (ii) = (iii) = (iv) are easy or standard. To prove that (iv) = (i) we
first note that by Theorem 4.4 it suffices to show that every prime ideal is principal. Let, therefore,
p be a non-zero prime ideal and let 0 # 7 € p. Writing 7 as a product of irreducible elements
and observing that p is prime, we see that p contains an irreducible element #’. The ideal (7') is
a prime ideal. Since the ring R is a Dedekind ring, it has Krull dimension 1 and we conclude that
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Proposition (4.7). Let F' be a number field and let I, J be non-zero ideals of its ring of integers
Opf. Then
N(IJ)=N({I)N(J).

Proof. By Theorem 4.4 it suffices to prove that
N(IM)=N(I)N(M).
for a maximal ideal M of Op. From the exact sequence
0—I/IM — R/IM — R/I —0

we deduce that all we have to show, is that #(I/IM) = #(R/M). The group I/IM is a vector space
over the field R/M. Since, by Theorem 4.4 one has that M1 # I, it is a non-trivial vector space.
Let W be a subspace of I/IM. The reciprocal image of W in R is an ideal J with IM C J C I.
This implies that M C JI~! C R and hence that JI~! = M or JI~! = R. In other words J = TM
or J =1 and hence W =0 or W = I/IM. So, apparently the vector space I/IM has only trivial
subspaces. It follows that its dimension is one. This proves the proposition.

The next proposition is a very useful application of the multiplicativity of the norm map.

Proposition (4.8). Let F' be a number field of degree n.
(i) For every ideal p of Of there exists a prime number p such that p divides p. The norm of p is
a power of p.

(ii) Let pS* -...-pg° be the prime decomposition of the ideal generated by p in Op. Then
9
D eifi=n
i=1

where for every i the number f; is defined by N(p;) = pf:.
(iii) For every prime number p there are at most n distinct prime ideals of Op dividing p.
(iv) There are only finitely many ideals with bounded norm.

Proof. (i) Let p be a prime ideal. By Exer.3.E there exists an integer m # 0 in p. Since p is a
prime ideal, it follows that p contains a prime number p. So p divides p and by Prop.4.7 N(p
divides N(p) = p".

(ii) This follows at once from the multiplicativity of the norm, by taking the norm of the prime
decomposition of (p) in OF.

(iii) This is immediate from (ii).

(iv) This follows from Theorem 4.4 and (iii).

The numbers f; and e; are called the inertia- and ramification index respectively, of the prime
ideal p;. If for a prime p and a number field F' of degree n one has that e; = f; = 1 for all g primes
p; that divide p we say that p is totally split in F. In this case there are n different prime ideals
dividing p. They all have norm p. If g = 1, there is only one prime ideal p; dividing p. If, in this
case f1 = 1, we say that p is totally ramified in F' over Q. If, on the other hand, e; = 1, the prime p
“remains” prime i.e. (p) is also a prime ideal in Op.

Example. Let F = Q(v/—5). By Example 3.6 the ring of integers of F is equal to Z[v/—5]. We
will factor some small prime numbers into prime ideals.

First we study the prime 2: since Or/(2) = Z[T)/(2,T?+5) = F3[T]/((T+1)?) is not a domain,
the ideal (2) is not prime in Op. The reciprocal image of the ideal (T + 1) C Fo[T]/((T + 1)?) is
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just po = (2,1 + +/=5) in Op. Tt is easily checked that p3 = (2). This is the decomposition of (2).
We see that 2 is ramified.

Consider the ideal (3) in Op. Since Or/(3) = Z[T)/(2,T? + 5) = F3[T]/((T + 1)(T — 1)) is
not a domain, we see that (3) is not prime. In fact the reciprocal images of the ideals (7' + 1) and
(T — 1) are prime ideals that divide (3). We let p3 = (3,7 + 1) and p} = (3,7 — 1) denote these
ideals. One verifies easily that (3) = psp%s which gives us the prime decomposition of (3) in Op.

One checks that 7 decomposes in a way similar to 3. The prime 11 remains prime since
Or/(11) 2 F11[T]/(T? + 5). The decomposition of the prime numbers less than or equal to 11 is
given in the following table:

Table.
p (p)
2 p3 | p2=(2,1+V=H)
3 p3ps ps = (3,1 ++/=5) and p} = (3,1 —/—5)
5 P2 | s = (V=)
7| prpy p7 = (7,3 ++/=5) and p, = (7, -3 + v/-5)
11 (11) 11 is inert.

The number 6 has in the ring Z[+/—5| two distinct factorizations into irreducible elements:

6=2-3,
=(1+v-5)(1—-+v-5).
The factors have norms 4,9 or 6. They are irreducible, for if they were not, than their divisors
a + by/—5 would necessarily have norm 2 or 3. But this is impossible because, for trivial reasons,
the Diophantine equations a? + 56> = 2 and a2 + 5b> = 3 do not have any solutions a,b € Z. there

exists, however, a unique factorization of the ideal (6) in “ideal” prime factors. These prime factors
are non-principal ideals. The factorization refines the two factorizations above:

(6) = p*paps.

Indeed, one has that paps = (1 ++/—5) and paps = (1 —/—5).

Finally we will apply Theorem 4.4 to the (-function (r(s) of a number field F. First we
consider the (-function of Riemann:

()=

L. Euler (Swiss mathematician who lived and worked in Berlin and Petersburg 1707-1783) found
an expression for ((s) in terms of an infinite product:

|-

for s € C, Re(s) > 1.

S

S

)= J[ a-)" for s € C, Re(s) > 1.

p prime

This implies at once that ((s) does not have any zeroes in C with real part larger than 1. The
proof of Euler’s formula is as follows: let s € C with Re(s) > 1. Observe that

1., 11 1
(1—1?) :1+E+p78+]§+...
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Since every positive integer can be written as a product of primes in a unique way, we find that for

every X € Ryg ) .
Ma- =%
Sx ps ~ ns

where n runs over the positive integers that have only prime factors less than X. Therefore

- Ta- 971 Y g =0

p<X n>X

when X — oco. This follows from the fact that the sum converges for s € C with Re(s) > 1. This
implies Euler’s formula.

Definition. Let F' be a number field. The Dedekind (-function (g(s) is given by

1
) =2 Ny

I#0

where I runs over the non-zero ideals of Op. We see that for F' = Q the Dedekind ¢{-function (q(s)
is just Riemann’s {-function. We will now study for which s € C this sum converges.

Proposition (4.9). Let F be a number field. Then
GIOED PRy | (ENERE
2wy~ LU Ny

where I runs over the non-zero ideals of Or and p over the prime ideals of Op. The sum and the
product converge for s € C with Re(s) > 1.

Proof. Let m be the degree of F' and let s € C with Re(s) > 1. By Prop 4.8(iii) there are at most
m prime ideals dividing a fixed prime number p. Therefore

1 1 1
| Z N(p)s|§ngm§mzm

N(p)<X p<X n<X

where p runs over the primes of Op of norm at most X, where p runs over the prime numbers at
most X and where n runs over the integers from 1 to n. Since the last sum converges, the first sum
converges absolutely. Hence, by Exer.4.S the product

_ 1 -1
116~ 57

p

converges. Now we take s € R 1. By Theorem 4.4 the ideals I admit a unique factorization as a
product of prime ideals. This implies

N(I)<X

and we see, since the terms W are positive, that the sum converges. Moreover

1 1 1
2oy ML 0w E 2 s

I#0 N(p)<X N(I)>X
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when X — oo. This concludes the proof.

If R is a Noetherian ring, then R/I is Noetherian for every ideal I of R.

Is the ring C*°(R) = {f : R = R : f is a C*°-function} Noetherian?

Show that every unique factorization domain is integrally closed.

Let R be an integrally closed ring and let f € R[X] be irreducible over K, the field of fractions of R.
Then f is irreducible over R.

Show: let R C S be an extension of commutative rings. Then an element z € S is integral over R if
and only if there exists an R-module M of finite type such that xM C M (Hint: Copy Lemma(3.1)).
Consider the properties “Noetherian”, “integrally closed” and “of Krull dimension 1”7 that characterize
Dedekind domains. Give examples of rings that have two of these properties, but not the third.
Prove the Chinese Remainder Theorem: let R be a commutative ring and suppose that I and J are
two ideals of R that are relatively prime i.e. I + J = R. Then the canonical homomorphism

R/IJ —s R/I x R]J

is an isomorphism.
Prove that every principal ideal domain is a Dedekind domain.
Let I and J be two fractional ideals of a Dedekind domain.
(i) Show that I NJ and I + J are fractional ideals.
(ii) Show that I '+ J '=(INJ) andthat I ' NJ "= (I+J) "
(iii) Show that I C J if and only if J ' C I~'.
Let R be a Dedekind ring. Show:
(i) a fractional ideal contained in R is an ideal of R.
(ii) for @ € R and a fractional ideal I one has that oI C I.
(iii) every fractional ideal I is of the form m ' J where m € Z and J is an ideal of R.
(iv) if I = (z) is a principal fractional ideal, then I ' = (z ).
Let I and J be fractional ideals of a Dedekind domain R. Let ny and my be the exponents in their
respective prime decompositions. Show that I C J < np > my for all primes p.
Let R be a Dedekind ring with only finitely many prime ideals. Show that R is a principal ideal ring.
Show that in a Dedekind ring every ideal can be generated by at most two elements.
Let R be a Dedekind ring. Show that every class in CI(R) contains an ideal of R.
Let R be a Dedekind ring. Let S be a set of prime ideals of R. Let R’ be the subset of the quotient
field K of R defined by

R ={zeK":(z)= Hp”” with ny > 0 for all pnot € S} U {0}.
p

Show that R' is a Dedekind ring.

Let R be a Dedekind ring and let p and p’ be two different non-zero prime ideals of R. Then p+p’ = R.
Let A be an additively written abelian group, which is free with basis {ex : A € A}. Let a1, a2,...,am €
A. Define the integers a; by a; = Z/\eA a;,nex. Suppose that for all i # j, the sets {\ € A : a; \ # 0}
and {X € A: o\ # 0} have empty intersection. Suppose that

m

Zai=NU

=1

from some N € Zso and v € A. Show that N divides every a;,x.
Let R — S be an extension of Dedekind domains. Show that, if S is an R-module of finite type, the
canonical map Id(R) — Id(S) is injective.
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(4.S) Let a; € R>g for i = 1,2,.... Show that Ei a; converges if and only if Hl(l + a;) converges.

T) Show that Q% and the additive group of the ring Z[T] are isomorphic as abelian groups.

U) Let F' be a number field of degree n. Show that for every q € Q*, the fractional ideal generated by ¢
has norm ¢".

(4.V) Let F be a number field and let I be a fractional ideal of F'. Show that there is a positive integer m
such that mI is an ideal.

(4.W) Let F be a number field. For an ideal I C Or we put ®(I) = #(Or/I)*. Show that ), ;. ®(J) =
N(I) and that ®(I) = N(I) Hp(l — N(p)~"). Here the product runs over the prime ideals p with
ICpCR.

(4.X) Show that the ideal I = (2,2i) C Z[2i] is not invertible, i.e. I~'T # R.

(4.
(4.

5. Finitely generated abelian groups and lattices.

The contents of this section are not of a number theoretical nature. The results will be very
important in the sequel. Our first subject are finitely generated abelian groups. We will determine
the structure of these groups. We will expain the relation between indices of finitely generated free
groups and determinants.

The second part of this section concerns lattices. Lattices are finitely generated groups with
additional structure. We will explain the relations between indices of free groups and certain
volumes.

An abelian group is said to be free of rank n, if it is isomorphic to Z™. A subgroup A of a free
group F' =2 Z" is said to have rank m if the Q-vector space generated by A in FF ® Q = Q" has
dimension m.

For any two integers « and £, the notation «|S means that « divides g.

Theorem (5.1). Let F = Z" be a free group of rank n and let A C F be a subgroup. Then
(i) The group A is free of rank m < n.
(ii) There exists a Z-basis e, ..., e, of F and integers ay,...,am € Z>q such that aj|as|...|amnm
and ajeq,...,Qmen, IS a basis for A. The integers ay, ..., Q,, are unique.

Proof. Suppose 0 # A C F. Consider the functionals f : F — Z. For every f : FF — Z we have
that f(A) is an ideal in Z. This ideal is principal and it is generated by a unique ay > 0. Since
Z is Noetherian, there is a maximal ideal in the collection of ideals {f(A) : f : F — Z}. Since
A # 0, this ideal f(A) is not 0. Let o denote a positive generator and let a € A be an element for
which f(a) = a.

Now « divides g(a) for every g : F — Z: for suppose that d = gcd(g(a), @) and let u,v € Z
such that ua 4+ vg(a) = d. Then d is the value of the functional uf + vg at a. Since d divides a, it
follows from the maximality of o that d = @ and hence that a divides g(a).

In particular, o divides all coordinates of a. We let b = La. We see that f(b) = 1 and moreover
that

F = bZ & ker(f),

A =aZ & (ker(f) N A).

This follows easily from the fact that for every z € F one has that z = f(z) - b+ — f(z) - b. If,
moreover, € A, then f(z) € aZ by definition of a. We leave the easy verifications to the reader.

Now we prove (i) by induction with respect to the rank m of A. If m = 0 the statement
is trivially true. If m > 0, we can split F and A as we did in the discussion above. The group
ker(f) N A obviously has rank at most m. Since A = aZ @ (ker(f) N A) has clearly strictly larger
rank, we conclude that the rank of ker(f) N A is at most m — 1. By induction we see that this is a
free group and consequently A is free as well. This proves (i)
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Part (ii) is proved by induction with respect to n. If n = 0 the statement is trivially true. If
n > 0, either A = 0, in which case the result is clear, or A > 0. In the latter case we can split F
and A as explained above:
F =bZ & ker(f),

A=aZ® (ker(f) N A).

The group ker(f) has rank at most n — 1. By (i) it is free of rank at most n — 1. By induction
there exists a basis es, ..., e, of ker(f) and integers s, . .., o, such that ases, ..., ame,, is a basis
for ker(f) N A. We now take e; = b and a3 = a. To complete the proof it suffices to verify that
« divides ap. If there is no es, there is nothing to prove. If there is, we define a functional g by
g(e1) = g(ez2) =1 and g(e;) = 0 for 7 > 2. We see that a € g(A) and therefore, by maximality of
a, that g(A) = («). Since as € g(A) the result follows.

Corollary (5.2).
(i) For any finitely generated abelian group A there exist unique integersr > 0 and a1, o, ..., €
Z, satisfying aq|as|...|a; and such that

AZZ" XZ/owZ x ... Z/oZ.

(ii) For any finite abelian group A there exist unique integers ai,qs,...,a; € Zsy with the
property that a|az| ... |ayt, such that

AXZ/onZ X ... Z]/oZ.

(iii) Let F = Z"™ be a free group of rank n and let H C F be a subgroup of F'. Then H has finite
index in F' if and only if rk(H) = rk(F).

Proof. (i) Let A be a finitely generated group and let n be an integer such that there is a surjective
map

0:7" — A.
By Theorem 5.1 there is a basis ej,...,e, of Z" and there exist positive integers a;|as|... |an,
such that aje; ..., amen is a basis for B = ker(#). It follows at once that

A2ZM ™M XZ]/aZ % ... x Lo Z

as required. The uniqueness of the ¢;’s follows easily by considering A modulo a; A for various .
(ii) This is just (i) for a finite abelian group.

(iii) Choose a basis ey, ..., e, of F such that the subgroup H has ajes,...,ane,, as a basis. We
have that

F/H=Z""™ X Z/oyZ X ... x L] anZ

and clearly rk(H) = rk(F) if and only if n = m if and only if [F : H| = #(F/H) is finite. This
proves (ii).

Corollary (5.3). Let A be a n x n-matrix with integral coefficients. Let F' = Z™ and H = A(F) C
F. Then

(i) The index of H in F is finite if and only if det(A) # 0.

(ii) If det(A) # O then [F : H| = |det(A)|.
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Proof. According to Theorem 5.1 we can choose a basis ej,es,...,e, for F such that H =
a161Z @ ... D ayenZ. With respect to this basis the matrix A becomes

(e7%) 0 ... 0
0 a2 ... 0

A=| . . . :
0 0

and we see that F'//H is infinite if and only if one of the «; is zero. This proves (i). Part (ii) follows
from the fact that det(A4) =[], .

Next we apply the results on finitely generated abelian groups to number theory.
Corollary (5.4). Let f € Z[T] be a monic irreducible polynomial. Let o denote a zero and
F = Q(«). Then the index [OF : Z[c]] is finite and
Disc(f) = [OF : Z[a]]? - Ap.
Proof. Let wy,...,w, denote a Z-basis for the ring of integers of F. There is then a matrix M
with integral coefficients such that

M(wy,...,wn) = (1,a,0%,...,a"").

Therefore
(det(M))?Ar = A(1,o,02, ..., ")
and hence, by Cor.5.3 and Prop.2.10

[OF : Z[o]]?AF = Disc(f)

as required.

Corollary (5.5). Let F' be a number field and let o« € F. Then the norm of the Op-ideal generated
by « is equal to the absolute value of the norm of a:

Proof. Let M, denote the matrix which expresses the multiplication by « with respect to a Q-basis
of F. We have
IN(a)| = |det(M,.)] by definition,
= [OF : im(A)] by Cor.5.3,

= #0r/(a) = N((a)).

Many of the finitely generated groups that arise in algebraic number theory are equipped with
extra structure. Very often they are, in natural way, lattices. In the rest of this section we will
study lattices. We will show that the ring of integers Op of an algebraic number field F' admits a
natural lattice structure. In section 7 we will see that, in a certain sense, the unit group O% admits
a lattice structure as well.

Definition. Let V be a vector space over R. A subset L C V is called a lattice if there exist
ei,...,en € L such that (i) L =), Ze;, and (ii) The e; are a basis for V over R.

An easy example of a lattice is the group Z™ contained in the vector space R™. The following
example is very important.
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Example (5.6). Let F' be a number field. The image under ® of the ring of integers Op of F' in
FRR =R" x C™ is a lattice.

Proof. By Lemma 2.5 the map ® maps Q-bases of F' to R-bases of F' ® R. In particular, every
Z-base of Op is mapped to an R-base of F'® R. This implies that ®(OF) is a lattice in F @ R.

Proposition (5.7). Let V be a real vector space and let L C V' be a subgroup. Then
(i) L is a lattice.

(ii) L is discrete and cocompact.

(iii) L generates V over R and for every bounded set B C V one has that BN L < cc.

Proof.(i) = (ii) This is almost obvious. We have that V' = 3" e;R and therefore V/F, being a
continuous image of the compact space . e;[0,1] is compact.

(ii) = (iii) Suppose L is discrete and cocompact. If L generates W C. V then there is a continuous
surjection V/L — V/W. The vector space V/W is not compact and this contradicts the fact that
V/L is compact. If there would be a bounded set B with B N L infinite, then L could not be
discrete.

(iii) = (i) Since L generates V over R, there is an R-basis ej,...,e, € L of V. The set B =
>, €i[0,1] is bounded and therefore the following sum is finite:

L= Z (x-l—ZeiZ).

r€EBNL

We conclude that the index [L : ), e;Z] = m is finite and that mL C ), e;Z. By Theorem 5.1 the
group mL is free and by Cor.5.2 it is of rank n. We conclude that L is free of rank m as well. This
proves the proposition.

Corollary (5.8). Let F be a number field. The image of a fractional ideal I under ® : F — Vp
is a lattice.

Proof. Let n # 0 be an integer such that nl is an ideal. Let 0 # m € I be an integer. We have
that 1

"OpcIc=-0p

n n
Since the image of O in Vg is a lattice, so is the image of gOp for every ¢ € Q*. We conclude

that 7 Op and therefore I is cocompact and that %OF and therefore I is discrete. By Prop.5.7 the
image of I is a lattice, as required.

Definition. Let V' be a real vectore space provided with a Haar measure. Let L C V be a lattice.
The covolume covol(L) of L is defined by

covol(L) = vol(V/L)
where the volume is taken with respect to the Haar measure induced on the quotient group V/L.

It is easy to see that the covolume of L = ) . Zv; C R™ is also the volume of a socalled
fundamental domain of V for L:

covol(L) = vol({z Aiv; 0 < A < 1for 1 <i<mn}).

Lemma (5.9). Letey,...,e, be the standard basis of R", provided with the usual Haar measure.
Let M be an n X n-matrix with real coefficients. Let L be the subgroup generated by the image
M(ey . ..ey) of the basis. Then

(i) L is a lattice if and only if det(M) # 0.

(ii) If L is a lattice, then covol(L) = |det(M)|.
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Proof. Clearly det(M) # 0 if and only if the vectors M(e;),..., M(e,) span R™ and, therefore,
if and only if L is a lattice. This proves (i). Part (ii) is a standard fact from linear algebra: For
any n vectors vy, ...,v, € R™ the paralellopepid {>_ A\;v; : 0 < A; < 1 for 1 <4 < n} has volume
|det(M)].

For instance, the lattice ((2))Z—I- (_12)Z € R? has covolume ‘det((z) _12)‘ = 4. The next proposition
gives the covolumes of the lattices ®(Op) and ®(I) in F ® R.

Proposition (5.10). Let F' be a number field of degree n. Let vy denote the number of distinct
homomorphisms F — R and 2ry number of remaining homomorphisms F — C.
(i) The covolume of the lattice Op or rather ®(Op) in F ® R is given by
covol(Op) = 2772 | Ap|Y/2.
(ii)) Let I be a fractional ideal, the covolume of I in F @ R is given by

covol(I) = N(I)27"2|Ap|Y/2.

Proof. As usual we identify the 2-dimensional vector space C with R? via z — (Re(z),Im(z)). In
this way we have that F ® R 2 R" and we find that

d1(w1) ... Redp(wi) Imeg(wr)
3(0F) = | ¢ (w2) ... Regp(wz) Imey(wz)
here wy,...,wy, denotes a Z-basis for Or and the ¢; denote the embeddings F' < C upto complex

conjugation. In the proof of Lemma 2.5 the determinant of this n X n-matrix has been calculated:

|det| = |(24)7"* det(¢s(w;))]
— 9T ‘AF|1/2

and hence
covol(Op) = 2772 |Ap|*/2.

(ii) Using the notation of part (i) let I # 0 be a fractional ideal in Op. By Exer.4.J(iii) there exists
a non-zero integer m such that ml is an ideal in Op. The ideal ml, being a subgroup of finite
index of the free group Op, is free of rank n. Let A be a matrix with integral coefficients such that

w1
ml=A

Wn

By Cor.5.3(ii) the absolute value of the determinant of A is equal to [Op : mI| = N(mI) = m"N(I).
As in (i), we have that

covol(mI) = det (A - ®(Or)) = m"N(I)27"2|Ap|*/2.
By Exer.5.D we have that covol(mI) = m™covol(I), and the result follows.
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(5.A) Let A= (g)Z + (g)Z C Z”. Find a basis of Z* as in Theorem 5.1.
(5.B) Let H in Z® be the subgroup generated by (1,1,2), (5,1,1) abd (—1,—5,—3), What is the structure

of Z*/H?

(5.C) Let L = {(z,y,2) € Z* : 2z + 3y + 42 = 0 (mod 7)}. Show that L C R? is a lattice. Find a Z-basis
and calculate its covolume.

(5.D) Let L C R™ be a lattice. Let A be an invertible n x n-matrix. Show that A(L) is alattice. Show that
covol(A(L)) = |det(A)|covol(L). Let m € Zxq; show that covol(mL) = m™covol(L).

(5.E) Identify the quaternions with R* by letting 1,14, j, k correspond to the standard basis vectors ey, . . ., e4.

What is the covolume of the ring of Hurwitz integers in H 2 R*?

(5.F) Let F' be a number field. Suppose R C F' is a subring with the property that its image in F @ R is a
lattice. Show that R C Or.
(5.G) (Euclidean imaginary quadratic rings.) Let F' be an imaginary quadratic number field. We identify

Or with its ®-image in FF @ R = C.

(i) Show that OF is Euclidean for the norm if and only if the closed circles with radius 1 and centers
in OF cover C.

(ii) Show that OF is Euclidean for the norm if and only if Ap = —3, -4, -7 or —11.

(iii) For real quadratic fields F' (with F @ R = R?) there is a similar result. It is due to Chatland
and Davenport [13] and much harder to prove. The following is easier: show that the rings of
integers of the rings of integers of the quadratic fields F' with Ar = 5,8 and 12 are Euclidean for
the norm.

(5.H)*Let L be a free abelian group of rank r. Let Q(z) be a positive definite quadratic form on L. Supppose
that for every B € R there are only finitely many = € L with (z) < B. Then there is an injective

map I : L — R" such that i(L) is a lattice and |i(z)| = Q(z). Here |v| denotes the usual length of a

vector v € R".

(5.I) Let L C R™ be a lattice. Show that

1 2"
im —— e Up) EL:|ay| <t foralll <i< = —.
tliglo (t)"#{(vl’ »Un) € laif < ¢ forall 1 < i < n} covol(L)
(5.J)*(H.W. Lenstra) Show that the ring Z[(y] is Euclidean with respect to the norm for all m with ¢(m) < 8.
(Hint: Read [47,48]).

6. Discriminants, integers and ramification.

Any number field F' can be written as Q(«) where « is an algebraic integer. Consequently, the ring
Z[o] is a subring of Op, which is of finite index by Cor.5.4. In this section we investigate under
which conditions Z[a] = Op, or more generally, which primes divide the index [Op : Z[o]]. For
primes that do not divide this index, one can find the prime ideals of Or that divide p, from the
decomposition of the minimum polynomial f(T') of « in the ring F,[T]. This is the content of the
Factorization Lemma.

Theorem (6.1). (Factorization Lemma) Suppose f € Z[T] is an irreducible polynomial. Let «
denote a zero of f and let F' = Q(«). Let p be a prime number not dividing the index [OF : Z[a]].
Suppose the polynomial f factors in F,[T] as

f(T) = ha(T)* - ... - hy(T)"

where the polynomials h1, ..., hg are the distinct irreducible factors of f modulo p. Then the prime
factorization of the ideal (p) in O is given by

(p) = p7* - by,
where p; = (h;(c),p) and N (p;) = pies(h).
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Proof. We observe first that for any prime p we have that

Z[o]/(hi(e),p) = Fp[T1/(hi(T), f(T), p) = Fpacscny).

Let d = [OF : Z[a]] and suppose p is a prime not dividing d. Let a,b € Z such that ap + bd = 1.
We claim that the map

Or /p; 228 Z[a]/(g:(a), p)

is an isomorphism of rings. Note that p; is the ideal generated by p and g;(«) in Op. To prove our
claim we first observe that the map is clearly well defined. It is a homomorphism since (bdz)(bdy) —
bdry = bdzy(1 — bd) = bdxyap for z,y € Op and this is 0 modulo the ideal (g;(«),p) C Z[a]. The
map is injective since, whenever bdz € (g;(a),p) then z = (ap + bd)x = apx + bdz € p;. Finally,
the map is surjective since any x € Z|[o] satisfies z = (ap + bd)x = bdx.

We conclude that p; is a prime ideal of norm pd¢8(*) Therefore

N(] pg) = p2os deshores = pn

where n = deg(f). On the other hand, we have that

[Ivt = I1gi(e). )% < ().

i
Since N((p)) = p”, we have that (p) =[], p; as required.

Corollary (6.2). Let F be a number field. If p is a prime number that ramifies in F, then p
divides the discriminant Ag or p divides the index [Op : Z[a|] for some integral o which generates
F over Q. In particular, only finitely many primes p are ramified in F'.

Proof. Suppose p ramifies and does not divide the index [Op : Z[a]]. By the Factorization
Lemma 6.1 the prime (p) splits as

(p) = [ (9i (), p)*

where the e; are the exponents occurring in the prime decomposition of f(T') = [, hi(T)® in
F,[T]. We conclude that e; > 1 for some index ¢ and hence that the polynomial f(T') € F,[T] is not
squarefree. This implies that its discriminant is 0. In other words p divides Disc(f) as required.

Example. Let F = Q(a) where « is a zero of the polynomial f(7) = 7% — T — 1. We have seen
in section 2 that the discriminant of f is —23. Therefore the ring of integers of F' is just Z[a]. By
the Factorization Lemma, prime numbers p factor in O = Z[a] just as f(T) = T3 — T — 1 factors
in the ring F,[T].

Modulo 2 and 3, the polynomial f(T') is irreducible; we conclude that the ideals (2) and (3)
in Op are prime. Modulo 5 the polynomial f(T) has a zero and f factors as T3 — T — 1 =
(T —2)(T? + 2T — 2) in F5[T]. We conclude that (5) = psps where ps = (5, — 2) is a prime of
norm 5 and p} = (5, +2a — 2) is a prime of norm 25. The prime 7 is again prime in Or and the
prime 11 splits, similar to 5, as a product of a prime of norm 11 and of norm 121.

The following table contains this and some more factorizations of prime numbers. Notice the
only ramified prime: 23. There are also primes that split completely in F' over Q. The prime 59 is
the smallest example.

Table.
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(p)
(2)
(3)
p5]225; ps = (Ot — 2, 5) and Pos = (C¥2 + 2 — 2, 5)
7
11 P11P121 P11 = (Oé-l—5,11) and P1o1 = (Oé2 —50é+2,11)
13 (13)
17 pizhase | P17 = ( (a? + 5a — 10,17)
19 P1oP3e1 p1o = (@ — 6,19) and p3e; = (a? + 6a — 3,19)
23 P23phs | bes = (@ —10,23) and phy = (o — 3,23)
59 PsoPLoPiy Pso = (@ —4,59), pig = (@ —13,59) and ply = (o + 17,59)

N ot w N RS

a— b, 17) and pogg =

Proposition (6.3). Let p be a prime and let f(T) € Z[T] be an FEisenstein polynomial for the
prime p. Let m be a zero of f and let F = Q(7) be the number field generated by w. Then Z[r]
has finite index in O and p does not divide this index.

Proof. By Cor.5.4 the index [Op : Z[r]] is finite. Suppose that p divides the index. Consider the
F,[T]-ideal I = {g € F,[T] : %g(a) € Op}. Note that this ideal is well defined and that it contains
f(T)=T" (mod p). Since p divides the index [OF : Z[r]], there exists a polynomial g(T') € Z[T] of
degree less than n and with not all its coefficients divisible by p, such that = % g(a) € Op — Zm].

7,l_'rL—l

This shows that the ideal I is a proper divisor of T". Therefore > is in Op.
Let f(T)=T"+ an_1T" '+ ...+ a1T + ag € Z[T) be the Eisenstein polynomial. From

Ap— a a
_ﬂ”:p("_lﬂn—1+___+_17r+_0)
p p p

and the fact that ao/p is prime to p, it follows that 7™ divides p. This gives a contradiction and
we conclude that p does not divide the index [Op : Z[r]] as required.

Example (6.4). Let p" be a power of a prime p and let F = Q({,~). The ring of integers of F is
Z[Gpr]-

Proof. Clearly Z[(,] is contained in the ring of integers of Q((,~). By Example 2.11, the discrimi-
nant of ®,»(T') is a power of p. By Cor.5.4 we see that the only prime that could divide the index
[OF : Z[(p]] is p. Consider the minimum polynomial of (,n:

n—1

fCP (T) = @pn (T) = T(P—l)p +. o+ Tpn—l n 1

It is easy to see that ®,» (T + 1) is an Eisenstein polynomial. We conclude from Prop.6.3 that p
does not divide the index [O% : Z[(p]]. This completes the example.

The following two theorems will not be used in the sequel. They are included because they
give complete answers to natural questions and because the proofs can easily be given using only
the theory we have developed sofar. Theorem 6.5 is an extension of Prop.6.3. Theorem 6.6 makes
part of Cor.6.2 more precise.

Theorem (6.5). (Dedekind’s Criterion.) Suppose « is an algebraic integer with minimum poly-
nomial over f(T) € Z[T]. Let F = Q(a). For p be a prime number, let fi,...,f, € Z[T] and
€1,...,eq € Z>y1 such that f = fi*-...- fe° is the decomposition of f into distinct irreducible
polynomials f; modulo p. Then

p divides the index [OF : Z[a/]]
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if and only if there is an index j such that

F(T) = T1; £;(T)%

[; divides ( ) in Fp[T| and ej > 2.

p

Proof. We put _
iy = (OB
and for every index j we define the polynomial F}(T') € Z[T] by
18
Fy(T) = ) jzlfj(T)e"-

Finally we let

1 u(a)

e F.

L5 ~ (o) = Fi(a)

“if”: Suppose that f;(T) divides u(T') in Fp[T] and that e; > 2 for some index j. Consider z = z;.
Clearly pz € Z[a], but since deg(F};) < deg(f), we have that z ¢ Z[a]. To prove that p divides the
index [OF : Z[a]] it suffices to show that z € Op.

Consider the ideal I = (f;(c),p) C Z[a]. We have that zp = F;(a) which is a Z[a]-multiple of
[j(@) because e; > 2. We have that zf;(ca) = u(a) which is a Z[a]-multiple of f;(c) by assumption.
The ideal I is a finitely generated abelian group. Lemma 3.1(iii) implies that x is integral. This
proves the sufficiency.

“only if”: Suppose that p divides the index of Z[a] in Op. Consider the F,[T|-ideal J = {h €
F,[T): %h(a) € Op}. This ideal clearly contains f(7T), but, by our assumption on the index, it is
strictly larger than (f). Let ¢ be a generator of J and let j be an index such that

£5(T) divides j;g; in F,[T].

We claim that this index j satisfies the conditions of the theorem.
To show this we consider again

1 u(a)
-F:(a) =
2= T
Since ¢ divides F;, we have that x € Op. We conclude that there exists a monic polynomial in
Z[T] with u(a)/f;j(c) as a zero. Therefore f;(a) divides u(a)™ in Z[a] for some integer m > 1.
We conclude that there exists polynomials h1, he € Z[T] such that

w(T)™ = f3(T)ha(T) + f(T)ha(T)

and hence that f;(T") divides »(7")™ in the ring F,[T]. Since f;(T) is irreducible modulo p, this
implies that f;(T") divides u(T") modulo p.

It remains to prove that e; > 2. From f;(a)z = u(a) one concludes that Fja) + fj(a)z =
Fja) + u(a) and hence that

.’E:.’Ej:

u(@) + Fj(a)
p+fila)

Exactly the same proof as before, now gives that f;(7T") divides u(7T") + F;(T) modulo p. Therefore
[;(T') divides F;(T') and e; > 2 as required.
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Theorem (6.6). ( R. Dedekind ) Let F' be a number field and let p be a prime. Then p is ramified
in F over Q if and only if p divides AFp.

Proof. We introduce a slightly more general concept of “discriminant”: let K be a field and let A
be an n-dimensional commutative K-algebra, that is, a vector space over K of dimension n which
is also a commutative ring satisfying A(ab) = (Aa)b = a(Ab) for all a,b € A and A € K. In section 2
we have studied the special case K = Q and A a number field F.

On A we define the trace Tr(z) of an element x € A by Tr(x) = Tr(M,) where M, denotes
the matrix of the multiplication-by-z-map with respect to some K-base of A. For wy,...,w, € A
we let

Awr, - -« wp) = det(Tr(wiw)))1<i,j<n-

In contrast to the situation in section 2, or Exer.2.Q, it may happen, in general that A(w1,...,w,) =
0 even if the w; constitute a K-basis for A. However, if this happens, it happens for every basis of
A: as in section 2, the discriminant A(wy,...,w,) of a basis w1, ...,w, depends on the basis, but
whether the discriminant is zero or not doesn’t: the discriminant differs by a multiplicative factor
det(M)? where M € GL,(K) is the matrix transforming one basis into the other.

Using the fact that the non-nullity of the discriminant of a basis does not depend on the basis,
we define the discriminant of A by

A(A/K) = Aws,y ... ,wp)

for some K-basis wiy,...,w, of A. It is only well defined upto a unit in K*.
In Exer.6.J it is shown that for two finite dimensional K-algebras A and B one has that

A(A x B/K) = A(A/K)A(B/K).

Now we start the proof. Let F' be a number field of degree n and let p be a prime number.
Consider the field K = F, and the n-dimensional K-algebra Or/(p). We are going to calculate
the discriminant of Op/(p). First by reducing a Z-basis of the ring of integers O modulo p:

A(Or/(p)/Fp) = Ar (mod p).

Next we decompose Or/(p) into a product of F,-algebras. Suppose p factors in Op as

(p):pfl-...-pgg.

By the Chinese Remainder Theorem (Exer.4.G) we have that

Or/(p) = Or/p7* X ... x Op[p?

and hence that
A(Or/(p)) = A((OF /p1")/Fp) - ... A((Or/pg® ) [Fyp).

By Exer.2.Q the discriminant A(F,/F,) is non-zero for every finite field extension F, of F,. This
shows that p does not divide Ar whenever p is not ramified.

To show the converse, it suffices to show that A((Op/p®)/F,) = 0 whenever p divides p and
e > 1. Let therefore e > 1 and put A = Op/p® and let 7 € p but not in p?. Then 7 is nilpotent.
Since it is not zero, we can use it as the first element in an Fp-basis wy,...,ws of A. Clearly mw;
is nilpotent for every w; € A. Since a nilpotent endomorphism has only eigenvalues 0, we see that
the first row of the matrix (Tr(w;w;))1<i,j<n is zero. This concludes the proof of the Theorem.
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(6.A) Let F = Q(«) where a be a zero of the polynomial T — T — 1. Show that the ring of integers of F is
Z[a]. Find the factorizations in Z[a] of the primes less than 10.

(6.B) Let d be a squarefree integer and let F = Q(v/d) be a quadratic field. Show that for odd primes p
one has that p splits (is inert, ramifies) in F' over Q if and only if d is a square (non-square, zero)
modulo p.

(6.C) Let (5 denote a primitive 5th root of unity. Determine the decomposition into prime factors in Q((s)
of the primes less than 14.

(6.D) Show that the following three polynomials have the same discriminant:

T® — 18T — 6,
T® — 36T — 78,
T? — 54T — 150.

Let a, B and « denote zeroes of the respective polynomials. Show that the fields Q(a), Q(8) and
Q(7) have the same discriminants, but are not isomorphic. (Hint: the splitting behavior of the primes
is not the same.)
(6.E) Show that Z[/20, ¥/50] is the ring of integers of F = Q(+/20). Show there is no a € Or such that
Or = Z[a].
(6.F)*(Samuel) Let f(T) = T + T — 2T + 8 € Z[T]. Show that f is irreducible.
(i) Show that Disc(f) = —4 - 503. Show that the ring of integers of F' = Q(a) admits 1,a,8 =
(@® — @)/2 as a Z-basis.
(i1) Show that OF has precisely three distinct ideals of index 2. Conclude that 2 splits completely in
F over Q.
(iii) Show that there is no a € F such that Or = Z[a]. Show that for every a € Of — Z, the prime 2
divides the index [OF : Z[a]].
(6.G)*Simplify the p-part of the proof of Theorem 6.4 in the case that f is an Eisenstein polynomial with
respect to p.
(6.H)*Show that for m > 2, the discriminant of Q((m) is given by

B(m)
1 m
(_1)245(7”) ( 1/over, 1) :
lemp / P
(Hint: Exercise (3.L).)

(6.1)*Let m € Zso. Let K be a field, let A be the K-algebra K[T]/(T™). Compute the discriminant of A.
(6.J)*Let K be a field and let A and B be two finite dimensional K-algebras. Show that A(A x B) =
A(A) x A(B).
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7. The Theorems of Minkowski and Dirichlet.

In this section we prove the two important finiteness results of algebraic number theory. We prove
that the unit group of the ring of integers of a number field is a finitely generated group and that
its class group is finite. Both these general results are due to to P. Lejeune Dirichlet (German
mathematician 1805-1859) [45]. We will prove both by means of techniques from the “geometry of
numbers” a subject created by Hermann Minkowski (German mathematician 1864-1909) [56,57].
For a very thorough discussion of the subject and its history see the book by Lekkerkerker and
Gruber [46].

Theorem (7.1). (Minkowski’s convex body theorem) Let V =2 R" be a real vector space and let
L C V be a lattice. Let X be a bounded, convex, symmetric subset of V. If

vol(X) > 2"covol(L)

then there exists a non-zero vector A € L N X.

Proof. Consider the measure preserving natural map

X — V/2L.

Since covol(2L) = 2"covol(L) we see that vol(X) > vol(V/2L). Therefore there are two points
z1 # z2 in X which have the same image in V/2L. In other words z; — z2 € 2L. We conclude
that 0 # y = (z1 — z2)/2 € L. By symmetry we have that —z5 € X and hence, by convexity, that
y=(r1—1z2)/2 € X. So0#y € XNL as required.

In the proof of the following lemma, we will calculate a certain volume. This will be useful in
the proof of Theorem 7.3.

Lemma (7.2). Let r1,72 € Z~¢ and put n = ry + 2ry. For every R > 0 put
W(ri,ro, R) = {(z1,-- -, Zry, Y15+ -1 Yry) E R X C™ 1 |zg|+ ...+ |20, | + 2|01] + - .- + 2|y, | < R}
Then

T2 Rn

n!’

vol(W (r1, 72, R)) = 2" (5)
Proof. The proof is by induction with respect ton. If ry =1 and ro =0 and if 7 =0 and r, = 1,
the result is easily verified. We will next discuss the two steps 1y — r1 + 1 and ro — ro + 1.
Caser; —»r1+1
R

vol(W(rl—}—l,rz,R)):/ vol(ry, s, R — [t])dt
—R

= (5" /_};(R — )t

R
=g+l (E)” l/ t"dt
2 n! 0

_ 2']‘1+1 (E)Tg Rn+1 .
(n+1)!

2
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Caserg > 19 +1

vol(W (r1,72 + 1, R)) = / vol(ry, ra, R — |2|)du(2)

z€C
1z|I<R/2
2 R/2 T ro 1
= 2" (=) " =(R—2p)"pdpd
/0 /0 (2) (R —2p)" pdpd¢p
w2 1 (B (R—1t)dt
=22 (=) = [ " —
m (2) n!/o 2 2
= 9m T\"2 Rn+2
N (5) (n+2)!

This proves the lemma.

Theorem (7.3). (Minkowski) Let F' be a number field of degree n. Let r1 denote the number of
embeddings F — R and 2r; the remaining number of embeddings F' — C. Then every non-zero
ideal I of Of contains an element x with
n! (4"
N(z)| < — (=) |Ar[Y*N().
Nl < 5 (2) 1aelN

Proof. We view the ideal I via the map ® : Op — Vr as a lattice in Vg = R™ x C™. By
Prop.5.10(ii) the covolume of I in Vg is

covol(I) = 27" N(I)|Ap|*/2.
For any positive real number R we put
X(R) ={(®1- - %rs 9150+, yry) €R™ X C™ 2z ooz |+ 2ya ] + - + 2y, [ < R

Using the triangle inequality one easily verifies that X (R) is a convex, symmetric and bounded set.
By Lemma 7.2 its volume is given by

vol(X(R)) = % (g)rz 2",

From Minkowski’s convex body Theorem 7.1 we conclude that if
R" 7., _ 1
—(5)"22" > 2" - 27"2N(T) | Ap| M2
Gyan > (0|2

then there exists a non-zero element x € I N X(R). Since for every R the set X(R) is bounded,

and since the set I N X (R) is finite, it follows that there is a vector z € I such that z € X(R) for

every R satisfying this inequality. This vector z is also contained in X (Ry) where Ry satisfies the

equality

n
Ro (g)rz ori _ 9n 2_T2N(I)|AF|1/2-

By Prop.2.7(iii) and the arithmetic-geometric-mean-inequality (Exer.7.D), we have that

n!

IN()| = [za] -z g2 -y,

< (Iw1|+.--+|wn\+2ly1|+---+2|y”|>"

n

1 | T2
< Ry _ n! (é) |AR[Y/2N(I)

-t n" \mw

as required.
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Corollary (7.4). Let F be a number field of degree n. Then

() 2
arl 2 (5E)

n!

(ii) |Ap| > *~. In particular, |Ap| > 1 whenever F # Q.
(iii) Every ideal class contains an ideal I with

! T2
Ny < ™ (é) Ap|2,
n* \mw

(iv) The class group Cl(OF) is finite.
Proof. (i) It follows from the multiplicativity of the norm (Prop.4.6) that for every ideal I and

z € I, one has that |[N(z)| > N(I). Combining this with Theorem 7.3 gives (i)
(ii) One verifies (by induction) that n™ > 2"~!n! for all n > 1. It follows from (i) that

arl> (5 () 2 e () -

(iii) Let ¢ be an ideal class. Every ideal class contains integral ideals. Pick an integral ideal J in
the inverse of the class of I. By Theorem 7.3 there exists an element z € J with
n! sm\-r2

N@zJ <X (—) Ap|V/2.

NEr < 2 (5) 1A
Since the ideal zJ~! is integral and in ¢, the result follows.
(iv) By Prop.4.8(iii) there are only a finite number of prime ideals of a given norm. Therefore, for
every number B, there are only a finite number of integral ideals of norm less than B. The result
now follows from (iii).

The cardinality of the class group CI(Op) is called the class number of O, or of F. It is
denoted by
hr = #CIl(OF).

The expression

n! (é)” JIAg]

n" \ 7
associated to a number field F, with the usual notations, is called the Minkowski constant associated
to F. Although n!/n™ =~ e~"+/27n, it grows rapidly with the degree n of F.
The estimate in Cor.7.4(i) can be drastically improved. We only mention the most recent
asymptotic estimates, i.e. when m — 00, since these are the easiest to state. Using Stirling’s
formula is is easy to see that Cor.7.4(i) implies that

2 =+
yn s (€7 (4
> (5.803)(1.273) .

Using the Dedekind (-function (z(s) of the number field F' and especially its functional equation
(see section 9) these estimates were improved by A.M. Odlyzko in 1976:

|AF|1/” > (47!'67)6%,
> (22.37)(2.718) .
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here v = 0.57721566490153 . . . is Euler’s constant: v = lim, (Y 5_; £ — log(n)).
Odlyzko’s estimates are even better if the truth of certain generalized Riemann hypotheses
(GRH) is assumed. See Serre’s Note [66] and Poitou’s Bourbaki talk [60] for more details.

1

|Ap|'/™ > (8me?)(e?)"  (GRH),
> (44.76)(4.810) %  (GRH).

J. Martinet [51] exhibited an infinite number of totally complex fields F' (i.e. with r, = 0), with
|Ap|t/? = 23/2114/523%/5 = 92.37.... This indicates that Odlyzko’s bounds are close to being
optimal. Odlyzko’s methods can be used to obtain estimates for discriminants of number fields of
finite degree as well. This has been done by F. Diaz y Diaz, who published his results in a table[20].

Minkowski’s Theorem can be used to calculate class groups of rings of integers of number fields.
In the next section we will give some elaborate examples. Here we give two small examples.

Examples. (i) Take F = Q(«) where « is a zero of the polynomial f(7') = T3 — T — 1. In section
2 we have calculated the discriminant Ap of F. We have that Ap = Disc(f) = —23. It is easily
verified that the polynomial 7% — T' — 1 has precisely one real zero. So r; = 1 and 75 = 1. The
bound in Minkowski’s Theorem is now

3 (é> V23 = 1.356942.
33\«
Therefore, by Cor.7.4(iii), every ideal class contains an integral ideal of norm less than or equal
to 1. This shows, at once, that the class group of F' is trivial. (By Exer.7.R the ring of integers
Z[a] is even Euclidean!)
(ii) Take F' = Q(+/—47). By the example in section 2, the ring of integers of F' is Z[H#\/—_M] and
the discriminant of F' satisfies Arp = —47. Since 71 = 0 and 7o = 1 we find that the Minkowski
constant is equal to

2 (é> VAT ~ 4.36444.

22 \ 7
Therefore the class group is generated by the prime ideals of norm less than or equal to 4. To
find these prime ideals explicitly, we decompose the primes 2 and 3 in Op. Let a = H'f‘/_—‘”.
Then o? — a + 12 = 0. By the Factorization Lemma (Theorem 6.1) we see that (2) = pap}, where
p2 = (2,@) and p5 = (2, — 1). Similarly (3) = psp% where p3 = (3,a) and p§ = (3, — 1). We
conclude that the only ideals of O of norm less than 4.36444 are O, pa, b, P3, 5, b3, P52, Paph-
Therefore the class number is at most 8.

Since (2) = pap), the ideal classes of pp and p, are each others inverses: p, ~ py . Similarly
ph ~ p;l. We conclude that the class group is generated by the classe of ps and ps.

In order to determine the class group, we decompose some principal ideals into prime factors.
Principal ideals () can be factored, by first factoring their norm N () € Z and then determining
the prime ideal divisors of (3). For the sake of convenience we take elements 3 of the form g = a—k
where k € Z is a small integer. By Exer.2.F we have that N(8) = N(k — o) = k% — k + 12.

We find

Table.
B | N(B) (8)
@i l—a | 12=22.3 | pb’p,
(11 2—« 14=2.7 popr

3—« 18 =2-32 phps?
4—a | 24=23-3 | pop3
5-a | 32=2° p,°

U W N =&
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From entry (i), we see that the ideal class of p,°p} ~ (1) is trivial. The relation implies that
P~y

We conclude that the class group is cyclic. It is generated by the class of po. We will now determine
the order of this class. The second entry tells us that p7 ~ p5 ! and is not of much use to us. Relation
(iii) implies that

p2 ~ p3-

Combining this with the relation obtained from the first entry of our table, gives at once that
P~ L.

This relation can also be deduced directly from entry (v) of the table. It follows that the class
group is cyclic of order 5 or 1. The latter case occurs if and only if the ideal ps is principal. Suppose
that for a,b € Z the element v = a + b(1 + 1/—47)/2 € OpF is a generator of py. Since the norm of
P is 2, we must have that

2 = N(p2) = [N(y)| = a® + ab + 12b°.

Writing this equation as (2a + b)? + 47b? = 8, it is immediate that there are no solutions a,b € Z.
We conclude that ps is not principal and that ClQ( V=) =Z /5Z.

Corollary (7.6). (J. Hermite, French mathematician 1822-1901) For any integer A, there are
upto isomorphism only finitely many number fields F' with |Ap| = A.

Proof. Let A € Z. By Cor.7.4(ii) there are only finitely many possible values for the degree n of
F'. There is, therefore, no loss in assuming that the degree n is fixed. Let F' be a number field of
degree n and discriminant A. Consider the following, bounded, convex and symmetric box B in
FR={x=(z1,---,%r,,21,.--,2r,) E R x C2 }:

B:{{x:|x1|§\/|A|+1and|zci|<1for7}7é1} ifry >0,
{x:|Re(z1)] <1, [Im(21)] < V/]A|+1and |z| <1fori#1} ifr;=0."

It is easily checked that the volume of B is 72~ 1(y/[A[+1) if r; = 0 and 2"(y/]A]+1) otherwise. In
each case vol(B) exceeds 2"covol(Op). By Minkowski’s Theorem 7.1, there exists 0 # o € Op N B.
Since a # 0, we have that N(a) > 1. Since o € B, we have that |¢;(a)| < 1 for all 7 > 1. We
conclude that |¢1 ()| > 1.

We claim that ¢1(a) # ¢;(a) for all 7 > 2. This is immediate if 7; > 0, for all ¢;(a) have
absolute values strictly larger than |¢i(a)|. If 71 = 0, only ¢,,+1(c) = ¢1() has the same
absolute value as ¢1(a). But, if ¢,,+1(a) = ¢1(), then ¢1(a) would be in R and hence |¢1 (a)| =
|Re(¢1())| < 1, which leads to a contradiction.

Let f(T) denote the minimum polynomial f§,. (T') of a. By Prop.2.7(i), the polynomial f has

har
no double zeroes and we conclude from part (ii) of the same proposition that f = f%, and that

F = Q(a).
Since the zeroes ¢;(a) of f(T) = f..(T) = 11,(T — ¢i(a)) have absolute values bounded by

v/ |A|+1, the coefficients of f can be bounded as well. Since the coefficients are in Z, there are only
finitely many possibilities for f and therefore, upto isomorphism, for . This proves the corollary.

The final result of this section is the Dirichlet Unit theorem (p. Lejeune Dirichlet, German
mathematician 1805-1859). Dirichlet’s original proof employed the so-called “box principle”. We
give a proof by means of Minkowski’s convex body theorem.
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We introduce modified absolute values |z| on R and C:

ol ={ 2% o
|z|?, on C.

Definition. Let F' be a number field of degree n with r; embeddings ¢; : F' — R and r3 remaining
embeddings ¢; : ' — C. Let the homomorphism ¥ be given by:

v:0p — R71t72
e+ (loglga(e)l, - - - ,1og|dr, +r, (€)])

where ¢1,...,¢,, denote the real embeddings and ¢, +1,..., ¢, +r, denote a set of mutually non-
conjugate complex embeddings.

Theorem (7.7). (P. Lejeune-Dirichlet) Using the notation above:
(i) The kernel of ¥ is finite and equal to ur, the group of the roots of unity of F'.
(ii) The image of ¥ is a lattice in the space {x € R™ "2 : the sum of the coordinates of z is zero},
which is of codimension 1 in R™+72,

Proof. (i) Let { € ur be a root of unity in F. Then there is an integer n # 0 such that (" = 1.
this implies that n¥(¢) = 0 and hence that ¥({) = 0. This shows that the roots of unity are in the
kernel. Next we show that the kernel of ¥ is finite. This implies that ker(¥) = pp.

For any € € ker(¥) we have that |¢(¢)| = 1 for all embeddings ¢ : F — C. Viewing Op
via the map @ of section 2 as a lattice inside the vector space Vg, we see that the kernel of ¥ is
contained in the bounded set B of points (z1,...,Zr,Y1,---,Yr,) € R™ x C"2 for which

|z;| <1 for 1 <i<ryq,
lyi| <1 for 1 <i <rs.

Prop 5.7 implies that B N ®(OF) is finite and therefore that ker(¥) is finite as required.
(ii) Let B be any bounded set in R™*"2. Let B’ be the box

{(z1, -, Tri4ry) + Jzi| KR for1<i<ry+ra}
where R is so large that B C B’. The elements € € O}, that have ¥(e) € B’ satisfy

()] < exp(A), for real immersions ¢;;
AR exp(A/2), for complex immersions ¢;.

Viewing OF via @ as a lattice in F ® R, we see that the elements ¢ € O}, that satsify ¥(¢) € B’
are in a bounded box in V. Therefore there are only finitely many such ¢ and a fortiori there are
only finitely many elements in B’ N ¥(O7}). We conclude that ¥(O3) is discrete.

By Exer.3.F, every unit ¢ € O} has N(g) = £1. Therefore

o F—»C

r1+72 -

= II Ies

This easily implies that U(O3%) is contained in the subspace of R™*"2 of vectors that have the sum
of their coordinates equal to zero.
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To complete the proof, we must show that ¥(O3%) spans this vector space. This will be done
by invoking two lemmas that will be stated and proved after the proof of this theorem.

Let 1 <7 <7y +ry. By lemma 7.8 there exist non-zero integral elements z1,z2,%3,... € Op,
such that |N(z;)| is bounded by /|Ar|+ 1 and
Ipi (@) > I (z2)| > [4;(zs)] > ... for all j # i.

By Prop.4.8(iii) there are only finitely many ideals in Op with bounded norm. This implies that
the collection of principal ideals (xy) is finite. Therefore there exist at least two indices j < 3’ such
that (z;) = (z;). We define the unit ¢; by

By construction, ¢; satisfies
[¢j(ei)| <O for all j # 1.

Consider the matrix with entries a;; = log|$;(e;)| where 1 < i,j < r1 + r2. It satisfies a;; < 0
whenever i # j and ), a;; = 0. Therefore Lemma 7.9 implies that any (r1+r2—1) x (r1 +r2 —1)-
minor is invertible. This implies that the rank of (a;;); ; is r1 + r2 — 1 and the theorem is proved.

Lemma (7.8). Let F' be a number field of degree n. Let ¢1,...,¢,, denote the different homor-
phisms F — R and ¢, 41, ..., ¢r, +r, the remaining, pairwise non-conjugate, embeddings F' —
C. Then there exists for each index 1 < i < r1+7y a sequence of integers oy, as, as, ... € Op — {0},

with [N(e;)| < /|Afp| + 1 and
I¢5(ca)| > [65(a2)] > gj(es)] > ...
for all indices j # i.

Proof. Let 7 be an index with 1 < 4 < r; +r5. The existence of the o; is proved by applying
Minkowski’s theorem to boxes that are “thin” in every direction except in the direction of the
i-th coordinate. In this direction the box is so large that its volume is larger than 2"covol(OF).
We will contruct the integers «; € Op inductively. We take oy = 1. Suppose that ay,...,
have been constructed. Let 8; = | ¢;(zm)| for j # i and let 8; € R be defined by the relation

Hjﬁj -V ‘AF| + 1.

Consider the box
B ={(21,--+,Tr,4r,) € R™ x C™ : |z;| < B for all j # i}.

This is a bounded, symmetric and convex subset of R™ x C"2. It has volume

T1 r1+r2
vol(B) = [[(28) [[ (78) =27 /|AF]
j=1 j=ri+1

which is easily seen to exceed 2"27"2/|Ap| = 2"covol(Op).
By Minkowski’s Theorem (7.1), there is a non-zero element z in B N Op, where we view, as
usual, Op as a lattice in the vector space R™ x C" via the map ® of (2.4). We take z,,11 = =

and we verify that
r1+72 r1+r2

N = [ i@l < T 85 = VIBrl+1,

|65 ()] < B; = %Ilcéj(xm)ll < l¢j(zm)]

This proves the theorem.
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Lemma (7.9). Let (a;5)i,; be an m X m-matrix with real entries. Suppose that

a;; <0 when i # j,
Y a; >0 foralli.
j

Then (a;;);,; has rank m.

Proof. Suppose that the rank of (a;;);,; is less than m. Then there is a non-trivial relation
> j Aja;; = 0 with not all A\; € R equal to zero. Suppose A; has the largest absolute value of the
Aj. Since we can multiply the relation by —1, we may assume that Ay > 0. We have that A\ > A;
for all indices j. Therefore A\pa;r, < A;a;r for all indices 4, including 4 = k. Taking the sum over i,

we find o o o
0< A Zaik = Z)\kaik < Z)\iaik = 0.
i=1 i=1 i=1

This contradiction proves the lemma.

Corollary (7.10). Let F be a number field with precisely ry distinct embeddings F' — R and 2r
remaining embeddings F' — C. Then

(i) There exist a set of so-called fundamental units ey, ..., 4r,—1 € OF such that
Moy 4y —
O = {CMel* - ... '5r1.1|-t22—11 SNy ey Ty brg—1, T € L}

(ii) There is an isomorphism of abelian groups
Oy =2 (Z/wpZ) x Z+7271,

here wr denotes the number of roots of unity in F.

Proof. By Theorem 7.6, we can choose 71 + 72 — 1 units ¢; in O}, such that the vectors ¥(g;) span
the lattice U(O%). For an arbitrary unit u € O}, there exist integers ni,...,ny, +r,—1 such that

\I!(u) = 7’7,1‘1/(61) + ...+ ’n/7-1+r2_1\11(€7-1+7-2_1)

By Theorem 7.6(i) we see that ue™"* - ... - 8;::;::21_1 is in the kernel of ¥ and therefore a root of

unity. This proves (i). Part (ii) follows from the fact that the roots of unity are algebraic integers
and form a cyclic group.

Definition (7.11). Let F be a number field of degree n and let ¢1,..., ¢, +, be the homomor-
phisms F' — C as in Lemma 7.8. The regulator Rg of F' is defined by

|det (log| ¢ (e:)])s,;1

where €1,...,&,, 4r,—1 are a set of fundamental units and the ¢; run over the homomorphisms in
the set {¢1,..., P +r, } €XCEPL ONDE.

The regulator Ry of a number field F is well defined. See Exer.7.M for a proof that the value
of Rr does not depend on the homomorphism ¢; that one leaves out in Definition.7.11.

Example. (7.12). Consider the field F = Q(+/257). We have that y = 2 and r = 0. Since F
admits embeddings into R, the group of roots of unity in F' is {1}. By Dirichlet’s Unit Theorem
we therefore have that

O =2 &% x {£1}.
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We will determine the class group Cl(OFp) and the unit group of Of together. By Example 3.3, the
ring of integers of F' is equal to Z[«a] where a = (1 + +/257)/2. By Example 3.6, the discriminant
of F is 257. Minkowski’s constant for F' is easily calculated to be equal to

22
—/257 = 8.01.

2!
The minimum polynomial of « is easily seen to be f(T) = T2 — T — 64. We first substitute a
few integers n into f. In order to obtain small values of f(n), we choose n close to the zero

(1+v/257)/2 ~ 8.5 € R:

Table.

n B | [fln)=N(B) (8)

(i) 5 a—5 | —44=—-4-11 | py’pl,

(ii) 6 a—6 -34=-2-17 pabi7

(111) 7 a—17 -22=-2-11 13’21311

(iv) 8 a—38 —8=-23 P23

(v) 9 a—9 8 =23 ph’

(vi) | 10 | a—10 26 =2-13 poP13

(vii) | 11 | a—11 46 = 2-23 pab2s

Since non of the numbers f(n) is divisible by 3,5 or 7, we conclude that f has no zeroes modulo
3,5 or 7. By the Factorization Lemma 6.1, we conclude that the ideals (3), (5) and (7) are prime
in Op. Therefore, the only primes having norm less than 8.01 in O are the prime divisors po and
p5 of 2. From the Factorization Lemma we deduce that ps = (o, 2) and p5 = (o — 1,2).

Since the classes of ps and p/, are inverse to one another in the class group, we conclude that
the class group of Op is cyclic. It is generated by the class of ps. From entry (iv) or (v) of the
table, it is immediate that

Py~ 1

and we see that CI(Op) is cylic of order 3 or 1. The class group is trivial if and only if ps is
principal. If po were principal and v = a + b(1 + v/257) /2, with a,b € Z would be a generator, we
would have the following equation:

+2 = N(y) = a® + ab — 64b°,

This Diophantine equation is not so easy to solve directly, so we proceed in a different way. We
will need to know the unit group OF first.
From the 4th and 5th line of the table we deduce the following decomposition into prime ideals:

(o — 8)(a —9)) = p2°ps°

Since we also have that (8) = py3p5°, we see that the principal ideals ((o: — 8)(c — 9)) and (8) are
equal. Therefore their generators differ by a unit ¢ € Op. Taking norms, we see that N(¢) = —1
and we conclude that ¢ # £1. We find, in fact, that
—8)(a—9
e= % — 20417 = 16 — V/257.
However, it is not yet clear that ¢ is a fundamental unit in the sense of Dirichlet’s Unit Theorem. It
could be that there is another unit u € O} such that € = +uF form some k > 2. We will show that
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this is not the case and that, actually, O} = +e%. But in order to determine the class group of Op
it is not necessary to know this. It appears to be sufficient to know that € generates O} modulo
cubes. This is, in general, much easier to check. In this case we check it by considering ¢ modulo
the prime ideal (5) C Op: the multiplicative group of the residue class field has 24 elements and
x € Or/(5) is a cube if and only if 28 = 1. We have that

€8 = (16 — V257)3(16 + v/257) = N(e) (1 — v2)2 = —(3 — 2v/2) £ 1.

This shows that € is not a cube mod 5 and therefore not a cube in Or. We conclude that ¢ generates
O% modulo cubes.

First we will determine the class group of Op, and then the unit group O7}.

Suppose the class group Cl(Op) is trivial. We then have that p2 = () and by entry (iv) of the
table that 42 = u(a — 8) for some unit u. Here v is only determined upto a unit and, consequently,
the unit u is only determined upto a cube of a unit. Therefore we may assume that

73 = ek (a - 8) for some k € Z.
This implies that for every ideal I C O, which is prime to ps, we have that
a—-8=1¢€ (Op/I)"/H

where H is the subgroup generated by ((Or/I)*)? and the image of O} modulo I. We check this
modulo the ideal I = (13). The prime 13 splits as (13) = pi3p}s, where p13 = (13, — 4) and
p13 = (13, +3).

We have the following isomorphism of groups

(Or/1)"/((OF/1)")* = Fi5/(Fi3)® x Fis/(Fis)* = Z/3Z x Z/3Z.

given by z — (z (mod p13), z (mod p’3) and (2%,2¥) — (z (mod 3),y (mod 3)) respectively.

The image of ¢ = —2a + 17 in the ring is (—2- (—4) + 17,-2-(3) +17) = (8,11) — (0,1) €
Z/3Z x Z/3Z. The image of a — 8, however is (4 —8,—-3 — 8) = (9,2) — (2,1). We conclude that
a — 8 and e generate distinct subspaces. Therefore o ¢ H and the class group Cl(Or) has order 3.

Finally we determine the unit group of Op. We will show that O} = {%e* : k € Z}. Consider
e€ FC F®R =R x R. The absolute values of |¢;(¢)| and |¢2(e)| are 32.0312... and 0.0312...
respectively. If € would not be a fundamental unit in the sense of Dirichlet’s Unit Theorem, then
there would be a unit u with ¢ = +u* for |k| > 2. This would imply that the absolute values of u
satisfy |$1,2(u)| < v/32.04 < 5.7. It is easily checked, that there are no units in Op satisfying these
conditions. This completes the example.

(7.A) Show that Z[+/—163] has trivial class group and that Z[+/—71] has class group isomorphic to Z/7Z.
(7.B) Show that the class group of Q(«a) where « is a zero of the polynomial 7% + T — 1 is trivial.
(7.C) Compute the class group of F' = Q(+/229). Find the units of OF.
(7.D) Prove the arithmetic-geometric-mean inequality: let ai,...,an € R>o then
(al-...-an)l/" < 7a1+...+an‘
n
The equality holds if and only if a, = ... = a,.(Hint: let A = @¥=4n  Show that ¢4 1 > % for

every i, with equality if and only if a; = A.)
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Let F be a number field of degree n. Show that Rr+/n = covol(O}). here we view O} via the map
U as a lattice in the subspace of vectors in R™' 772 that have the sum of their coordinates equal to 0.

Show that the class group of Q((11) is trivial.

Let f(T) € Z[T]. Show: if Disc(f) =1, then f(T) = (T — k)(T — k — 1) for some k € Z.
Show that if the rank of the unit group O% of a number field F' is 1, then [F': Q] = 2, 3 or 4.
Show that the ring Z[(1 4+ v/19)/2] is not Euclidean, but admits unique factorization.

(Pell’s equation.) Show that for every positive integer d the equation

X2 _dy?=1

has solutions X,Y € Zwo.

Let f(T) € Z[T] be a polynomial all of whose roots in C are on the unit circle. Show that all roots of
f are roots of unity.

Let n € C be a sum of roots of unity. Show that if || = 1, then 7 is a root of unity.

Let F' be a number field.

Show that the regulator Rr is well defined, i.e. it does not depend on the choice of the embedding
¢; : F — C that was left out in Definiton.7.11.

For 1 < i < 1 + 3, let 7; denote the projection of R™ 12 onto the subspace generated by all basis
vectors except the i-th. Show that m; restricted to ¥(O%) is injective.

Show that the ring Z[\/—61] that was encountered in the introduction, has class number 6.

Show that the Diophantine equation Y? = X® — 5 has no solutions X,Y € Z. (Hint: show that
Z[v/—5] has class number 2.)

Show that Q(+v/2)* and Q(+/2)* are isomorphic abelian groups.

(7.Q)*Show that for every number field F' there is a prime that is ramified in F' over Q.
(7.R)*Let F' be a number field. Show that if

! T2
n (é) |AF|1/2 <2
T

then the ring of integers OF is a Euclidean for the norm |[N(z)|. (Hint: Let z € F ® R. Show, using
the notation of the proof of Theorem 7.3, that the set X(R) U (X(R) + z) with R = n has a volume
which is larger than 2"covol(OF). Show that it contains a lattice point.)
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8. Examples.

In this section we illustrate the theory of the preceding sections by means of three elaborate exam-
ples.

Example (8.1). (The Number Field Sieve) Let F = Q(+/2). The discriminant of the minimum
polynomial 7° — 2 of ¥/2 is easily seen to be equal to 50000 = 245°. Since T° — 2 is an Eisenstein
polynomial for the prime 2 and (T + 2)° — 2 is Eisenstein for 5, we conclude from Prop.6.3 that
Z[+/2] is the ring of integers of F.

Since the roots of T° — 2 differ by 5th roots of unity, there is only one embedding F < R.
Therefore r; = 1 and ro = 2. Minkowski’s constant is equal to

51 /42
- <—> v/50000 = 13.919....
™

By Cor.7.4(iii), the class group of F' is generated by the ideal classes of the primes of norm less than
13.919. We use the Factorization Lemma 6.1 to determine those primes: we already observed that
T5 —2 and (T — 2)° — 2 are Eisenstein polynomials with respect to the primes 2 and 5 respectively.
We conclude that both 2 and 5 are totally ramified in F' over Q:

(2)=p5 and  (5)=pd.

To study the decomposition of the other primes p in F', we consider the map F; — F} given by
x+— z°. If p# 1 (mod 5), this is a bijection. This implies that in this case the polynomial 7° — 2
has precisely one zero in F),.In fact,

(p) = ppPp2pls, if p=—1 (mod 5).
Ppbps,  ifp=2,3 (mod 5).

Here p,+ denotes a prime ideal of norm pF.

On the other hand, if p = 1 (mod 5), the map z — z° is not bijective. If 2 is a 5th power in
F;, then T5 — 2 decomposes as a product of linear factors modulo p. If not, T° — 2 is irreducible.
For instance, T® — 2 is irreducible mod 11.

We conclude that there are prime ideals p2, p3, ps, p7 and p13 of norm 2,3,5,7 and 13 respec-
tively. These are all primes of norm less than 13.919. They generate the class group. In order to
determine the structure of the class group, we factor some prime ideals of small norm.

Table.

ple | B=p—qa | N(B)=p°-2¢° (8)

(i) 0 @ —2 p2
(i) 1 l1-a -1 (1)
(iii) -1 1+ -3 ps3
(IV) 2 2—a«a -30=-2-3-5 Pa2paps
(V) -2 2+« 34=2-17 poPi17
(Vl) 3 3—« 241 Poa1
v) -3 3+a —245 = —527 ps2p7
(vii) 1/2 1 -2« —63 = —327 p3’pr
(Vlll) —1/2 14+ 2a 65=5-13 Pspis

By relation (viii), the ideal py3ps is principal. This implies that
P13 ~p5 "
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i.e. the ideal class of p;3 is equal to the class of pgl. Therefore, the ideal class group of F' is already
generated by the classes of ps, p3, ps and p7. In a similar way, by considering the relations (vii) and
(iv), we see that Cl(OF) is, in fact, generated by ps and p3. But both these ideals are principal: it
follows form entries (i) and (iii) that they are generated by « and « + 1 respectively. We conclude
that the class group of Op is trivial.

By Dirichlet’s Unit Theorem the unit group O% has rank r1 +72 —1 =142 —1 = 2. From the
table we obtain one unit @ — 1 = ¥/2 — 1. It does not seem easy to obtain independent units with
small absolute values by extending the table further. Therefore we will search among elements of
the form z =



Using the p-method of Pollard, Brent and Pollard found in 1980 a rather small factor of the 8th
Fermat number. They found that

2256 4 1 = 1238926361552897 - peo
here the cofactor
Pe2 = 93461639715357977769163558199606896584051237541638188580280321

is prime. The ninth Fermat number Fy had been the main challenge since 1980. It was known
that Fy had a small factor. The factor p; was already found by A. Western in 1903. It was also
well known that the remaining factor of Fy was not a prime number. A new factoring algorithm,
due to J.M. Pollard was used: The Number Field Sieve. It took from january to may of 1991
of calculations in the ring Z[+v/2] on hundreds of computers all over the world to find the factors.
These computers were each collecting rows of a gigantic 200 000 by 200 000 matrix over Fs. Solving
the linear equations was done on a special machine and took only two hours. For more details
on the algorithm and the actual calculations, see [50]. The 10th Fermat number has not yet been
factored completely. It is divisible by 11131 and 395937. The remaining factor is not prime and
has 299 decimal digits.

Example (8.2). Consider the following (randomly selected) polynomial
f(r)y=T*-21% 431 -7 € Z[T).

This polynomial is irreducible modulo 2. This follows from the fact that it is an Artin-Schreier
polynomial, but it can also, easily, be checked directly. We will study the number field F' = Q(«),
where « is a zero of f(T).

First of all we substitute all integers n with —18 < n < 18 in f(7') and factor the result into
a product of prime numbers:

Table I.
n | f(n)=N(n-a) n | f(n)=N(n-a)
0 -7 0 -7
1 -5 -1 —11
2 7 -2 -5
3 5-13 -3 47
4 229 —4 5-41
5 11-53 -5 779
6 5.13-19 —6 11-109
7 7-331 -7 52.7-13
8 5797 -8 31-127
9 72.131 -9 5-19-67
10 11-19-47 —10 13- 751
11 52 . 577 —11 83-173
12 20477 —12 5.7-11-53
13 5- 5651 —13 19 - 1483
14 75437 —14 52.7%2.31
15 149 - 337 —15 50123
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To evaluate the discriminant of f(7T'), we compute the sums p; of the ith powers of its roots in C
using Newton’s relations (Exer.2.M):

p1 =10

P2 = —2s2+p1s1=—-2-24+0=4

p3 =383+ p2s1 —p152=3-(-3)+0+0=-9
Pa=2p3—3p1 +Tpg=2-4—0+7-4=236
ps=2p3 —3p2+Tp1=2-(—9) —3-4+0=-30
D6 = 2pa — 3pa +Tps =236 —3- (—9) + 74 =127

We have that
4 0 4 -9
. 0 4 -9 36
Disc(f) = det 4 -9 36 -30 |~ —98443

-9 36 -30 127

which is a prime number. We conclude from Prop.3.7 that Ap = —98443 and that Op = Z|[q].
From Exer.3.H we deduce that (—1)"> = —1 and we conclude that 7o = 1 and hence that r; = 2.
Minkowski’s constant is equal to

4! 4
yre —v/98443 = 37.45189.

By Minkowski’s Theorem, the ideal class group Cl(OpF) is generated by the primes of norm less
than 37.451.... In order to calculate the class group, we determine the primes of small norm first.

We see in Table I that the polynomial f(7') has no zeroes modulo p for the primes p = 2,3, 17,23
and 29. We leave the verification that f(7') has no zeroes modulo 37 either, to the reader. By the
Factorization Lemma we conclude that there are no prime ideals of norm p for these primes p. It
is easily checked that f(T') is irreducible modulo 2 and 3 and that f(T) = (T —1)(T+2)(T? - T +
1) (mod 5). The polynomial 72 — T + 1 is irreducible mod 5.

This gives us the following list of all prime ideals of norm less than 37.45...: the ideals (2)
and (3) are prime and (5) = pspspos, where ps and p; have norm 5 and pos is a prime of norm 25.
The other primes p,, and p;, of norm less 37.45. .. have prime norm p. They are listed in Table II
and are easily computed from Table I.

Table II.
ps = (5, — 1) ps = (5, a +2)
pr = (7,0) pr = (T, —2)
pin=>1La+1) | py; = (11, 5)
piz= (13,0 —3) | piz3 = (13,0 —6)
p1o = (19, — 6) p1o = (19, +9)
par = (3L, a+8) | p3 = (31, +14)

The class group is generated by the classes of these primes and the class of ps5. There exist,
however, many relations between these classes. In the following table we list the factorizations of
some numbers of the form ¢ — pa, where p,q € Z. We have chosen numbers of this form because
N(g—pa) = p*f(q/p) can be computed so easily. The factorizations into prime ideals of the principal
ideals (g — pa) give rise to relations in the class group. For instance N(1—4a) = —2015 = —5-13-31
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and (1 —4a) = psp13ps1- This shows that the ideal class of pspi3psy is trivial. Therefore the class
of p31 can be xepressed in terms of classes of prime ideals of smaller norm:

P31~ p5lpis-

We conclude that the ideal ps3; is not needed to generate the ideal class group. In a similar way
one deduces from Table IIT below that the ideal classes of the primes of norm 31,19,13 and 11, can
all be expressed in terms of ideal classes of primes of smaller norm.

Table III.
B N(B) (8)
(i) do+1 -5-31-13 psP13pPs1
(i) | 3a—2 -31 P31
(i) a—6 5-13-19 | pspishio
(iv) | 2a—1 —5-19 P5Pio
) | a+7 | 52-7-13 | pi’ppis
(vi) | 3a—5 13 P13
(vii) a—3 —-5-13 p5bis
(viii) a+1 —11 P11
(ix) | 3a—4 52-11 p5>ph

We conclude that Cl(Op) is generated by the primes ps, p5, pr, p5 and pas. One does not need
entry (vi) to conclude this, but this entry will be useful later.

The primes of norm 5 and 7 are all principal. This follows form the first few lines of Table
I. Finally, since psptpas = (5), one concludes that pos is principal. We have proved that the class
group of Q(«) is trivial.

By Dirichlet’s Unit Theorem, the unit group has rank r; +179 —1 =241 —1 = 2. The group
of roots of unity is just {£1}. In all our calculations, we have not encountered a single unit yet! To
find units, it is convenient to calculate the norms of some elements of the form a + ba + ca? with
a,b,c € Z. This can be done as follows: one calculates approximations of the roots oy, as, as,az
of f in C:

a; = —2.195251731...
as = 1.655743097 . ..

az = .269754317... £1.361277001...1
By Prop.2.7(iii) one has that

N(a + ba + ca®) = (a+bay +ca§) (a+ bay +coz§) |a+ bas + cag‘z.

Calculating norms of some small elements of the form a+ba+ca? one soon finds that N(1+a—a?) =
5. This shows that the ideals 1 + o — o2 and pf are equal. In Table I, we read that p; = (o + 2).
We conclude that

_lt+a-— a?
1= a+2

is a unit. Similarly one finds that N(2—2a+«a?) = 65. One easily checks that (2—2a+a?) = pLp);.
In Table IT1(vi) we see that pj; = (3a — 5). We conclude that the principal ideals (2 — 2a + o?)
and ((a + 2)(3a — 5)) are equal. This implies that

=a®—20>+3a—4

2 — 20+ o? 3 2
= = 3
€ (Ba—5)(at2) a’+a’ +a+
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is a unit.

Rather then proving that the units €;,e5 and —1 generate the unit group, we “verify” in
another way that these units generate the whole group. For this we will use the main results of the
next section. We will use the {-function of the field F. Theorem 9.4 gives us an expression for the
residue of the Dedekind {-function (r(s) associated to F' at s = 1. Since the Riemann (-function
(qQ(s) has a residue equal to 1 at s = 1, one can express the content of Theorem 9.4 as follows

I CF(S) _ 27 (27T)T2hFRF
1m =
s—1 CQ(S) Wg |A|

Using the Euler product formula for the {-functions and ignoring problems of convergence this gives
rise to

H o (1 - ﬁ)q _ 2" (2m)"hrRp
) (1 — %>_1 wp/[A]

We can compute the right hand side: 11 =2, ro = 1, wr = 2 and A = —98443. By the calculation
above we have that hp = 1. Assuming that the units €1, are fundamental, we compute the
regulator using the two real embeddings ¢1, ¢ : F — R given by a — a3 and a — a3 respectively.
This gives

R — dot [ 108181(c1)] log|du(e2)| ) o 4o ( 3-427619209  1.600462837
= log|pa(e1)| log|ga(e2)| ) —3.752710586 2.479594524

So, assuming that the units €1, e2 are fundamental we find that the residue of (r(s) is equal to

> ~ 14.50597965

22(2r) - 1 - 14.50597965
2 . 1/98443

Next we calculate an approximation to the slowly converging Euler product on the left hand side.
We’ll do this by simply evaluating the contribution of the primes less than a certain moderately
large number. In order to evaluate the product we must, for a given prime p, find the terms

(i)

plp

~ 0.5809524077.

i.e. we must determine the way a prime p splits in the extension F' over Q. Apart from the ramified
prime 98443, there are five possibilities. Using the Factorization Lemma they can be distinguished
by the factorization of f(7T') € F,[T:

(i) pppypyp,’ s if f(T) has 4 zeroes mod p,
(ii) ppbybp2, if f(T') has exactly 2 zeroes mod p,
(p) =< (iii) pppps, if f(T') has only one zero mod p,
(iv)  pp2b,, if f(T') has two irreducible quadratic factors mod p,
(v) (p), if f(T) is irreducible mod p.

here p,, pp2, etc. denote primes of norm p, p® etc. One has that

lim Cr(s) = 1_[13’(1))_1

s—1 CQ(S) -
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where

1
F(p) = (1 — —) in case (i),
p
1 1
= (1 — —) <1 - —2> in case (ii),
p p
_ (1 1 .
=\l 5 in case (iii),
(1+ Ly 1) i (iv)
= -+ =+ — in case (iv),
p p P

_ (1 + %) (1 - I%) in case (v).

A simple computer program enables one to evaluate this product with some precision. It suffices
to count the zeroes of f(T') modulo p. To distinguish between cases (iv) and (v) one observes that
the T3-coefficient of f(7') is 0 and that the constant term is 7. This implies that a factorization of
f(T) as a product of two quadratic terms must be of the form

f(T):T4—2T2+3T—7:(Tz—aT-l-b)(Tz-l-aT—%).

Comparing coefficients one finds that (b — 7/b)a = 3 and b— 7/b = a — 2. Eliminating a gives that
(b = 7)(b* + 7)% + 18b* = 0.

We see that, when f(7') has no zeroes mod p, we are in case (v) if and only if the polynomial
(Y2 —7)(Y2+7)2 +18Y3 has a zero in F,. This can be tested easily.

Using the primes less than 1657 one finds .5815983 for the value of the Euler product. This
is close to the number 0.5809524077 that we found above. In view of the slow convergence of the
Euler product, the error is not unusually large. It is rather unlikely that the final value will be
twice or more as small. This indicates, but does not prove, that the units £; and e, are indeed
fundamental. To prove that they are fundamental, one should employ different techniques, related
to methods to search for short vectors in lattices.

Example (8.3). Let g(T') € Z[T] be given by g(T) = T3 + T? + 5T — 16. From the third column
of Table V below, it follows that g has no zeroes modulo 11. Therefore it is irreducible mod 11 and
hence also over Z. Let F' = Q(«a) where a denotes a zero of g(T"). We want to calculate the ring
of integers Op of F, its unit group and its class group.

Using Newton’s formulas we find that pp = 3, p1 = —1, p2 = 1-1—-10 = —9. Using the relation

Pn+3 = —Pn+2 — 5pn+1 + 16py,
we obtain p3 =945+ 16-3 =62 and ps = —62 — 5- (—9) — 16 = —33. This gives us

3 -1 -9
det | -1 -9 62 | =-8763=-3-23-127
-9 62 -33
Since 8763 is squarefree, Ap = —8763, and the ring of itegers OF is equal to Z[a]. Exer.3.H implies
that (—1)™ = —1 and hence that ro = 1. Minkowski’s constant is equal to
4
54 8763 = 26.4864. ..
337
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The class group is generated by the classes of the prime ideals of norm less than 26.5. With the
aid of the values of the polynomial g(7') at the first few integers, given in table V below, it is easy
to deduce the following factorizations of prime numbers in Op:

Table IV.
P (p)
2 pops | p2=(a,2)
3 pips p3 = (e +1,3) and ps = (o —1,3)
5 Pspas ps = (a+2,5)
T ppip7 | pr=(a+1,7),p7=(a—3,7) and p7 = (@ +3,7)
11 (11)
13 (13)
17 (17)
19 P1ob361 p1o = (e —6,19)
23 P33Pas p23 = (a+7,23) and p53 = (« + 10,23)

The following table contains the values of g(7') at the integers k& with —10 < k& < 9 or, equiva-
lently, the norms of the principal ideals (k — ). Using these norms and the explicit descriptions of
the prime ideals of Op, given in Table IV, it is easy to find the factorization of the principal ideals
(k — ). It is given in the fourth column of the table.

Table V.
k| Nk-a) k N(k — )
@] o —2¢ p5 (xi) -1 -3-7 papr
() | 1 —32 py> (xii) | -2 ~-2-3-5 P2psPs
(iii) | 2 2-3 paps (xiii) | -3 ~7? p7
(iv) | 3 5.7 psph (xiv) | —4 ~2%.3.7 p3papy
(v) | 4 22.3-7 | piphpY (xv) -5 —3-47
(vi) 5 3.53 (xvi) —6 -2-113
(vii) | 6 2:7-19 | paprpio (xvii) -7 -3-5-23 papspos
(viid) | 7 3137 (xviid) | -8 | —23.32.7 |  pdps’ps
(ix) | 8| 23-3-5%2 | p3paps? (xix) -9 —709
(x) | 9 839 (xx) | —10 | —2-3-7-23 | papspiphs

the class group is generated by the classes of the prime ideals of norm less than or equal to 23.
Using the relations that are implied by the factorizations of the principal ideals (a — k), we can
reduce the number of generators of the class group. For example, entry (xx) tells us that

Pog ~ (p2pap?) ™"
This implies that the class of p is in the group generated by the classes of ps, p3, and p%. Similarly,
entry (xvii) says that

P23 ~ (p3ps) ™"

We conclude that the class group is already generated by the classes of the prime ideals of norm
at most 19. Continuing in this way, we can eliminate many of the generators, each time expressing
the class of a prime ideal as a product of classes of primes of smaller norm.

By entry (vi), we eliminate pjg; by means of the entries (iii), (iv) and (xi) we eliminate the
primes over 7. Entry (xii) implies that ps can be missed as a generator. Since pos ~ pgl, we see
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that pos can be missed as well. The prime p3 is taken care of by the relation implied by entry (ii).
Since p} ~ p32 we don’t need the prime pj either.

We conclude that the class group of OF is generated by the class of the prime py. Entry (i)
implies that

p2 ~ (1).

This shows that the class group is a quotient of Z/4Z. To prove that the class group is actually
isomorphic to Z/AZ, it suffices to show that the ideal p3 is not principal. Since, by entry (ii)
ph ~ p;z ~ p3, this is equivalent to showing that the ideal pj is nor principal. Before we can show
this, we need to know the units of O%, or, at least, the unit group modulo squares.

Consider the principal ideals generated by (a — 1)(a — 2)* and 9a. Entries (i), (ii) and (iii) of
the table imply that both these ideals factor as

pap3ps”
Therefore ((a — 1)(a — 2)*) = (9) and
_ _ 94
€= (a-Dla-2) =40® +a —13.

1"

is a unit. Modulo p3 = (a+1,3) we have that e =4 —1—13 = —1 (mod 3). In particular, € is not
a square modulo p3. We conclude that ¢ generates O%/(O%)2.

Now we verify that p% is not principal. Suppose p5 = (y) for some v € Of. By entry (ii) of
Table V, we would have that ()2 = (o — 1). Therefore

Y ou=a-1 for some unit u.

Consider this relation in the group

(Or/p3)" x (Or/ps)*/(Or[ps)"* = Z/2Z x Z/Z.

We saw already that ¢ = —1 (mod p3). We also have that € = 4(—2)% + (—2) — 1 = —2 (mod p5).
Since —2 is not a square mod 5, the image of € in Z/2Z x Z/Z is the vector (1,1). On the other
hand, a —1=-1-1=1 (mod p3) and @ —1 = —2—1 =2 (mod p5). This implies that the image
of « —1in Z/27Z x Z/Z is the vector (0,1).

This shows that a—1 and ¢ are independent in the group (Op/p3)* X (O /ps)* modulo squares.
Therefore the relation 42 - u = @ — 1 is impossible. We conclude that pj is not principal and hence
that Cl(Of) = Z/4Z.

By Dirichlet’s Unit Theorem, the group O has rank rq + 70 —1=1+1—-1 = 1. Since F
admits an embedding into R, the group of roots of unity of F' is just {+1}. We conclude that
O% 2 Z x (Z/2Z) or, in other words, that O% = +u? for some fundamental unit u. By means of
a search in certain lattices, one can show that the unit € = 4a? + a — 13 is actually a fundamental
unit. We do not prove it here.

(8.A) Pick integers A, B,C, D € Z, satisfying |A|, |B|, |C|,|D| < 4 until the polynomial (f(T) = T*+ AT? +
BT? + CT + D is irreducible. Let a denote a zero of F(T). Determine the class group of Q(c).

(8.B) Determine which of the prime ideals in table IV are in which of the four ideal classes of Op of
example 8.3.

(8.C) (H.W. Lenstra) Determine the class group of the field generated by a zero of the polynomial T* +
+3T2 + 7T + 4.
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9. Zeta functions.

In this section we will compute the residue of the Dedekind {-function (r(s) associated to a number
field F in s = 1. The techniques will be analytical in nature. See Heilbronn’s article in [12] or
Davenport’s book [17] for similar techniques. For the I'-function see Artin’s booklet [4].

o

First we discuss the Riemann (-function ((s) = > " ;n™°, which is just the Dedekind (-
function associated to Q. To study it we need to know some properties of the I'-function.

Definition. The I'-function I'(s) is for s € C, Re(s) > 0 is defined by

T(s) :/ e_ttsﬂ.
0 t

Proposition (9.1).
(i) For every s € C, Re(s) > 0 one has that I'(s + 1) = sI'(s).
(ii) The T'-function admits a meromorphic extension to C with poles at 0, —1, —2, ... of order 1.
The residue at —k is (—1)* /k!.
(iii) T'(s)['(1 — s) = w/sin(ws) for s € C — Z.

Proof. The first part follows easily by partial integration. Using the functional equation I'(s+1) =
sI'(s) one can extend I'(s) meromorphically to all of C. For every k € Z>( one has that

1
I(s) = (s+(k—1)-...-(s—1)

SP(s + k)

which easily implies (ii).
(iii) Write F'(s) = I'(s)I'(1 — s). By (ii) the function F(s) has poles of order 1 at the integers. For
s € C, 0 < Re(s) < 1 one has that

[ t\° , dt
F(s) :/ / et (—) dx—
0 0 x t
and, making the substitution ¢ = zx, we find that

oo oo oo _s—1
F(s) Z/ 25/ e_(z"'l)zdm% =/ 4.
0 0 V4 0 z+ 1

Using the Residue Theorem it is rather easy to show that the last integral is equal to m/sin(ms).
See Exer.9.A for the details. This proves the proposition.

Definition. For z € Ry we let

0(x) = Z i

neZ

denote the #-function.

This #-function is a minor modification of the well known Jacobi ©-function ©(z) = 0(—2iz)
(Carl Gustav Jacob Jacobi, German mathematician 1804-1851). The ©-function is defined for z
in the upper halfplane. It is a modular form. See the books by N. Koblitz [36] and S. Lang [40] for
more about ©-series and modular forms.
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Proposition (9.2). ( C.G.J. Jacobi ) Let x € Rs(. Then

0 (i) — /70(z).

Proof. Let f : R — C be a rapidly decreasing C'*°- functlon i.e. for all n € Z one has that
f(z)z™ — 0 when z — +00. The basic example will be e=742” for A > 0. We define the Fourier

transform of f by
= / f(z)e? = dg,.
R

The proof will be a consequence of the Poisson summation formula:
Y f)=3" fn)
neEZ neZ

This formula can be deduced as follows: consider

=Y flk+a)

kEZ

— E :Cm627mm:c

meZ

The second expression is the Fourier expansion of the periodic function g(z). The Fourier coeffi-
cients ¢, are given by

1
Cm = / g(z)e™2™me 4y for all m € Z.
0

The coefficients c¢,, can be evaluated explicitly as follows:

/ Zf k+$ —27sz:cdl_ _/ —27rim(:c—k)dx
0 0

ke€Z kEZ
— [t meds = fm)
R

We conclude that

Y k) =9(0)=> cn=1 f(m)

kEZ meEZ meZ
as required.

Now we give the proof of Prop.9.2: consider the, rapidly decreasing, function h(y) = ey’
It is well-known and easily checked that h(y) = h(y). It is convenient to calculate the Fourier
transform of hy(y) = h(by) for b € R. the result is that hy(y) = $h(%). By the Poisson summation

formula we have that
bz) =3 ™ =D hys(n) = 3 hys(n)

neZ neZ neZ
=X SR =
nez\/i o e

1 1
Rz 0 ( T ) ’
T \Z
as required.
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Proposition (9.3). The Riemann (-function (G.B. Riemann, German mathematician 1826-1866)
has the following properties:
(i) (Euler product.)

for s € C, Res > 1. Here the product runs over the primes p.
(ii) (Analytic continuation.) The function ((s) admits a meromorphic extension to C. It has only
a pole at s = 1. This pole is of order 1 with residue 1.
(iii) (Functional equation.) The function
Z(s)=T (g) 72 ((s)
satisfies Z(s) = Z(1 — s).
(iv) (Zeroes) If p is a zero of ((s) then either p is a trivial zero, i.e. p is a negative even integer, or

0<p<1
(v) (Special values.) Let m be an even positive integer. Then
(2mi)™
§(m) = 2-m! "
By,
1—m)=—"=
(1 —m)=="

here the B,, denote Bernoulli numbers. They are defined by

T > Bm,m
=2
m=1

Finally we have that ((0) = —1.
Proof. Part (i) has been proved in section 4. We prove (ii) and (iii) at the same time. For s € C,
Re(s) > 1, consider the Z-function

s

Z(s)=T (5) 72 (s)

We can write

Z(s):/ —tts/2dt ~5/2 3 - / et S 1525/ —sd

0 n>1 n>1

2 in every term of the sum, we find

Z(s) :/ Y e —omn? 4T :/ 9($)27—1zs/2d_$_
X

n>1 0

Substituting t = xwn

Next, we split the integral in two pieces: a piece from 0 to 1 and another from 1 to co. In the first
piece we change the variable z to 1/z and we find, using Prop.9.2, that

- [ —1ms/2d?x+ [ e<1/:;>—1x_s/2d<11//§>,

_ [T 0() -1 s/2dx _5/2
- /1 ! / Va0(z) — 1/20
00 (1- s)/2_ —s/2
:/ M(m“”p—l—x(l_s)p)dx—l—/ z v da
1 2 1
) —

6(1" 1 s/2 (1—-s)/2 1 1
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Now we have an expression for Z(s) which converges for all s € C. We clearly have that Z(s) =
Z(1—s5). The Z function has poles at 0 and 1, both with residue 1. Since the function 7=*/?T'(s/2)
has a zero at 0, but not at 1. It follows that the {-function has only a pole at 1. From Prop.9.1(iii)
we see that I'(1/2) = 4/m. Therefore the residue of ((s) at 1 is 1.

(iv) Suppose p is a zero of the Riemann (-function. By (i) we have that Re(s) < 1. Suppose
Re(s) < 0 and that p is not an even negative integer. We have that Z(p) = I'(p)x—?/2¢(p). By
Prop.9.1, the function I'(s/2) does not have a pole at p. Therefore Z(p) = 0 and by (iii) we see that
Z(1 — p) = 0. It is immediate from Prop.9.1(iii) that the I'-function has no zeroes. We conclude
that ((1 — p) = 0. This contradicts the fact that Re(p) > 1 and the result follows.

(v) Let R € 1 + Z be a large number and let Cg be a big square in C with corners +R + iR. The
contour integral

/ i dz for m > 2
c

2 __
n € 1

approaches 0 as R — oo. Calculating the residues of the function, one finds for even values of m

that
i 1 1By
= (2min)™ 2 m!

This gives the values of {(m) for even positive integers m. The values of (1 — m) follow from
the functional equation proved in (ii). Finally one obtains that ((0) = —1/2 by observing that
both Z(s) and 7~*/2T'(s/2) have a simple pole at 0. The Z-function has a residue equal to —1
and the function 77%/2T'(s/2) has a residue —2, because I'(s/2) = (2/s)T'(s/2 + 1). This proves
Proposition 9.3.

The Riemann (-function is one of the most studied mathematical objects [22]. The results in
Prop.9.3 were all proved by Euler and Riemann. Riemann observed that many zeroes p of ((s)
satisfy Re(p) = 1/2 and conjectured that this is true for all non-trivial zeroes. This is the celebrated
Riemann Hypothesis which is still unproven. Its truth is considered very likely and would have
important consequences. A very weak version of it has been proved by Hadamard and De la Vallée
Poussin in 1899. They showed that Rep # 1 for every zero p of ((s). An immediate consequence
is the Prime Number Theorem:

X

#{p < X : p prime} = g X

The Riemann Hypothesis has been numerically verified [77]: The “first” 10'2 zeroes p all have their
real part equal to 1/2. There are analogues of the Riemann (-function in algebraic geometry. For
some of these functions the analogue of the Riemann Hypothesis has been proved e.g. for zeta
functions of curves over finite fields by A. Weil [82] in 1948. This result was extended by P. Deligne
[19] in 1973.

Much less is known about the values of the {-function at odd integers. It was proved by Apéry
in 1976 that ¢(3) =~ 1.2020569031 ¢ Q. His proof does not seem to generalize well [3,78]. Just
recently expressions for ((3) involving the dilogarithm function have been obtained by Zagier [84].

Dedekind (-functions are analogues of the Riemann (-function. Nowadays one can prove the
analogue of Proposition 9.3. for these functions.

The main result of this section is the calculation of the residue of the (-function ((s) at s = 1.
Strictly speaking, we do not prove that ((s) extends to a meromorphic function in a neighborhood
of s = 1. We merely calculate the limit lim,_,; (s —1){(s) but this will be sufficient for our purposes.
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Theorem (9.4). Let F be a number field and let (r(s) denote its Dedekind (-function. Then

. 2M (27T)T2hFRF
lim(s — 1 §) =
s—)l( )CF( ) wp \/m
Here rq is the number of homomorphism F' — C which have their image in R and 2ry the remaining

number of homomorphism F — C. By hr we denote the class number of F', by R its regulator,
by A, the discriminant and, finally, by wg, the number of roots of unity in F.

Proof. Let s € C with Re(s) > 1. By Prop.4.9, the sum

1
Cr(s) =) NG)

J#0

is absolutely convergent. We rewrite it as

= 3 Cels)

CEeClU(OF)

where
1

Cels) =) N

JeC

Let C be an ideal class and let I € C~. The map J ~— IJ gives a bijection between the class C
and the set of principal ideals («) contained in I. Therefore we can write

1 1
ols) =) WZN(I) > Na|*"

(v.)CI

In order to calculate this sum, we view the ideal I via the map ® : F' — F ® R as a lattice in the
R-algebra F@R = R"™ x C™.

The units of the algebra F®R are precisely the vectors that have all their coordinates non-zero.
We extend the map ¥ : O — R to (F @ R)*:

T:(R™ x C™)* — RN

by
\Il(mla =t 5$T17217 e 7ZT2) = (log"xl"’ b alog”"ETl H’ IOg”Zl ”7 st log"z'fz ”)

and we extend the norm N: F — R to F ® R by
_ 2 2
N(xla"'ax’r‘nzla---’z’l‘z)_|x1|""'|x’f‘1|'|zl| |Z7‘2| .

The norm is a homogenous polynomial of degree n. Clearly it does not vanish on (F ® R)*.

We choose a basis F for the real vector space R"%"2. Choose a system of fundamental units
€1y-++sEr +r—1 and apply the map ¥. This gives us r; + 5 — 1 independent vectors ¥(g;) that
span the subspace of vectors that have the sum of their coordinates equal to zero. The basis F
will consist of the vectors U(g;) plus the vector v = (1,1,...,1,2,2,...,2) that has 1’s on the real
coordinates and 2’s on the complex coordinates.

The proof will be a fairly straightforward consequence of three lemmas that will be stated and
proved after the proof of Theorem 9.4.
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Consider the following set I' C R™ x C"2:

I'={x € R™ x C™ : the coordinates &; of the vectors ¥(x) with respect to
the basis F satisfy 0 < ¢, <lfor1 <i<7ri+7y—1;
the first coordinate z; of x satisfies 0 < arg(xl) < 3)—7; )

If r; > 0, i.e. if the first coordinate z; is real, the condition 0 < arg(z1) < 2 " should be interpreted
as z1 > 0. By Lemma 9.5, we have that

Cc = N(I)® Z ﬁ for s € C, Re(s) > 1

welnl a)‘s

The set T' is a cone, i.e. for all x € I" and A > 0 also Ax € I'. This can be seen as follows: From
U(Ax) = T(N\) + ¥(x) = Av + ¥(x)

it follows that, with respect to the basis E, the coordinates of ¥(A\x) and ¥(x) are equal, except
possibly the last. Since A > 0, the argument of the first coordinate of x is also unchanged. This
shows that T" is a cone.

The subset I'y = {y € ' : [N(«y)| < 1} is bounded and has finite volume. Therefore, by Lemmas
9.6 and 9.7, we have that

lim (s — )¢o(s) = lim(s ~ ON(I)* Y oo

weror IN(@))
VOl(Fl) _ N(I) 2" "2 R QT2

=N el wr  N(I)\/[AF]

We see that the result does not depend on the ideal class C. Therefore, since there are hg different
ideal classes, we find that

2” 2 Rp

hni(s—lgp zhms—lgc s) = F\/W

as required

Lemma (9.5). Let F' be a number field and let I' C F ® R be the cone defined above. Then for
a fractional ideal I of F' we have that

1
2 |N -2 IN(a)|*”
(v)cr elnm

(Note that the first sum runs over the principal ideals («), while the second runs over elements «.)

Proof. We show first that (F @ R)x = O} - I': let (x € F @ R)*. Write ¥(x) with respect to the
besis E introduced above.

\I/(X) = fllIJ(gl) +...+ §T1+7‘2—1‘II(€7‘1+7‘2—1) + £T1+7’2v'

Define the unit ¢ by
_ m; Mry+ry
E=E1 " e Epfpy s
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where m; denotes the integral part of &. As a consequence, the first r; + 7o — 1 coordinates of
U(e~1x) are between 0 and 1. Next consider the first coordinate y; of e~'x. Pick a root of unity
¢ € F*, such that the argument ¢ of (y; satisfies 0 < ¢ < 2w/wr. We conclude that (e7'x € T
and hence that x € O% - T' as required.

Moreover, this representation of x € (F' ® R)* is unique: suppose that ey = 'y’ for e’ € O},
and 7,7 € I'. Then u = ¢/¢’ =+'/y € O NT. This implies at once that the first 7y + 75 — 1
coeficients of ¥(u) are zero. Since u is a unit, the sum of the coeflicients is zero and therefore the
last coefficient is also zero. this implies that u € ker(¥) = pp. Since the arguments of the first
coordinate in F' ® R of both «y and ' are between 0 and 27 /wp, we conclude that u = 1 and the
unicity follows.

The lemma now follows from the fact that every principal ideal (o) C F ® R has precisely one
generator in I'. Indeed, o € (F ® R)*, so by the above, there is a unique unit ¢ such that e« € T.

Lemma (9.6). Let L be a lattice in R™ and let I' C R"™ be a cone. Let N be a homogeneous
polynomial of degree, that does not vanish on I'. Assume that I'y = {y € T' : [N(y)| < 1} is
bounded and has finite volume. Then

lim 1 wvol(I'y)
s—1

wior IN(z)|*  covol(L)

Proof. Let 1
v(r) = #(;L NIy) =#{z € L:|N()| <r"}.

Since I'y is bounded, v(r) is finite. The equality follows from the fact that N(z) is homogeneous of
degree n. By the definiton of the Riemann integral we have that

1
vol(T'y) = lim u(r)covol(;L)

T—00

and, equivalenlty
lim v(r) _ vol(T'y) .
r—oo TN covol(L)

Next, we enumerate the vectors xi, X2, x3 ... in I'N L:
0 < IN(x1)] < [N(x2)| < [N(xs)| <...

and for k£ > 1 we put

1

i = IN(xx)| ™
It is immediate that k < v(rg) and that for every ¢ > 0 one has that v(ry —¢) < k-1 < k.
Therefore n
virg—e) (e —¢ < k < v(ry)
(re =)™ \ 7k TR Tk

and letting € — 0 we find that

k (T
lim X fim £ 20 YT
k—oo TR k—oo TR k—oo TP covol(L)

It follows that for € > 0 suficiently small and kg € Z~ sufficiently large, we have for all k¥ > k
that
1(T 1 1 (T 1
covol(L) k  |N(xx)| covol(L) k
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and hence for s € Ry that

VO](Fl) e N s — i S— VOl(Fl) e s s — i
(covol(L) ) (s —1) Z ks 2 Z |N Xg )| (covol(L) + ) (s—=1) k§0 ks*

k>ko k>kq

Now we let s tend to 1. Since limy1(s — 1) X1 <xcp, 1/k° = 0, and the fact that the Riemann

¢-function ¢(s) = Y ;2 1/k* has a pole of order 1 at s = 1 with residue 1, we obtain that for
sufficiently small € > 0

VO](Fl VOl(Fl)
YORY <
covol(L) €< Z |N xx)| covol(L)

This proves the lemma.

Lemma (9.7). Let F be a number field and let I' C F @ R be the cone defined above. Then
() i
vol(Ty) = = ='F

wr

(ii) Let I be a fractional ideal in F', then the image of I in F @ R satisfies

covol(I) = 27" N(I)\/|AF|.

Proof. The set I'; consists of those vectors x = (z1,...,Zr,Y1,---,Yr,) € (F ® R)*, for which
0 < arg(zy) < m/wp, for which N(x) < 1 and for which 0 < &;,...,&, +r,—1 < 1, where the & are
defined by

\IJ(X) = 61\11(81) +...+ 57‘1+T2—1\Ij(87‘1+7“2—1) =+ £T1+7‘2v'

It is clear that, if we drop the condition that 0 < arg(z1) < 7w/wp, the volume of I'y is multiplied
by wg. If, moreover, we add the conditions that z; > 0 for all real coordinates i, i.e. for 1 <1 < rq,
the volume is multiplied by 27":

2m
vol(T'y) = w—vol{x eEFOR)":0<&,....¢6 +r-1 <land z1,...,2,, >0
F

1] -z [yl - - - Ty | < 13-

We use polar coordinates for the complex coordinates: write z, = pre®* and it is convenient to
work with z, 4 = pi rather than p;. We find that

ARY o
VOl(Fl) = / diL'l L.t dmm-}—m—l
wg w

where W is the set of vectors x = (z1,...,%y, +r,) € (F ® R)* for which z1,..., 2, 4+, > 0 and
S Jog(z;) < 0 and for which

log(z1)
: 251\11(61) +... +£’I‘1+T2—1\D(67‘1+T2—1)+§'f‘1+7‘2v
log(xT1+T2)

with 0 < &1,..., & qry1 < 1.
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Observe that &, 4r,—1 = — >, log(z;). Clearly, the above integral is most conveniently evalu-
ated by integration with respect to the variables &;. So, we make the change of variables according
to the formulas given in the description of the set W. It is not difficult to calculate the Jacobian
J of this transformation. One finds

vol(Ty) = 27 / / / (det()|dt; - . dEy, o,

z1log|éi(e1)] e r1log| 1 (ery4ro—1)| T

where

J =
Lri4rs ]Og"qﬁh +r2 (61)" s Tyt log"qSV‘l +7r2 (87‘1 +7‘2—1)” 2$T1 +72

We conclude that

27‘1 2
VO](P ) / / / — .'Er,-l_}_:,-_Qdé-]_ . d£T1+7.2

_ 2w 2" 7™ Rp
CRen [ entninag, ., = 20
wWFr —o0 wWr

as required.

Finally, we give, without proof, the analog of Theorem 8.4. for the Dedekind (-functions. This
result is due to E. Hecke (German mathematician 1887-1947) [31,32]. Hecke’s proof is elaborate, but
similar to the proof of Proposition 9.3. It exploits ©-functions and their functional equations. Later
in 1959, J.T. Tate gave a simpler proof, based on harmonic analysis on adelic groups [12,p.305].

Theorem (9.10). (E. Hecke 1917) Let F be a number field and let (r(s) denote its Dedekind
(-function.
(i) (Euler product.)

cp<s)=2ﬁ:1;[(l‘@)

041

for s € C, Re(s) > 1. Here the sum runs over the non-zero ideals of the ring of integers Op
and the product runs over the non-zero prime ideals p of this ring.
(ii) (Analytic continuation.) the function (r(s) admits a meromorphic extension to C. It has only
a pole at s = 1. The residue is
2m (27‘(’)702 hrRp

|A

where the notation is as in Theorem 9.4.
(iii) (Functional equation.) The function

Z(s) = |8p |2 (TE)r=2) " (T(s)(2m) =)™ Cr(s)

satisfies Z(s) = Z(1 — s).

(iv) (Zeroes.) The ¢-function has zeroes at the negative integers: at the odd ones with multiplicity
R and at the even ones with multiplicity r1+71s. At s = 0 it has a zero of order r1 +1s—1 with
leading coefficient of the Taylor expansion at 0 equal to —hpRp/wg. These are the so-called
trivial zeroes. All other zeroes p satisfy 0 < Re(p) < 1.
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Proof. We have proved (i) in section 4. For a proof of (ii) and (iii) we refer to Lang’s book. Part (iv)
is a rather easy consequence of the properties of the I'-function that are listed in Prop.9.1. There
is also a theory of special values of Dedekind (-functions. See Tate’s book on Stark’s conjectures
[74] for more details. The Generalized Riemann Hypothesis is the statement that all non-trivial
zeroes of (r(s) have their real parts equal to 1/2. This important conjecture conjecture has not
been proved.

(9.A) Let log(z) denote the branch of the logarithm with argument ¢ satisfying 0 < ¢ < 27. Let C¢,r be
the contour in C, from ¢ to R, then counterclockwise on a large circle of radius R via —R back to
R with argument 27, then to ¢ (with argument 27) and clockwise back to € (with argument 0) via a
small circle of radius €. Show that for s € C, 0 < Re(s) < 1

Zsfl .
dz = —e°™"27i.
c z+1
,R

Show that the contributions to the integral of the parts over the circles of radius € and R tend to 0 as
€ — 0 and R — oo respectively. Conclude that

< gt 7r
de = — .
o T+1 sin(ms)

(9.B) Verify the entries of the following table

¢(-4)=0 ((=1)=-1/12  ¢(2)=7"/6
¢(=3)=1/120  ¢(0) = —1/2 ¢(3) = 1.2020569 . ..
¢(=2)=0 ¢(1) = o0 ¢(4) =="/90

(9.C) Verify Theorem 9.4 for the Dedekind ¢{-function of Q.
(9.D) Verify that the set I'1 occurring in the proof of Theorem 9.4, is bounded.
(9.E)*Let Fy be a finite field with g elements. Let ((s) denote the (-function of the ring F4[T:

ey (s) = ﬁ

I£0
s (Here the product runs over the non-zero ideals I and N(I) = [F,[T] : I].) Show that

1
Cry(my(8) = To g

What is the (-function of the ring Fo[X,Y]/(X? +Y? +1)? (Hint: conclude from Exer.1.L that the
conic X2 +Y? 4 1 = 0 is isomorphic to the projective line over F.)

(9.K)*Show that
1 25172 1
T'(2s) = —2 T'(s)I'(s+ =).
(23) = =2 T (s + 5)
(9.M) Show that

O(z) +O(z + 5) = 20(42).
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10. Hilbert Theory.

From now on we will assume that the reader knows the main results of Galois theory. These can
be found in Stewart’s book [71] or in Lang’s Algebra [41].

When a number field F' is a Galois extension of Q, the Galois group G = Gal(F/Q) acts on
many of the objects that we have introduced. This gives rise to additional structure and symmetry.
In this section we discuss the action of the Galois group on the primes of F' that divide a fixed
prime number p. Many of the concepts that we mention were introduced by D. Hilbert (German
mathematician (1862-1943)) in his Zahlbericht [34].

Suppose F' is a number field which is a Galois extension of Q with G = Gal(F/Q). The Galois
group G acts on F', but it also acts naturally on many objects associated to F. It is, for instance,
easily verified that for every o € G one has that o(x) is integral whenever z is. This implies that
G acts on the ring of integers Op of F. Similarly, for every ideal I of Or and every o € G the set
{o(z) : z € I} is again an ideal. The same is true for any fractional ideal I. We see that G acts on
the ideal group.

In a similar way, it is easily checked that the group G acts on the unit group O% and on
the class group Cl(Op). For every prime ideal p of O and every o € G, the ideal o(p) is again
prime. A final useful observation is the following: By Prop.4.8 every prime ideal of O divides a
unique prime number p. This prime number p is contained in the prime ideal p N Z and therefore
pNZ=(p).

Proposition (10.1). Let F be a number field with G = Gal(F/Q). Then

(i) The Galois group G acts simply transitively on the embeddings ¢ : F — C via o(¢)(z) =

$(0™ ().

(ii) The group G acts transitively on the primes p of O that divide a fixed prime number p.
(iii) Let z € F. We have that N(z) = [[, g o(z) and Tr(z) = 3 ., o(2).
Proof. (i) Let ¢ : F — C be any embedding of F' into C. Suppose 0,7 € G and o(¢) = 7(¢).
This implies that = ¢(0~1(z)) = ¢(771(z)) for all z € F. Since ¢ is injective, it follows that o = 7.
We deduce that there are at least #G embeddings of the form o(¢). On the other hand, there are,
by Cor.2.2, exactly [F : Q] = #G embeddings F' — C at all. Therefore the group G acts simply
transitively on the set of embeddings ¥ — C.
(iii) Let z € F and let ¢ : F — C be an embedding of F into C. We have ¢([[,cq0(z)) =
[T e ¢(c™ (z)). By (i) this is equal to [14.psc ¢'(z) and by Prop.2.5(iii) this is equal to N(z).
since N(z) € Q, we conclude that ¢(]],cq0o(z)) = ¢(N(z)). Part (iii) now follows from the fact
that ¢ is injective.
(ii) Let p be a prime ideal of Op. If p divides p for a prime number p, we have, for every o € G,
that o(p) divides o(p) = p. So G acts on the primes dividing p. Suppose p’ is a prime dividing p
which is not of the form o(p) for any o0 € G. By the Chinese Remainder Theorem (Exer.4.G) we
can find an z € Of such that

z =0 (mod p’),
=1 (mod o(p)) for all o € G.

From (ii) and the first congruence we deduce that N(z) € pNZ = (p). The second congruence implies
that 0 ~1(x) & p for every o € G. Since p is prime this implies that N(z) = [lse,0(2) € PNZ = (p).
This contradiction shows that G acts transitively on the prime ideals that divide p.

Definition. Let F' be a finite Galois extension of Q with G = Gal(F/Q). Let p be a prime number.
For every prime ideal p of F' dividing p we put

Gy ={o€G:olp) =p}
I, ={0c € Gy:0=id (mod p)}.
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The group Gy, is called the decomposition group of the prime ideal p. The group I, is a normal
subgroup of Gy; it is called the inertia group of p.

Proposition (10.2). Let F' be a finite Galois extension of Q with G = Gal(F/Q). Let p be a
prime number and let p be a prime of Op dividing p.
(i) For every o € G one has that
Ga(p) = UGpO_l.

(ii) There is an exact sequence
0 — I, — G, — Gal((Or/p)/Fp) — 0.

Proof. (i) We have that 7 € G,y if and only if 7o (p) = o(p) i.e. if and only if c~'70 € G,. This
proves (i).

(ii) It is only necessary to prove the surjectivity of the map G, — Gal((Or/p)/Fp): pick a
generator ¢ of the multiplicative group (Or/p)*. By the Chinese Remainder Theorem, we can find
a € Of such that

o= 4 ¢ (mod p)
~ 1 0 (mod p’) for the other primes p’ dividing p.

Let g(T) = [[,cq(T — o(a)) € Z[T]. We have that

g(T) =T~ #% [ (T - o(a)) (mod p)
oc€G

and, since g(T') € Z[T], we have the same congruence modulo p as well. Let h(T) € F,[T] be the
minimum polynomial of ¢ over F,. Since g(a) = 0, but & = ¢ # 0 (mod p), we have that h(T')
divides g(T") in F,[T]. Therefore o is a zero of g(T') and we conclude that there is a o € G such
that o(¢) = ¢P. So the image of o generates the Galois group of Or/p over F,,. This proves (ii).

Let F be a finite Galois extension of Q with Galois group G. By Prop.10.2(i), the cardinalities
of their decompostion groups are the same. Since G permutes the prime ideals that divide a fixed
prime number p, we see that the norms of all these ideals are equal, and hence by Prop.10.2(ii)
that e, = #1I,,, and that e, and f, are the same for every prime p dividing p. Since these numbers
only depend on p, we sometimes write e, for e, and f, for f,. We have that g, f,e, = n, where g,
is the number of primes ideals dividing p.

When p is unramified in F' over Q, the inertia groups I, are trivial for all primes p dividing p.
In this case the map

Gy — Gal((Or/p) /)

is an isomorphism. We define ¢, to be the automorphism in G, that corresponds to the au-
tomorphism of O given by z + zP. The map ¢, is called the Frobenius automorphism of p
(G. Frobenius, German mathematician 1849-1917). It depends on the ideal p, but it is easy to
check that its conjugacy class depends only on p.

Next we study an extension Q C K C F' of number fields. We describe how the decomposition
and inertia groups corresponding to the different extensions are related.

Proposition (10.3). Let F' be a number field with G = Gal(F/Q) and let K be a Galois extension
of Q with Q C K C F and H = Gal(F/K). Let p be a prime number, let p be a prime ideal of K
dividing p and let p’ be a prime ideal of F dividing p.

(i) For the decomposition group of p' we have that (G/H), = Gy (mod H)
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(ii) The inertia group of p in G/H is just the inertia group of I, modulo H.
(iii) We have that
p splits completely in K & Gy C H,
p is unramified in K < Iy C H.

Proof. Since p’ divides p in O, one has that p’ N Ox = p. From this observation parts (i) and (ii)
are immediate. Part (ii) is the special case where (G/H), and the inertia groiup of p in G/H are
trivial. This completes the proof of the proposition.

In the rest of this section we will illustrate Propositions (10.1)-(10.3) by the cyclotomic fields
Q(¢m)- The cyclotomic fields are Galois extensions of Q. Every o in the Galois group of Q((,)
over Q is determined by its image o((,,) of (,,. Since the Galois group maps primitive m-th roots
of unity to primitive m-th roots of unity, we get an injective natural map

Gal(Q(¢m)/Q) — (Z/mZ)".

In the next proposition we show that this natural map is, in fact, an isomorphism.

Theorem (10.4). The cyclotomic polynomial ®,,(T) € Z[T)] is irreducible. The Galois group of
Q(¢m) over Q is canonically isomorphic to (Z/mZ)*.

Proof. Since deg(®,,(T)) = ¢(m) = #((Z/mZ)*), the surjectivity will follow from the irreducibil-
ity of the cyclotomic polyniomial ®,,(T).

Let g(T') € Z[T] be an irreducible factor of ®(T") and write ®(T') = g(T')h(T). Let p be a prime
not dividing m. Suppose « is a zero of g. Then « is a zero of T™ — 1 and so is o?. If g(a®) # 0,
then h(a?) = 0 and therefore g(T") divides h(7®). This implies that g(7") divides h(T)? in the ring
F,[T]. Let ¢(T) denote the minimum polynomial of & over F,,. Then ¢(T') divides both g(T') and
h(T) modulo p. this implies that 7" — 1 has a double zero mod p. But this is impossible because
the derivative mT™ ! has, since m % 0 (mod p), no zeroes in common with 7™ — 1.

Therefore g(a?) = 0. We conclude that for every prime not dividing m, one has that g(a?) = 0
whenever g(a) = 0. This implies that g(a*) = 0 for every integer k¥ which is coprime to m. This
shows that ®,,(7T") and g(T') have the same zeroes and the result follows.

Proposition (10.5). Let m € Z with m # 2 (mod 4) and let p be a prime number. Then
(i) If p does not divide m then p is not ramified in Q((,,) over Q. Moreover, identifying
Gal(Q(¢)/Q) with (Z/mZ)*, we have that
Gy =<p>C(Z/mZ)".

(ii) If p divides m then p ramifies in Q((,,) over Q. Writing m = pFm’ where p does not divide
m' we have that
I, = Gal(Q(¢m)/Q(¢m'))
while G, contains I, and
Gp/I, =<p>C (Z/m'Z)".

Proof. (i) The proof is by induction with respect to the number of primes dividing m. Suppose [
is a prime dividing m. Say m = m'l"™ where [ does not divide m/. We have the following diagram

Q(¢m)

Q(¢m) Q(¢in)
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We put H; = Gal(Q((m)/Q(Gmr)) and Hy = Gal(Q((m)/Q(¢n)). We have that HiNHy = {1} and
that Hy Hy = Gal(Q((n)/Q). By Example 6.4 the ring of integers of Q((;n) is precisely Z[(;~] and
we can apply the Factorization Lemma to determine the splitting behaviour of any prime number
p. The minimum polynomial of {;» is the cyclotomic polynomial ®;»(T'), which divides X*" — 1.
Therefore, only the prime [ ramifies. Since p does not divide m, we have that p # [ and hence
that p is not ramified in Q({;»). Therefore, by Lemma (7.3), we have that I, C H;. By induction
also I, C Hy and hence I, C Hy N Hy = {1}. This implies that I, is trivial and hence that p is
unramified in Q((,y,).

(ii) Consider the following diagram

Q(¢m)

Q(¢m) Q(¢pr)

By Example 6.4, the ring Z[(,«] is the ring of integers of Q({,). Since the cyclotomic polynomial

@,:(T) = (T - 1)¢®") (mod p), we see that p is totally ramified in the extension Q(¢pr) over Q.
Therefore the ramification index of p in the extension Q((,,) over Q is at least ¢(p*). By (i), the
prime p is unramified in the extension Q((,,’). Therefore, by Prop.10.3, the inertia group of p is
contained in Gal(Q(¢,,)/Q(¢mr)), which has cardinality ¢(p*). We conclude that I, is equal to

Gal(Q(¢m)/Q(¢m))- The rest of (ii) follows from (i), applied to the field Q((,)-

As an illustration of the theory of decomposition and inertia groups, we will prove the law of
Quadratic Reciprocity. For an odd prime p, we introduce the Legendre symbol (A.M. Legendre,
French Mathematician 1752-1833). For x € Z we put

=40, ifx =0,

(z) { —1, if z is a not a square modulo p,
1, otherwise.

p

The induced map (%) : (Z/pZ)* — {+£1} is easily seen to be a surjective homomorphism. Its
kernel is the subgroup of squares. Since the homomorphism (Z/pZ)* — {£1} C (Z/pZ)* given
by z — z(®~1)/2 has the same kernel, they must agree and we obtain Euler’s Formula:

(E> = 2(P=Y/2 (mod p) for all z € Z.
p

The following Lemma is the principal ingredient in the proof of the Law of quadratic reciprocity.
Part (iii) is of interest in itself. This statement can be seen as a reformulation of the law of quadratic
reciprocity. This formulation is better suited for generalizations.

Lemma (10.6).

(i) We have that /—1 € Q(C4) and V/2,v/—2 € Q((g)-
(ii)) Let p be an odd prime then

JFEQW,)  for p=1 (mod 4),
V-p€Q(()  for p=3(mod4).
(iii) Let F' be a quadratic field with discriminant A. Then F C Q({|a))-
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Proof. (i) We have that i = (4 is a square root of —1 and that (g &+ (g ' is a square root of +2.
(i) Let
x
==X (;)a
z€F} p

be the Gaussian sum associated to the homomorphism (%) : (Z/pZ)* — {£1}. We view 7 in the

complex numbers via one of the embeddings ¢ : Q((,) < C. Since (=1 = ( for every root of unity
¢, one has that

We computw the absolute value bif v bithe ee wde febff §i e ee fi ee



(ii)

Proof. (i) is immediate from Euler’s formula. To prove (ii) we take an 8th root of unity in
a = (g € F,. We have that (§ = —1 and hence that o? = 2. Using this relation we see that

aP = (P4 (P = s+ ¢ t=a, ifp=+l(mod8),
8 158 (+¢%=—a, ifp=+3(mod8),
This implies that v/2 = « is in the field F,, if and only if p = &1 (mod 8). this proves (ii). (iii)
Consider the quadratic subfield F' = Q( (_71)]9) of Q(¢p). The discriminant of the minimum
polynomial of (_71)1) is +4p. By the Factorization Lemma (Theorem 6.1), we have that

g splitsin FF < (_71) p is a square mod ¢

or, using Euler’s formula

_1)»-1)/2 b1 g1
g splits in FF < ((1)71)) = (2) (-1) =z 7 =1
q

On the other hand, we use Hilbert’s theory to see when g splits in F. The Galois group of Q((,)
over F' is the unique subgroup of index 2 in (Z/pZ)*. Therefore it is the subgroup of squares. By
Prop.10.5, we conclude that

g splitsin F'  <— q € (Z/pZ)*)?

equivalently

g splitsin F'  «— (g) =
p

This proves the theorem.

C.F. Gau8 (German mathematician, 1777-1855) [26] gave several proofs of his reciprocity law.
The “law” can be used to calculate the value of (£) efficiently. For these purposes it is important
to have a Legendre symbol for composite numbers as well. This is discussed in Exer.10.E.

w ing theorem is due tc
H. Weber (German mathematician 1
is very subtle and is peculiar for Q: i

field.

Theorem (10.8). (Kronecker-Webc

integer m such that



We do not give a proof of this theorem. There is a huge generalization of it to base fields other
than Q: Class Field Theory gives a description of the finite abelian extensions of a number field
F in terms of the “internal” arithmetic of F. This theory was developed by Hilbert (1862-1943),
Furtwéangler (1800-1900), Takagi (1875-1960), Artin (1898-1962) and Hasse (1898-1979) in the
period 1910-1930. For classical expositions of class field theory see Lang’s [42], or Janusz’ [35]
book ; for a cohomological approach see the Artin-Tate notes [5] or the volume by Cassels and
Frohlich [12].

The Kronecker-Weber theorem is actually more precise than the general theorems of class field
theory: it gives explicit generators for the abelian extensions of Q, viz. roots of unity. Such a
precisefstatem



11. Dirichlet L-series.

In this section we will factorize the Dedekind ¢-function associated to a cyclotomic field Q((,,) into
a product of so-called Dirichlet L-series. As a consequence we obtain another expression for the
“residue” of the (-function (r(s) at s = 1 that has been computed in section 6. A rather straight-
forward application is the famous theorem of Dirichlet on the existence of primes in arithmetic
progressions.

Definition. Let G be a group. A character x of G is a homomorphism x : G — C*. The
characters of G form a group under multiplication: (x1x2)(z) = x1(x)x2(x). This group is called
the dual group or character group of G and is denoted by G. The neutral element of G is the
homomorphism that maps every element to 1. It is denoted by 1.

For any homomorphism f : G; — G2 of groups there is a natural homomorphism f G2 —
Gh given by f ( )(z) = x(f(x)). It is easy to see that for an exact sequence of groups

l1—H—G—G/H—1

the associated “dual” sequence
1—-G/H—G—H

is also exact (Exer.11.B). In general the homomorphism G —» H is not surjective. For finite
abelian groups, however, one has the following.
Proposition (11.1).

(i) For any finite abelian group G, the dua] group G is isomorphic to G.

(ii) The canonical homomorphism G —» G given by x — E, where = is defined by Z(x) = x(z),
is an isomorphism.
(iii) For any exact sequence of finite abelian groups

l1—H—G—G/H—1
the dual sequence
1—G/H—G—H—1

is also exact. R
(iv) (Orthogonality relations.) For any x € G one has that

#G, ifx=1,
> x(9) { if x # 1.

9€G

For any g € G one has that

_J#G, ifg=1,
ZAX(Q) - {0, ifg # 1.
X€G

Proof. (i) It is easy to verify that the map h : G1 x Go — Gi x G given by h(x1,x2)(z,y) =
Xx1(x)x2(y) is an isomorphism. Since, by Cor.5.2(ii), every finite abelian group is a product of cyclic
groups, it suffices to show that the dual of a cyclic group of order m is also cyclic of order m.
This is immediate: let G be cyclic of order m, generated by g. Any homomorphism y : G —
C* is determined by x(g). Since (x(g9))™ = x(¢g™) = 1, we see that x(g) is necessarily an m-th
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root of unity. Conversely, for any m-th root of unity ¢, the map x : G — C* given by x(g%) = (*
is a homomorphism. This proves (i).
(ii) Suppose E is trivial. This means that Z(x) = x(z) = 1 for all characters x or, equivalently,

that z € ker(y) for all characters x. Therefore, the injection G/ < z > — G is surjective. Since G

is finite, we must have that z = 1 and we conclude that G — G is injective, as required.
(iii) Suppose
l1—H—G—G/H—1

is exact. The dual sequence is exact, except, possibly for the surjectivity of G — H. For finite
abelian groups the surjectivity follows from (i) and by counting cardinalities.

(iv) If x =1 on has that ) x(g) =>_,1= #G. If x # 1, we pick h € G such that x(h) # 1. Let
S =>2,x(g)- Then x(h)S =>_, x(hg) = >, x(g) = S. Therefore (x(h) —1)S =0 and S =0 as
required. The other statement follows by duality, but can also be proved in a similar way.

Lemma (11.2). (Partial summation) Let a,,b, € C forn = 1,2,.... Put A, = Y_;_, ax and
B, = Zzzl bi. Then
N N-1
Z anb, = ANbN — Apbara + E A (by, — bpy1).
n=M+1 M+1
Proof.
N N N N-1
Z anby, = Z (An - An—l)bn = Z Anb, — Z Anbn+17
n=M+1 M+1 M+1 M
N-1
= Anby — Anbar41 + E Ap(bp, = bpt1)-
M+1

as required.

We are mainly interested in the finite abelian groups G = (Z/mZ)*. In this case the char-
acters of G are often called Dirichlet characters. Whenever f divides m, the canonical surjection
(Z/mZ)* — (Z/fZ)* gives rise to an injective dual map:

(Z/fZ)* = (Z/mZ)".

In this way we can view the characters of (Z/fZ)* as a subset of the characters of (Z/mZ)*.
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Here x; has conductor k.

It is sometimes convenient to view a character x of (Z/mZ)* as a function on Z. This can be
done by lifting x to the integers that are prime to m and extending x to all of Z by 0. However, some
care must be taken. The resulting function x on Z vanishes on all integers that are not coprime
to m, even if they are coprime to the conductor of y. We will always assume that characters y
are lifted “from” (Z/fZ)*, where f is the conductor of x. As a consequence x(k) = 0 if and
only if k£ is not coprime to the conductor of x. This kind of characters are called primitive in
the literature. Note that the resulting functions on Z are not homomorphisms, but they are
multiplicative: x(zy) = x(z)x(y) for all z,y € Z.

Definition. Let x : (Z/mZ)* — C* be a character. We define the Dirichlet L-series associated
to x by

8

for s € C, Re(s) > 1
=1

(Remember how x has been lifted to Z )

Proposition (11.3). Let x : (Z/mZ)* — C* be a Dirichlet character.
(i) If x # 1 then L(s,x) = Y004 % converges for s € C, Re(s) > 0.
(ii) One has that

L(s,x) = H (1 — X(p)>_1 for s € C, Re(s) > 1

S
p p
where the product runs over the prime numbers.

Proof. We apply partial summation (Lemma 11.2) to the series ) anb, with a, = x(n) and
b, =1/n*. We find for N > M > 0 that

o~ x(n) _ Tl x(n) _ Xalix(n 1
Z ns N - (M+1 Z (ZX )(ns_m)'

n=M+1 n=M+1

The character x is periodic modulo m. Since it is not trivial, we have, by Prop.11.1, that
2k (mod ) X(K) = 0. Therefore any sum Zz:a x(k) has an absolute value at most m, where
m is a period of , and usually much less. Using this, plus the fact that

1 1 /”“ dx
- = —5§
ns (n+1)* N A

m m dz

S yRew T (M 1 1)Re) +m|3|/ Re(s)+1

we find that

Z X

n=M+1

Letting N — oo we get

1
(M + 1)Re(s)

> M
n=M+1
Since Re(s) > 0, the right hand side tends to 0 when M — oco. This implies that the L-series
converges as required.

(ii) This is immmediate from the fact that x is multiplicative on Z. The proof is similar to the one
given at the end of section 4 for the Riemann (-function.

m ‘ S

(M + 1)Re(5) Re(s)

The following theorem is the main result of this section. It is a rather easy consequence of the
work we did in sections 7-10.
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Theorem (11.4). Let Q((n) be a cyclotomic field. Then
(i)
Cainy(8) =[] L(s;x)  fors € C, Re(s) > 1.
X

Here x runs over all characters of (Z/mZ)*.
(ii)) Let F' be a subfield of Q((,). Then

Cr(s) = H L(s,x) for s € C, Re(s) > 1.

X
H Cker(x)

(iii) Let F' be a subfield of Q((,,). Then

2m (27‘(’)7‘2 hrRp
= I rzx.
|Ap|wp x#1
H Cker(x)

(iv) For every character x # 1 one has that

L(1,x) # 0.

Proof. Obviously (i) is a special case of (ii). We will give the proof of (i) and briefly indicate how
to modify this proof to obtain a proof of (ii).

(i) Note that both the left hand side and the right hand side converge absolutely for s € C,
Re(s) > 1. By Prop.4.8 and the fact (Prop.4.7((i)) that every prime ideal p of the ring of integers
of Q(¢,,) divides a prime number p, it suffices to show that for every prime p, one has that

H(l_ N}os)_l :H<1_%)_1

plp X

where the left hand product runs over the prime ideals p that divide p and the right hand one over
the characters of (Z/mZ)*. Since Q(() is a Galois extension of Q of degree n = ¢(m), we can,
by the remarks after Prop.10.2, for every prime p, write n = efg, where g is the number of primes
dividing p. All these primes have norm p/ and they divide p with multiplicity e. It follows that
the left hand side is equal to
1 )
(-52) -

It is now clear that it suffices to verify the following equality of polynomials in C[X]:
[ -xm)X) = (1-X7)s.
X

If p does not divide m, we see that the product depends only on the images of the characters

x of the map (Z //’I’I?Z)* — < p >. From Prop.10.5, we conclude that the cardinality of the group
generated by p in (Z/mZ)* is precisely f. It follows that the kernel of this map has order g, and

therefore .
[10 - xw)x) = (H(l - x(p)X)>

X X
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where, this time, the product runs over the characters of the cyclic group < p >. Since

[[a-x@x) =[] -¢x)=1-X'

the result follows.

If p divides m, we write m = p*m’ where p does not divide m’. Let x be a characters of
(Z/mZ)*. Then x(p) = 0 if and only if p divides the conductor of x if and only if x is not a
character of (Z/m'Z)*. Therefore

[[a-xwx)= [ a-x@X)

X XE(Z/m'Z)*

By Prop.10.5, the inertia group of p in Gal(Q((,,)/Q) is precisley the Galois group of Q((,,) over
Q({m)- This implies that the ramification index e is equal to the index [Q((,,) : Q((m')] and that
the values of f and g that one has for Q((,), are equal to the ones for Q((,,). the result now
follows from the case p fm. This proves (i).

(ii) From the proof of (i) it is clear that it suffices to show for every prime p the following identity

I[ @-xt)x)=0-Xx7%)y

X
H Cker(x)

in C[X], where g is the number of primes of F' over p. The norms of these primes are all equal to
pf. Write m = m/p* where p does not divide m’. We have that

II a-xmx)=][0~-x@X)
HCk)ér(X) X
where the second product runs over the characters that are trivial on both H and the inertia group
I = Gal(Q(¢m)/Q(Gmr))- By Prop.10.5(ii), the group I is precisely the inertia group of p in the
Galois group of Q((,,) over Q. It follows from Prop.10.3(ii), that the second product runs over the
fg characters of F that vanish on the inertia group of p in Gal(F/Q).

As in (i), the product only depends on the values of the characters on p. The result now follows

as in (i).
(iii) Consider the formula proved in (ii). Divide by the Riemann (-function ((s) = L(1,s) and let
s tend to 1. The result now follows from Theorem 9.4.

(iv) This is immediate from (iii).

By the Kronecker-Weber Theorem, every finite abelian extension F of Q is contained in Q((,,)
for some m. We conclude from Thm.11.4(ii) that the Dedekind (-function of every such extension
F can be decomposed as a product of Dirichlet L-series. When G = Gal(F/Q) is not abelian,
there is a similar decomposition of (r(s) due to E. Artin (German mathematician 1898-1962). In
this case one associates to each irreducible representation of G a so-called Artin L-series [12,Ch.8].
In the case where G is abelian, all the irreducible representations of G are 1-dimensional and the
Artin L-series are just Dirichlet L-series.

The following theorem on “primes in arithmetical progressions” due to P. Lejeune-Dirichlet is
a famous consequence of the mere fact that L(1,x) # 0 stated in Theorem 11.4(iv).
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Theorem (11.5). ( P.G. Lejeune-Dirichlet ) Let m € Z>; and let a € (Z/mZ)*. There exist
infinitely many primes p = a (mod m). More precisely their natural density is 1/¢(m):
i #{p < X : p prime and p = a (mod p)} 1
m = .
X 00 #{p < X : p prime } ¢d(m)

Proof. Consider, for each character x of (Z/mZ)* the logarithm of L(s,x) and of its product
expansion. The resulting series are absolutely convergent for s € C with Re(s) > 1:

log(I Zlo ( (p)> _ N\ x(p)
S ps
2
The O(1) follows from the Taylor series expansion of the logarithm and the following estimates

x()?  x@)? 1 1 1
2(21)23 +3p35 e Sizp: pZRe(s)+ 3Re(s)+"' ?

p p
1 — 1
< —— < — =1
<2 5-1 S 2am-D)
Introducing, for every b € (Z/mZ)* the functions
1
fo(s) = Z — s € C with Re(s) > 1
— p?
p=b (mod m)

we can write
log(L(s,x)) = > x(0)fa(s) +O(1).
be(Z/mZ)*

The orthogonality relations imply that

Zx )~ Hlog(L ZEX N fs(s) +0(1)

:Zfb s ZX ba™') +0(1)
b X
= ¢(m)fa(s) +O(1).

Here x runs over all characters of (Z/mZ)*.
Now we let s tend to 1. By Theorem 11.4(iv), we have that L(1,x) # 0 for all characters
x # 1. Since the Riemann (-function has a simple pole at 1 with residue 1, we see that

—log(s — 1) = ¢(m) fa(s) + O(1) for s — 1.

In other words )

lin{ > p=a (mocll m)ps _ 1 '

A R & #(m)
This shows that the so-called analytic density is 1/¢(m). One can show that in this case, the
analytic density is equal to the “natural” density, that occurs in the statement of the theorem. See

[67).

In the special case where a = 1, there is an easy proof, due to Euler, of the fact that there
exist infinitely many primes congruent to a (mod m). This proof is indicated in Exer.11.A. The
following is an amusing corollary of this, easier, result.
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Corollary (11.6). For every finite abelian group G, there exists an extension F' ef Q with A ~
Gal(F/Q).
Proof. By Cor.5.2(iii), we have that

A2Z/aZ XZ)aZ % ... X Z]aZ

for certain integers ai,as,...,a; and t in Z>;. Therefore it suffices to show that for all integers

N,t € Z>4, there exists a number field F with Gal(F/Q) = (Z/NZ)*. To show this, we pick ¢

primes l1,l3,...,l; = 1 (mod N). We have that Q({,,---,(,) = Q((yn) where m =13 - ... - ;.

By Theorem 10.4, the Galois group of Q((ny="Z/mZ)*. The latter group is isomorphic to
(Z/IWZ)* x ... x (Z/l,Z)*, a group which is a product of ¢ cyclic groups of cardinality divisible by
N. Therefore there is a surjective homomorphism

Gal(Q(¢m)Q) — (Z/NZ)*

and the corresponding subfield F' of Q((,,) has the required Galois group over Q.

There is a conjecture stating that every finite group G occurs as Gal(F/Q) for some number
field F. The general problem is called the Inverse Problem of Galois Theory. It appears to be of
2 rather arithmetical nature. It has been proved by Safarevich in 1960 that every finite solvable
sroup occurs as a Galois group of a number field [64]. In the past few years, many of the sporadic
simple groups have been realized as Galois groups over Q. See [52] and especially Serre’s Bourbaki
talk [68].

Theorem (11.7). Let x be a Dirichlet character of conductor m.
(i) The absolute value of the Gaussian sum

)= > x@¢e

2€(Z/mZ)*

is m.
(ii)) The value at 1 of the L-series associated to x is given by

L(1,x) = _m) e G(Zz/: . X_l(a)log|sin(%)| for x even,
wiT(X)
= By for x odd.

Here the generalized Bernoulli number By, associated to a character 1 of conductor m, is

defined by
a
Biy= ), Yla) .
0<a<m

Proof. Let ¢ denote a fixed m-th root of unity. Consider the following “modified” Gaussian sum:

)= Y.,  x(@)¢™

z€(Z/mZ)*
We have that
(x) = 0, if ged(a, m) > 0,
TelX) = X_l(a)T(X), otherwise.



Proof. The second case follows from an easy change of summation variable. Let us therefore
consider the first case and assume that 1 < d = gcd(a, m). Since x has conductor m, we can find
z =1 (mod m/d) with x(z) # 1. We have that

)= Y x@)=x(z) Y, T

z2€(Z/mZ)* 2€(Z/mZ)*

and this shows that 7,(x) = 0 as required.
(i) We have that

)rx) = Y. x(ayTHETV= ) x(x)¢EThY,

z,y€(Z/mZ)* 2,Y€(Z/mZ)*
= > ¢no= D), x(x)¢EV
y€(Z/mZ)* z,y€EZ/mZ

The last equality follows from the fact that 7,(x) = 0 whenever y ¢ (Z/mZ)* and the fact that
x(z) =0 for z ¢ (Z/mZ)*. Finally we find

0T = 3 X 3 It So(a) S =

2€Z/mZ y€EZ/mZ z#1 Y
here the final inner sums are zero by the orthogonality relations applied to the characters y +—
¢==1¥ of the additive group Z/mZ.
(ii) By (i) we can write for s € C, Re(s) > 1,
an

X_Z b )—T<x1-1) 2 X‘l@i

a€(Z/mZ)*

Since all infinite series converge at 1, we obtain the relation

= 3 xHa)log(l - )

—1
T(X ) a€(Z/mZ)*
where the argument ¢ of the logarithm should satisfy —m < ¢ < 7. It is easily seen that 7(x) =

X 1(=1)7(x~!). Therefore we conclude from (i) that 1/7(x™!) = x(—1)7(x)/m. Distinguishing
the cases where x is even or odd, we find that

1) =-"2 S la)loglt — (7 for x even,

(Z2/mZ)
= () Z X_l(a)w—aZ for x odd.
m 0<a<m m

The result now follows upon writing |1—(%| = 2|sin(am/m)| and by using the fact that Y., x™*(a) =
0.

Finally we give, without proof, the analog of Theorem 9.10 for Dirichlet L-series. Like
Thm.9.10, this result is due to Hecke[31,32] and a proof based on harmonic analysis on the adeles
can be found in Tate’s thesis [12,p.403].
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Theorem (11.8). Let x be a Dirichlet character of conductor m. Then
(i) (Euler product.)

Lis,0) =[] ( X(f)>_1 for s € C, Re(s) > 1

p p

where the product runs over the prime numbers.

(ii) (Analytic continuation.) The L-functions admit a meromorphic extension to C. When x # 1,
this extension is actually holomorphic. When x = 1, the L-series is equal to the Riemann
(-function and has a pole of order 1 at s = 1 with residue 1. The values of the L-functions
at 1 are given in Thm.11.6.

(iii) (Functional equation.) The function

A(s) = (%)% r (%) L(s,x) when Y is even,
_ (%) r (S er 1) L(s,x)  when y is odd.

satisfies A(s) = W, A(1—s) where the root number W, is a complex number of absolute value 1.
It is given by W, = 7(x)/+/m or —it(x)/+/m depending on whether x is even or odd.

(iv) (Zeroes.) L(s,x) has zeroes at the non-positive integers that have the same parity as x. These
are the trivial zeroes. All other zeroes p satisfy 0 < Re(p) < 1.

(v) (Special values.) When n € Z> of the same parity as X, then

B
L(s,1 —n) = ——""X,
n

here the Generalized Bernoulli numbers B, , are defined by

m ()IvaT x "
ST = 2 By

a=1 n=0

Proof. Part (i) is in Prop.10.3.

A Dirichlet characters x : (Z/mZ)* — C* can be viewed as a one dimensional representation
of Gal(Q(¢,,/Q) and hence of the“ absolute” Galois group Gal(Q/Q). For the Artin L-series
associated to higher dimensional representations, much less is known. A famous conjecture of
Artin asserts that all Artin L-functions can be extended holomorphically to all of C. An important
result in this direction is due to R. Brauer [11]. He showed, by means of his results in representation
theory of finite groups, that Artin L-functions are, at least, always meromorphic. All Artin L-series
are conjectured to satisfy certain generalized Riemann Hypotheses.

Artin L-series are believed to intimately related to L-series associated to automorphic forms.
The “Langlands Philosophy” says, in fact, that every Artin L-series should arise in this way.
Establishing these conjectures is part of the so-called Langlands Program. It is a very active area
of research [6].

(11.A) Let m be a positive integer and suppose p is a prime that does not divide m. Show that if for some
integer = one has that p|®,,(z), then z has order m modulo p. Show that there exist infinitely many
primes { =1 (mod m). (Hint: any prime dividing ®,,,(Mm) is 1 (mod m) and does not divide mM.)
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(11.B) For any homomorphism f : A — B of abelian groups and let ) be an abelian group. We let

/f\ : Hom(B, Q) — Hom(A, )) denote the natural homomorphism given by ?(g)(a) = g(f(a)). Show
that for every exact sequence of abelian groups.

0—A—B—C—0,

and every abelian group @), the associated sequence
0 — Hom(C, Q) — Hom(B, Q) — Hom(A4, Q)

is also exact. Show that, in general, the map Hom(B, )) — Hom(A, @) is not surjective. Show that
it is surjective if @ is free.

(11.D) Let l1,l2,...,l be a set of mutually disticnt primes. Let q1,qs,--.,qgs be a second such set, disjoint
form the first. Show that there exist infnitely many primes p, which are squares modulo every [; and
non-squares modulo every g;.

(11.C) Show: if a set of primes P has a natural density, then it also has a natural density and the densities
are equal. Show that the set P of primes whose first decimal digit is 1, does not have a natural density.
(It has analytic density equal to log(2)/log(10) (Bombieri)).

(11.E) Let U(m) = the number of characters of conductor m. Show that Zd|m U(d) = ¢(m) and show that

U is multiplicative. Show that U(m) = }_,  u(’g)¢(d).

12. Cyclotomic fields of prime conductor.

In this section we will investigate the arithmetical structure of the number fields Q((,) where p #
is a prime and (j, is a primitive p-th root of unity. Our results will be applied in the next section in
our proof of Kummer’s Theorem 1.6. The fields Q((,) are cyclotomic fields. For these fields there
is a very rich theory, initiated by Kummer [39]. See the books by Lang [43] and Washington [80]
for the recent developments in the theory of cyclotomic fields and Iwasawa theory.

The field Q((p) is a Galois extension of Q. Its Galois group is canonically isomorphic to
the cyclic group (Z/pZ)*. By Q((,)T we denote the subfield of Q({,) which is fixed under the
automorphism —1 € (Z/pZ)*. Clearly ¢, + Cp 1€ Q(¢,)*. Since ¢, is a zero of the polynomial

— (G + ¢ )T — 1, we conclude that Q(¢,)™ = Q(¢p +¢, ). The subfield Q(¢p) ™ of Q(¢,) will
play an important role in this and the next chapter.

Since Q((p) contains non-trivial roots of unity, none of its embeddings Q({,) — C has its
image contained in R. Therefore r; = 0 and ro = p—1 for Q(¢,). The map ¢, + ¢, — 2cos(27/p)
induces an immersion of Q((,)" into R. By Prop.10.1(i), all the embeddings Q((,)™ < C have
their images in R. This shows that r1 = (p — 1)/2 and r2 = 0 for this field.

Our first proposition gives some information about the rings of integers of Q(¢,) and Q(¢,)™

Proposition (12.1). Let p # 2 be a prime. Let F = Q((,) and F* = Q((,)*. Writing ¢ for (,,
we ahve that
(i) For every i Z 0 (mod p) we have that

—

is a unit.

. We have the following decomposition of ideals in Op:

p)= (-1

(iii) The ring of integers Op of F' is equal to Z[(,] and the discriminant of F is equal to Ap =
(=1)e=1)/2pp=2,
iv) The ring of integers Op+ of FT is equal to Z[(, + (; '] and the discriminant of F* is equal to
g g P T 5p
Aps = p®=3)/2,

(ii) The prime p is totally ramified in Q((,
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Proof. (i) Let j € Z such that ij = 1 (mod p). Then
(-1 _¢i-1
-1 ¢
is an algebraic integer. We conclude that (¢* —1)/(¢ — 1) is a unit.
(ii)) We have that

=00 4 4t

p=2,() = [[(1-¢) = (¢~ 1 [[(€ - )/~ )

and the result follows from (i).
(iii) By Example 6.4, the ring of integers of F' is Z[(,]. By Example 2.11, the discriminant of F' is
(=1)®=D/2N(®/ (¢)) = (—1)P~1)/2pP=2 as required.
(iv) By Prop. 2.10, the discriminant of the basis of the powers 1, a, a?,...,a®=3/2 of @ = ( + (71
is equal to
II @+ =@+
1<i<j<(p—1)/2
Since (¢*+ (7% — (¢7+¢79) = (¢* = ¢79)(1 - ¢77%), we see by (i), that, upto a unit, every factor in
the product is equal to (¢ — 1)2. Therefore the discriminant of this basis is, upto a unit, equal to
(C-p¥ T
which is, again upto a unit, equal to p(*P=3)/2,

As in part (iii), we conclude that the only possible primes dividing the index of Z[¢ + ¢~!]
in Op+ is p. However 8 = ¢ + (™! — 2 generates the same ring as ¢ + (™! and by Exer.12.A,
its minimum polynomial is, in fact, an Eisenstein polynomial. We conclude from Prop.6.3 that
Op+ = Z[¢ + ¢~ and that, upto a unit, the discriminant of F* is equal to p®?=3)/2, By Exerc.3.H
it is equal to p®—3)/2. This proves the Proposition.

The units that have been mentioned in part (i) of the previous proposition play an important
role. The multiplicative group generated by the roots of unity in F' = Q((,) and these units is
called the group of cyclotomic units and is denoted by Cycg:

Cyer = (6] S for i #0 (mod »)

=0rnN <:|:Cg,§i —1for i Z0 (mod p)).
It is easy to verify the last description of Cycg; it shows that the group of cyclotomic units is stable
under the action of the Galois group of F' over Q. We define the group of “real” cyclotomic units

Cycp+ by Cycp+ = Cycyp N FT. It too is stable under the action of the Galois group. We have
the following alternative descriptions of C'ycp+:

Lemma (12.2). Let p be an odd prime, let { be a primitive p-th root of unity and let F = Q(().

Then . .
¢i— (¢ .
Cycp+ = <:i:1, ﬁ for j # 0 (mod p)>
= (1, 00() for 1 < a < (p—1)/2)
where
(8
T

for some primitive root g modulo p, and where o, denotes the automorphism of F' determined by
04(¢) = ¢*. Moreover, Cycr is the direct product of Cycp+ and pp.
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Proof. Since

g —C¢™Y . C2j_1 » Cj—l
o= 2—1:““"2(4“—1)

and Cycp+ is stable under the Galois group, every (¢/ — (77)/(zeta — (~!) is contained in Cycp+.
Vice versa,let € € Cycp+. We have that

a Cj_l a -1 a’
J J

Since ¢ € F*, we must have that o’ = 0 and the fisrt equality follows.

To show that Cycp+ = (£1,04(n) for 1 <a < (p—1)/2), we observe that it is clear that
n € Cycp+ and hence that o,(n) € Cycp+ for all a. The opposite inclusion is proved as follows:
let g be a primitive root mod p. Then

Cgi-I—l _C_QH—I Cg —C g
I A e

This implies the result by induction.

Example. For p = 11 and ¢ = (11, we have that
C2_C—2 C3_C—3 <4_C—4 45_4—5 >
C C + = 9 9 ’ ’ ?
ver <i1 (=T (=T (T (¢
B PO St SN St S St SeE Sl i
- = C C 1 - N2 = Cz C 25773 C3 C 3;774 C4 C a4 —40

Here we have listed a set of generators. The missing & C —— and 7, can be expressed in terms of
these.

Proposition (12.3). Let p # 2 be a prime. Let F = Q((,) and F* = Q((,)". Then
(i) The group of roots of unity up of F' is equal to pap.
(ii) For the group of units O} of Op, one has that

OF = ppOF

(iii) The canonical map Clp+ — ClF is injective.
(iv) The subgroup of cyclotomic units Cycr has index

-1 . Ta
20-3)2R 3)/2RF H Z X (a)10g|s1n(?)|

X#1 a€(Z/mZ)*
in O}, . Here the product runs over the even non-trivial characters x of (Z/pZ)*.

Proof. (i) Obviously we have that po, C F*. If poy,, C F* for some m € Zs1, then Q((omp) C
F = Q((p) and hence ¢(2mp) divides ¢(p). This is easily seen to imply that m = 1, as required.

(i) Let ¢ = {, and let € € O}. By z — Z we denote the automorphism of F determined by ¢ — (1.
It corresponds to the element —1 € (Z/pZ)* = Gal(F/Q). For any embedding ¢ : F — C, we have
that ¢(Z) = ¢(z), where the right hand side “bar” denotes ordinary complex conjugation. We have

|p(e/2)|> = d(e/)p(e/?),
=¢(e/é-E/e) = 1.
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We conclude that €/ is in the kernel of the map ¥ : O3 — R™*" of Theorem 7.8. It follows
from Part (i) of this theorem that

ele=¢ for some £ € pp.

By (i) we have that £ = £( for some p-th root of unity ¢. To determine the sign, we compute this
relation modulo w, where m = ( — 1 is a prime divisor of p. It has norm p. We obviously have that
¢ =1 (mod 7) and by Prop.12(i) that (7) = (7). We conclude that ¢/¢ = 1 (mod =) and therefore
that

efe=( for some ¢ € p,.

Since p is odd, we can write ¢ = ('? for some (' € p,. It follows that u = e('~! satisfies & = u.
Therefore u € O and the result follows.
(iii) Let ¢ € Clp+ be in the kernel of the map Clp+ — Clp and let I € ¢ be an ideal. Then the
ideal OrI generated by I in the ring Op is principal and generated by a € Op, say. Since [ is an
ideal of Op+, the ideal (o) = OfpI satisfies (&) = («). Therefore a/& is a unit and one shows, as
in part (ii) that it is even a root of unity:

aja==+( for some ¢ € pp.

To determine the sign, we do a calculation mod n where m = ( — 1 is a prime of norm p. Write
a = 7% where ord, (8) = 0. Since I is an ideal of F* we have, by Exer.12.B, that k = ord,(I) is
even. Since 7 = —( 17 we find, as in (ii), that

pr* p
= By E(k =1 (mod 7)
We conclude that a/a = ¢ for some ¢ € p,. Since p is odd, we can write ¢ = ¢'2 for some (' € p,.
It follows that o/ = o'~ " satisfies & = o/ and hence that o/ € F~.

We see that the ideals I and («') of F™ are, when extended to ideals of O both equal to ().
Since the canonical map Id(Op+) — Id(OF) is injective by Exer.4.R, we conclude that (o/) =T
and the result follows.

(iv) For F* we have that r; = (p — 1)/2 and 7o = 0. We study the image ¥(Cycp+) of the map
U of Theorem 7.7, in the (p — 1)/2-dimensional real vector space R™*"~2. By Lemma 12.2, the
group ¥ (Cycp+) is generated by vectors

log|¢1(0a(n))]

Qe

U(o,(n) = for1<a<(p—1)/2.

log|$(p—1/2(7a(1))]

These vectors are not independent. For instance |[], 0a(n)| = |[N(74)| = 1, so the sum of the
U(n) is zero. Alternatively, the sum of the coordinates of each ¥(n,) is 0.
We will calculate the determinant of a (p — 3)/2 x (p — 3)/2-minor of the matrix

(10g|¢i(aa (77)) |)i,a

where 0 < a,7 < (p — 3)/2. In order to do this, we choose a primitive root ¢ modulo p. We
take a = 1,9,9%,...,9%"/2 and ¢; = ¢ -0, for 0 < i < (p —5)/2 and ¢ : F* — R given by
¢+ ¢+ 2cos(27/p). This gives the determinant

det (10g|¢(0'gi+j (77))|)0§i’j5(p_5)/2 = Clet(a'i+j+1 - ai+j)0§i,j§(p—5)/2
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where ) .
ar =loglg (¢ — ¢~ |

By Lemma 12.4, which will be proved after the proof of this proposition, this determinant is equal

to
(p—3)/2

[T > xeogle (¢ —¢)
x#1 =0

Here the product runs over the non-trivial characters of the group (Z/pZ)*/{£1}. Using the
orthogonality relations the determinant is seen to be equal to

II > x@ogsin(_0l

okn 0€ZI2)"
By Theorem 11.7, the factors in this product are equal to L(1, x) times a non-zero constant. Since
L(1,x) # 0, we conclude that the the determinant we have just calculated is not zero.

We left out the last coordinate of the vectors (o (n)). This corresponds to projecting R®—1)/2
onto the subspace of codimension 1 spanned by the first (p — 3)/2 basis vectors. It follows that
the projection of the image ¥(Cycp+) of the cyclotomic units has finite index in the projection of
U(Op+). The index is precisely the regulator Rp+ divided by the absolute value of the determinant
above.

By Exer.7.M, the projection is injective on ¥(O%). Since ker(¥) = {£1}, we see that the
index is also equal to the index [OF; : Cycp+] as required.

Lemma (12.4). Let ag,...,a,—1 € C. Then

(i)

a a; ... Qp-—_1
n—1
a1 as ... ap .
_ =1/
det : S : _HZX (9°)ai
. - - - X 1/:0
ap—-1 Ay ... Qap—-2

where the product runs over the characters of a cyclic group G of order n generated by g.

(ii)

a1 — Qg as — a1 cee Qp_1 — AGp_2
a2 — a1 a3 — a2 cis Op—2 — Gp-3 n-l .
det _ . , . = 1] D_x"'(¢")a
. . . . x#£1 i=0
p—-1—0p-2 0ap_2 —ap_-3 ... ay — ap—1

where the product runs over the non-trivial characters of a cyclic group G of order n generated

by g.
Proof. Consider the group ring C[G] and z = Y-, a;[g~"] € C[G]. Multiplying by z is a C-linear
map. Expressing its effect with respect to the standard basis [1],[g],- .-, [¢""!] of C[G] gives the
matrix in (i). To evaluate its determinant we take the basis of idempotents:
n—1 . .
ex=>_x"'(g")lg'] forx:G—C~.
i=0

The orthogonality relations (Prop.11.1(iv)) imply that the e, are orthogonal with respect to the
scalar product < v,w >= Y. a;3; for v =Y. ;[¢"] and w = 3", Bi[¢"]. Therefore they form a
C-basis for the group ring C[G].
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The e, are eigenvectors for the multiplication-by-z-map. The eigenvalues are

n—1

Since the determinant is equal to the product of the eigenvalues, (i) follows.

(ii) Taking the sum of the coefficients of v =}, a;[g%] is a homomorphism of C[G] to C. We define
the augmentation ideal I by the exact sequence

0—I—C[G] — C—0.

A C-basis for I is given by the elements g' — 1 for 1 < i < n — 1. The multiplication-by-z-map
respects the ideal I. Expressing this map with respect to the basis g* — 1 gives the matrix in part
(ii) of the Lemma. To evaluate its determinant, we remark that all idempotents e, except the one
with x = 1, are in I. Therefore the vectors e, with x # 1 form an orthogonal basis for I.

Since the determinant is equal to the product of the eigenvalues, (ii) follows.

We will write h(p) for the class number of Q({,) and h*(p) for the class number of Q((,)™.
By Prop.12.3(ii) we see that h™(p) divides h(p). We define the minus class number h™(p) by

h(p) = h(p)* - b~ (p)-

In Theorem 12.5 we will give formulas for h(p)™ and h(p)~. These will follow from Theorem 11.8
and the results in this section. In order to prove this theorem, we need one further ingredient which
is of interest in itself:

Proposition (12.5). (The sign of the Gaussian sum.) Let p # 2 be a prime number and let x be
the quadratic character modulo p. Let  be the primitive p-th root of unity ¢®"9/? in C. Then
the Gaussian sum 7(x) satisfies

T /p; ifp=1 (mod 4),
T(x) = (-) gw:{zx/f’ ifp=1(m
:cE(ZZ/pZ)* p Vp-  ifp=3 (mod 4).

Proof. We introduce

(»-1)/2
7= 1 @ -
k=1
One has that
(p—1)/2 p—1
S | (R S C el | (Gt
k=1 k=1
— (_1)(13—1)/2(21: k plz[l(l — (T = (_1)(p—1)/2p.
k=1

The last equality folows from the fact that Hi;i(l — () = Hi;i(l —¢*F) = ®,(1) = p. On the
other hand, since

(p—1)/2 Tk -
T = H 2isin(—) =4 2z X (something positive)
k=1 p
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we conclude that B
T=iTp inC.

By Lemma 10.G, the Gaussian sum 7 = 7(x) also satisfies

72 = (=1)P=1/2p,

We conclude that
T==+7

and we see that it suffices to determine the correct sign of this equation. We will do this by viewing
7 and 7’ in Q((p) C C via (, — (¢ and by calculating each side modulo a sufficiently high power of
the prime element m = ¢, — 1. Since p = O(7?~!) we have that

(p=1)/2 (p=1)/2
(L+m)F— (1 +m)PF) = H (p — k)7 + O(r?)),
k=1 k=

p—1 -1 p—1 -1 pt+l1
E2T(p2 Mo = +O0(n < ) ) = (modw%).

The last equality follows form Euler’s formula. For the Gaussian sum we have that

S (e - ()50

z=1 z=1

Eiw; ¥ f%—l (‘:) = 7 (;)! (1) (mod 7°%")

2

The last line follows from Fuler’s formula and the “orthogonality” relations

Z i — J—1(modp) ifi=0 (mod (p—1)),
=10 (mod p)  otherwise.
©€(Z/pZ)*

Finally we use the fact that

—1=(p-1)!= (-1 (1%1>| (mod p)

to obtain

2 Py -2 (od £ tD/2),
2

Comparing this with the congruence for 7/ we see that

= (=1)@-D/2 (2) .

p

and combining this with the explicit expression for 7/ that was derived above, we obtain the desired
formulas for 7. This completes the proof of the proposition.
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Theorem (12.6). Let p # 2 be a prime number. Let F = Q((p) and let F* = Q((, +¢;"). Then
(i)

h*(p) = [OF : Cycr],
(ii)

_ 1

h=(p) =2p H _§B1’X'
x odd

Proof. (i) Let H = Gal(F/F™). Identifying the Galois group of F' over Q with (Z/pZ)*, we have
that H = {#1} and we see that the characters x of (Z/pZ)* with H C ker(x) are precisely the
even characters.

From Theorem 11.4(iii) applied to F* and the explicit expressions for L(1,) of Theorem 12.6,
we deduce that

20" D2h (p)Rp+ _ I —7(x) >

-1 . ,am
2p(p_3)/4 X (a)10g|81n(;)"

ke @2y
Here we have used Prop.12.1(iv) to calculate the discriminant of F*. Now take absolute values.
Using the fact that the Gaussian sums 7(x) have absolute value |/p and using Prop.12.3(iv) for the
index [O%. : Cycp+] we find, after many cancellations, the required result.

(ii) We take the quotients of the formulas of Theorem 11.4(iii) applied to F and F'* respectively.
We find that

9 (P=1)/2 Ip(P—3)/4
- IT 2.

o (p—2)/2 /28 + =
2p p(P )/ 2(p—-1)/2p (p)RF+ X odd

Next we substitute the value for L(1,x) from Theorem 12.6:

L(1,x) = m;(X) B,

To evaluate the product, it is useful to combine the Gaussian sums 7(x) and 7(x~!). For odd
characters y one has that

() =x(-D7r(x") = -r(x7),

so that 7(x)7(x™!) = —p or rather it(x) - it(x~!) = p. There is an odd character x for which

x = x~ !, or equivalently, for which x> = 1, if and only if p = 3 (mod 4). In this case we use

Prop.12.5, which says that 7(x) = 4,/p. We find that

(p=1)/2

H L(1,x) = W(—l)(p_l)/2 H By y-
x odd p x odd

Combining this with the formula above, one finds, after many cancellations, the required result.

Table (12.7).

p | h™(p) p | h™(p) P h~(p) P h~(p)
3 1 19 1 43 211 71 3882809
5 1 23 3 47 695 73 11957417
7 1 29 8 53 4889 79 100146415
11 1 31 9 59 41421 83 838216959
13 1 37 37 61 76301 89 13379363737
17 1 41 121 67 | 853513 97 | 411322842001
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The minus class numbers h~(p) have been computed upto 521. They grow very fast with p. The
minus class number of Q((509) has 145 decimal digits [44]. About the plus class numbers h™ (p)
much less is known. It has been proved by Van der Linden [76] that h*(p) = 1 for all primes upto
67. Assuming the Generalized Riemann Hypothesis for the {-functions of Q((,), one can show that
h*(p) =1 for p < 163, while h*(163) = 4. These results have been obtained using the discriminant
bounds of Odlyzko, that have been mentioned in section 7. At present it seems rather hopeless to
compute the numbers h* (p) where p is larger than 163. The class numbers are not always small.
There are examples where h™ (p) is a lot larger than p:

ht(28654) > 283198643235353.

Although the results (i) and (ii) of Theorem 2.4 are purely algebraic statements, we have
proved them with methods from analysis: we have exploited certain properties of the Dedekind
(-function and its decomposition into Dirichlet L-series to obtain this result. In fact, upto very few
years ago, no algebraic proofs of these formulas were known. Only very recently, in 1986, first the
Brazilian Thaine [63,75] and then the Soviet mathematician V. B. Kolyvagin [37,59] proved certain
theorems, that, combined with the work of Mazur and Wiles [55] from 1984, seems to lead to a
purely algebraic proof of Theorem 12.6. The proof of Mazur and Wiles generalizes Ribet’s paper
[62] and involves a lot of arithmetical algebraic geometry.

Another surprising feature of Theorem 12.6 is that it does give the equality of the cardinalities
of certain groups, without indicating any relation, like an isomorphism, between these groups.
Even more surprising is the fact that, actually, there is no such isomorphism! For instance, for
p = 32009, it is known that the groups Clp, and Op+/Cycp+ have the same cardinality, but are
not isomorphic.

There are analogues of Theorem 12.6 for cyclotomic fields Q((,,) where m is not prime. The
formula for the minus class number A~ (m) is actually very similar and can be proved with the
methods we have used in this section. The formula for A (m) is, in general, more subtle. The best
results have been obtained by W.B. Sinnott [70] in 1978. He showed that the index of his group
of cyclotomic units inside the group of all units of Q(¢,,)™ is, upto a well-determined power of 2,
equal to the plus class number h™t(m).

(12.A) Let p be a prime. Show that the minimum polynomial of 8 = (, + ¢, ' — 2 is Eisenstein with respect
to p. (Hint: B is conjugate to ({ — ¢, ).

(12.B) Let p be a prime and let 7 = ¢, — 1 € Z[(p]. If y € Q(¢p)™, then ord.(y) is even. (Hint: find a
generator of the only prime in Q((,)" dividing p.)

(12.C) Let a € Z[(p]. Show that o is congruent to an integer modulo (p). Show that if for some n,m € on
has that @™ = m (mod p), then alpha = m' (mod p) for some m’ € Z or p divides n.
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13. Fermat’s Last Theorem.

In this section we will use our knowledge of the number field Q((,) gained in section 12, to prove
Kummer’s Theorem 1.6 regarding Fermat’s last Theorem. Under the condition that p does not
divide the class number of Q((,), we first prove the so-called first case of Fermat’s Last Theorem.
The general case is a bit harder. We explain Kummer’s method to relate p-adic properties of
cyclotomic units to generalized Bernoulli numbers using logarithmic derivatives. Then we show
that under the assumption that p does not divide the class number of Q((,), the “second case” of
Fermat’s last Theorem follows. Finally we discuss the so-called Kummer congruences, which are
satisfied by Bernoulli numbers. As a consequence we obtain a proof of Theorem 1.6.

Proposition (13.1). (“The first case.”) Let p # 2 be a prime. If the class number of the cyclotomic
field Q((p) is not divisible by p, then the equation

XP+YP=2°

has no solutions X,Y,Z € Z with XY Z # 0 (mod p).

Proof. Suppose X,Y,Z € Z is a solution. We may and do assume that ged(X,Y,Z) = 1. Let
first p = 3. In this case X3, Y3 and Z3 are each congruent to +1 (mod 9). Since (£1) + (£1) #
(£1) (mod 9) we see that no solution can exist when p = 3.

From now on we suppose that p > 5. Since T? +1 = Hf;ol (T +(¢*) where ¢ denotes a primitive
p-th root of unity, we obtain from a solution X,Y, Z the following equality of ideals:

p—1

[[&x+¢Y) =(2).

1=0

Suppose we have that p is a common prime divisor of X + ('Y and X + (Y for i # j. Then
p divides ¢* — ¢J or Y. If p|Y, then p|X and therefore p divides Z, which is impossible since
ged(X,Y, Z) = 1. If p divides ¢* — ¢7, then, by Prop.11.1(i), we have that p = (( —1). We conclude
that ¢ — 1 divides Z and hence that p divides Z, which is also impossible. Therefore the factors
(X + ¢'Y") are mutually coprime and, by Theorem 4.6, we obtain

(X +CY) =17

for some ideal I of the ring of integers Z[(] of Q(¢). We see that the p-th power of I is principal
and hence, since p does not divide the class number of Q((,), that I itself is principal. Say I = («).
We now have that

X +¢Y =ud?

for some unit u. By Prop.12.1(iii), the ring of integers of Q(() is Z[(]. We conclude that o and u are
both in Z[¢]. By Prop.11.2(ii), we have that u = (’¢ for some integer j and some unit ¢ € Q({p)*.
Writing 7 = ( — 1, we have that Z[(]/(7) = F,. Therefore, @ = a + fr for some a € Z and
B € Z[(]. Using Prop.12.3(ii) and Exer.12.C, it follows that o? = a (mod p). So we have that
X +¢Y =e¢?a (mod p).
Applying complex conjugation we find

X +¢7'Y =e¢7a  (mod p).
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and eliminating the factor €a, we get that
(X +CY)=¢(X+¢TY)  (mod p)

and
X7 =X =Y v =0 in Z[()/(p)-

Since p > 5, the ring Z[(]/(p) is an F,-vector space of dimenion at least 4. It admits 1,(,..., (P2
as an F-basis. Since X,Y # 0 (mod p), some of the roots of unity ¢7, (79, ¢?71, (179 must
agree. This is easily seen to imply that j = 0,1 or 1/2 (mod p). This, in turn implies that Y, X
or Z = 0 (mod p) respectively. Since this contradicts the assumptions, the proof of the lemma is
complete.

The first case of Fermat’s Last Theorem is much easier to prove than the general statement.
It can, for instance, be shown that the first case of Fermat’s Last Theorem is true for a prime p,
whenever 2P~! # 1 (mod p?). This condition, which can be checked rather easily, is verified by all
primes less than 6 - 10° except 1093 and 3511. For these two primes Fermat’s Last Theorem is also
true by similar criteria obtained by Sophie Germain, Mirimanoff etc. see [80, Ch.I].Recently it has
been proved that the first case of Fermat’s Last Theorem is true for an infinite set of primes [2].

We will prove the second case after some preliminary considerations. Let p # 2 be a prime and
let A denote the Galois group of F' = Q((,) over Q. The group ring F,[A] = {Zf;ll a;ft] :a; € Fp}
will play an important role in the sequel. For every character x : A — F} it contains the idempotent
ey given by

ey = — Zx_l(a)[a] e F,[A]

Proposition (13.2). Let p be a prime and let A = (Z/pZ)*.
(i) The elements e, € F,[A] form a set of orthogonal idempotents in the group ring:

2 _
ey = ey for every x,

exey =0 when x # x/,

Zele.
X

(ii) Let M be an F,[A]-module and for every character x : A — F3 let M(x) denote the “x-
eigenspace” e, M. Then
M =& M(x)
X

and
o(eym) = x(o)eym foralloc € A, m € M(x).

Proof. (i) This is well-known and easy. We leave the verifications to the reader.
(ii) This is immediate from (i).

Example. (i) We decompose the group ring F,[A] itself into a product of x-eigenspaces. For
every character x, the idempotent e, is not trivial. By Prop.13.2(ii) one has that the eigenspace
ey Fp[A] is simply equal to Fpe,. Therefore

F,[A] = @ Fpey.
p
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We define the Teichmiiller character w : A — F to be the homomorphism given by w(a) = a,
where we have identified A, as usual, with the group (Z/pZ)*. The Teichmiiller character is a
canonical generator of the character group. All other homomorphisms from A to F; are powers
of w:

Hom(A,F;) = {wrF:0<k<p-2}.

(ii) By way of example, we find the eigenspaces of two more Fy[A]-modules. First consider F,, i.e.
the vectorspace F, with trivial A-action. It, obviously, is itself an eigenspace, viz. the eigenspace
corresponding to the trivial character. All other eigenspaces are zero.

Next consider pp, the group of p-th roots of unity with the natural action of the Galois group
A. We identify, as usual, (Z/pZ)* with A via a <+ 0,, where 0,({) = ¢®. Since w(a) = a (mod p),
we see that A acts “via” w. That is, p, is itself equal to the w-eigenspace and all other eigenspaces
are zero.

In the next proposition we determine the decomposition into eigenspaces of some F,[A]-
modules associated to the number fields Q(¢p) and Q(¢,) ™.

Lemma (13.3). Let p # 2 be a prime and let A denote the Galois group of F = Q((,) over Q.
(i) The map
Fp[A] — Or/(p)

given by o, — 0,(Cp) is an isomorphism of F,[A]-modules. The ideal (1 —(,)?~2 C Or/(p) is
equal to the w™! eigenspace.
(ii)
Cyer/Cycy = pp x [[ nZ/*%.

X even
X#1

Cycp+/Cycye = T n2/72.
x even
x#1

Here 7, is a generator of the x-eigenspace. It is given by

NMx = H (1- Cg)x_l(a) for x even but x # 1.
a€(Z/pZ)*

Proof. (i) The F,[A]-morphism F,[A]¢, — Op/(p) induced by the (, € Op, is obviously surjec-
tive. Since the F),-dimensions of both vector spaces are both equal to p—1, it is actually an isomor-
phism. The decomposition now follows from the discussion above. It remains to check the statement
about the w™! eigenspace: we have that o, ((¢, —1)*) = (& —1)* = (¢ — 1) ((¢F —1) /(G — 1)) =
(¢p — 1)%a® (mod (¢, — 1)**1). In particular, with i = p — 2, we find that o, acts by multiplication
with a™! on (1 —¢,)P72/(1 — ()P 1.

(ii) We use the description of Lemma 12.2: the cyclotomic units Cycp are the units inside the
multiplicative group generated by ¢ = ¢, and {, — 1, for b # 0 (mod p) inside F*. The group
Cycp+ are the units that are also invariant under complex conjugation o_;.

Claim: The following canonical maps are all injective.

Cycp+ [(Cycp+)? — Cycp/(Cycp)P — <C“, 1-— Cb> mod p-th powers.
This allows us to view both Cycr/Cych, and Cycp+/(Cycr+)P as subsets of
V= <C“, 1-¢’:a€Z, b# (mod p)> mod p-th powers.
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Proof. Suppose € € Cycg is a p-th power of an element 7 € <§a, 1—¢b— 1>. This implies that 7 is
a unit and therefore that n € C'ycp. This shows that the rightmost map is an injection.

Next, suppose that ¢ € Cycp+ is a p-th power of an element n € <C“, 1—¢b— 1>. As before
this implies that 7 is a unit. It remains to show that we can find a unit n that is invariant under
o_1. Since ¢ € F1, we have that o_1(n)? = nP. This shows that o_1(n) = &n for some root of
unity . Since p is odd, & = &2 for some other p-th oot of unity &’. It is easy to see that ' = &' 'n
satisfies n'* = ¢ and o_1(n') = 1. This proves the claim.

Now we decompose the A-module V into eigenspaces. Note, that V is generated, as a A-
module by just two elements: ¢ and 1 — . To find the eigenspaces it suffices to calculate (°x and
(1 —¢)ex. We have that

o1 ((1=¢)%) = (1= ¢H> = (TH> (1 - .

When x = w, this says that

(L=0)%) = (H* A=) =¢H1 - ).

Since A acts on pup via the Teichmiiller character w, this implies that the w-eigenspaces is just
pp C V. When x is odd, x # w, then the formula implies that

(1=0™) 7 =)™ == 1=

and hence that all the y-eigenspaces are trivial for odd characters y # w.

Now let x be even. In this case (*x = 1. This implies that the y-eigenspace is a cyclic group
generated by 7, = n°x. When x =1 one has that n°x = Z;i(l —(*) =p.

This completes the description of the decomposition of V into a product of eigenspaces for the
action of A. It easily implies part (ii) of the lemma: Since Cycp/(Cycr)? and Cycp+/(Cycp+)P
are A-modules, they each are product of a number of the one-dimensional eigenspaces that make
up V. The only eigenspace which is not generated by a unit is the one corresponding to x = 1. The
only eigenspace which is not invariant under complex conjugation is y,. This proves the lemma.

As we have seen in the proof of Theorem 13.1, it is, when studying Fermat’s Last Theorem,
important to know when the class number of Q((,) is divisible by p or not. In section 12 we have
decomposed this class number as a product of two factors:

hq,) = hT(p)h~ (p).

For the minus class number h~(p), Theorem 12.5(ii) gives an expression in terms of generalized
Bernoulli numbers B; ,. We have

_ 1
h(p)=2p [] —5B1x

x odd

In order to study this formula “modulo p”, we choose, once and for all, a prime ideal p in Z[(,_1]
over p. Since p = 1 (mod p — 1), the residue class field of p is Fp. The map ¢ — ( (mod p)
is an isomorphism from p, 1 to (Z[(,—1]/p)* = F,. We define another “Teichmiiller character”
w: A — p,_1, closely related to the first, by w(c,) = a (mod p). As before, all characters
A — p,—1 are powers of w.
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We study the generalized Bernoulli numbers B, modulo p. For an odd character x : A —
pp—1 we have for b € (Z/pZ)* that

p—1 ' 'a!
(') BBy =3 (;X(b_la) - b;x(a)) ,

a=1

Pl — ba!
=3 o) e 2l

a=1
Here, for an integer a, we define ‘a’ by the relations a = ’a’ (mod p) and 0 < 'a’ < p. When
X # w™?! there exists an integer b such that x~1(b) Z b (mod p). We conclude that
Bi, is p-integral when x # w™1.
We have that pB, ,-1 = Zg;i zw~1(z) = —1 (mod p) and therefore, upto a factor which is a unit

modulo p:
h_(p): H Bl,x-

X odd
x#w 1

Proposition (13.4). Let p # be a prime. And let p be a fixed prime over p in the ring Z[(,_1] as
above. Then

h=(p) =0
h*(p) =0 (mod p) = 1y is a p-th power of a unit for some x # 1.

(mod p) = Bi, =0 (mod p) for some x # w1,

Proof. (i) From the discussion above, it follows that A~ (p) = 0 (mod p) whenever B; , =0 (mod p)
for some character x # w™!. Since h~(p) € Z, the result follows.

(ii) By Lemma 13.3, the cyclotomic units Cycg+ are generated, modulo p-th powers, by the n,. If,
for some character x # 1, the unit 7, is a p-th power, (or rather: if n, is trivial in O}, /(O%+)?,)
then p divides the index [0}, : Cycp+] and the result follows from Theorem 12.6.

The following theorem is due to Kummer [23,39]. It is a key result in the proof of Fermat’s
Last theorem for regular primes p. It has long been a rather mysterious mechanism, relating the
p-part of the class group of Q((,)* to the p-part of the minus class number A~ (p). Only recently
Kummer’s construction has been understood better and generalized, e.g. by J. Coates and A. Wiles
in [15] and by R. Coleman in [16].

Theorem (13.5). Let p # 2 be a prime. Let x : A — F; be a non-trivial even character and let
7y denote [, (1 — Cp)x_l(“) in the group of cyclotomic units modulo p-th powers. Then

if 1y =m (mod p) for some m € Z, then By ,y-1 =0 (mod p).

Proof. Notice that it makes sense to affirm that 7, is congruent to an integer mod p, because, by
Exer.12.C, p-th powers of elements in Z[(,| are congruent to integers mod p. Let F' = Q((,) and
let m = ¢, — 1. We define a homomorphism

A= Z[G] /(ZIG) )" — Z[G)/ (nP72)
as follows: for h(T) = Ef:—oz a;T% € Z[T] and h(,) a unit, we let

W (¢)

A h((p) — "G
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This is well defined since @} (¢,)m = p(2~" as follows easily by differentiating the relation @, (T")(T—
1) = TP — 1 and by substituting 7" = (.
Since 7,, = m (mod p), for some m € Z, we obtain that

X 1(1, a—1
A(ny) = Z T é_’a =0 (mod 7P~2)
a=1 P

and therefore

(ZX “[“) (1—EC> = 0 (mod 7).

We have (/(1—() = 1—1/w. Since x # w we have that (Ea 1X 1(a)a[a]) (IE—C) (1) =0 (mod p)

and hence that
(ZX a)alal ) (%) =0 (mod 7P~2).

Since ®,(¢,) = p¢2~" we have that ) - —
We obtam

agt = pCp_l and, equivalently, ( i;i ala))(&/p) = 1/7.

TN O

a=1

Replacing ¢, by Czi, we see that this implies that

(ZX (a)ala] ) (2_: %[a]) (Z[¢p]) = 0 (mod 7°7).

a=1

Now we restrict our attention to the w™!y-eigenspace of Z[(,]/(p). Since A acts via w™'y, and since
(Za 1x Ha)aw™x(a)) = —1, we see that By -1, (mod p) annihilates the w™'y-eigenspace. By
Lemma 13.2 these eigenspaces are non-trivial except possibly when w™!'y = w™!. Since x # 1,this
does not matter and we conclude that By ,-1, =0 (mod p), as required.

Corollary (13.6). Let p # 2 be a prime. If p divides h* (p) then p divides h™ (p) as well.

Proof. Suppose p divides h*(p). By Prop.13.4 we must have that 7, is a p-th power for some
non-trivial even character x. By Exer.12.C, this implies that 7, is congruent to some integer m
modulo p. Theorem 13.5 implies then that By ,, -1 = 0 (mod p). Since wx ™! # w, it follows from
Prop.13.4 that h~(p) = 0 (mod p). This proves the corollary.

There is not a single prime p known for which p divides h*(p)! The statement that p does
not divide h*(p) for any prime p, is called Vandiver’s Conjecture [80]. It has been verified for all
primes p < 150000. The experts do not quite agree on whether to believe Vandiver’s Conjecture or
not.

Corollary (13.7). Let p # 2 be a prime and suppose that p does not divide h™ (p). Then, if ¢ is
a unit for which e = m (mod p), for some integer m, then ¢ is a p-th power.

Proof. Since p does not divide h™ (p), we conclude from Cor.13.4 that p does not divide h*(p).
Therefore, by Theorem 12.5(i), there is an integer h not divisible by p such that e” € Cycp. So

== [] e

x#1
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Now we take eigenspaces. For every non-trivial character y of A we have that £°x is congruent
to an integer modulo p. Therefore, (7« and the ny*, for every non-trivial even character , are
congruent to integers modulo p. A calculation mod 72 shows that that n, = 0 (mod p). Since p
does not divide h~(p) we have, for every



Eliminating the ideal d, we get
(X +Y)JP = (X +CY)(m)m VPP for1<i<p-—1

We conclude that the fractional ideals (J;/Jy)P are principal and therefore, since p does not divide
the class number of Q((,), that J;/Jy = (;) for certain y; € Q(¢p)*. Note that ord,(y) = 0. The
equation becomes

(X +Y)en = (X + CY)m(m—Lp for1<i<p-1

for certain units ¢; in Z[(,]*.
Our task is now to construct another solution of the original equation by means of this equation.
This is done as folows. We multiply the identity

(X +CY)1+¢) — (X +¢%Y) =¢(X +7Y)
by w(m=1p.
(X + ¢Y)am=DP(1 4 ¢) — (X + C2Y)n™m=DP = ¢(X + Y)r(m—Dp,
Using the equation above this becomes
(X +Y)7P(1+ Qer — (X 4+ Y)ybey = (X 4 YV)a(m-1p
and hence

(&2 N p__ C _m-1)
w (el(1+<)>”g‘sl<1+o” "

Finally, writing v1 = a1/61 and 2 = as/B2 with 7 not dividing a1, as, 81, 32, we obtain
(@ +e4?) = (27

where T = 182, Yy = azf1 and z = B1fB7m™ 1. The unit ¢ is equal to e2/e2(1 + ().

The unit ¢ is congruent to (—z/y)? modulo 7P. In particular, ¢ = m (mod p), for some integer
m. Cor.13.5 implies that ¢ is a p-th power. Since ord,(z) = m —1 > 0 is smaller than m, we obtain
a contradiction and we conclude that the original equation of ideals, does not have any solutions.

In the rest of this section we will discuss the arithmetical properties of Bernoulli numbers and
generalized Bernoulli numbers. As a result we will obtain an elementary way of expressing the fact
that h~(p) Z 0 (mod p) for a prime p. This will give us a proof of Kummer’s Theorem 1.6.

Theorem (13.9). (Kummer’s Congruences.) Let p # 2 be a prime. Let the Bernoulli numbers
By, for k > 0 be defined by

I

= k!

Then

B
f is p-integral when k Z 0 (mod p — 1).
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i.e. By/k can be written as a rational number with denominator not divisible by p.

B
p?k is p-integral when k = 0 (mod p — 1).

(ii)

B By
7’“5 klj ifk =k (modp—1).
(iii) For every k,Y € Z>,
k+1
1 k+1 :
P42k Y= — Bi1-i(Y + 1)
A k+1i§:0(i)k+1(+)

(iv) Let p be a fixed prime over p in Z[(p—1] and let w : (Z/pZ)* — p,—1 be the Teichmiieller
associated to p.

Bi+1

kE+1

Proof. Fix an integer a € Z+( not divisible by p. We have that

By r = (mod p) fork=1,3,5,...,p—4.

i (a* — a)By Tk _ aT T
k! e

k=0

Writing u = e? — 1, we see that this is equal to

- a 1\ T 1 .
(w+1)2 -1 w) w\1+1(%u+...4+2us
T 1(a 1\
i>1
:TZAZ"U,j

i>0

where, since p does not divide a, the A; are p-integral. This shows that

= (ak—a)Bk E_ T i_ o ok
ZTT =T Ai(e" 1) _TZHT
k=0 i>0 k>0

where the A are p-integral, because the series Y., A;(eT —1)* is a p-integral combination of series

of the form ™ = 3373 ;.—J;Tj.
It follows that (a* — 1)By/k = A}, is p-integral. If k¥ # 0 (mod p — 1) we can choose a such
that a* — 1 # 0 (mod p). If k = 0 (mod p — 1), then one can choose a = p + 1. One checks that

(p+1)*k—1=kp+ (’2“)1)2 + ...+ p”* contains exactly ord, (k) + 1 factors p. This proves (i).

To prove (ii) we observe that i/ = i’ (mod p) whenever j = j' (mod p — 1). This implies that
the coefficients A above have the same property: A; = A;» (mod p) whenever j = j' (mod p — 1).
Part (ii) now follows from the fact that (a* — 1)By/k = 4.
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(iii) One has that

[ee) Y o (wjvk Y
S 2k 4 YR TR="N o =3 T = e
k=0

Since one has that

eYH)T 1 (Y+1)T _ 1 T 1 (Y +1)T)° > B;, .

T _ T _ 1
e 1 T e 1 = ! =

the result follows by evaluating the coefficients of the product of the power series.

(iv) Let k be an odd integer between 1 and p—4. We will need to know the values of the Teichmiiller
character w modulo p?. Since w(z) = z (mod p) for all z, one finds that

w(z) — 2° = w(z)? — 2 = (w(z) — 2P) (WP~ (z) + WP 2(2)z + ... + 2P~ 1) = 0 (mod p?).

Therefore
p—1

p—1
pBy k= Z zwh(z) = Zx”k"'l (mod p?)
=1

z=1

By (iii) we have that
p—1 pk+2
1 pk +2 .
$pk+1 - = ( ' )B _(pk)®.
zz::l pk: n 2 12:% i pk+2 z(p )

Since k < p — 4, there are no indices 7 such that pk 4+ 2 — 7 =0 (mod p(p — 1)). The smallest ¢ for
which pk =2 —4i=0 (mod p — 1) is k + 2 and hence at least 3. Therefore

Bpio—i(pk)* =0 (mod p?) for i > 2.

This implies that

p—1

1
E ka+1 = Im pk+2 + Bpk+1p (mOd p2)
r=1

Since k is odd, Bpk42 is zero. Finally

pk+1 _ Br+1
E+1 T4

Byt = Bpp1 = (mod p)

as required.

Theorem (13.10). Let p # 2 be a prime. If p does not divide the Bernoulli numbers By, By,
.-+sB(p_3)/2, then Fermat’s Last theorem is true for the exponent p. In other words, the equation

XP+yYP=2°
does not have any solutions in integers X,Y,Z with XY Z # 0.
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Proof. Since p does not divide Bz, By, ..., B_3)/2), we conclude from Theorem 13.9 that p does

not

divide B;,, for every odd character x # w™' of the Galois group of Q((,) over Q. By

Prop.13.4(i) we conclude that A~ (p) is not divisible by p. Cor.13.6 implies that p does not di-
vide h* (p) and therefore that p does not divide the class number of Q((,).

Now we can apply Prop.13.1 and Prop.13.8: the equation X? + Y? = Z? cannot have any

solutions X, Y, Z € Z with p not dividing XY Z by Prop.13.1. Suppose we have a solution X,Y, Z
with ged(X,Y, Z) = 1 but with p dividing XY Z. Clearly we may assume that p divides Z, but not
X or Y. We conclude at once from Prop.13.8 that this is impossible. This concludes the proof of
the theorem.

(13.A)

(13.B)

Prove that the equation X° + Y® = Z® does not have any solutions X,Y,Z € Z/25Z with 5 not
dividing X,Y and Z.

Let p = 1 (mod 3) be a prime. Show that for every n >
Fermat’s equation X? + YP = ZP satisfying X,Y,Z # 0
order 3. Show that 17 + 2P = 2% in the ring Z/p"Z.

1, there are solutions X,Y,Z € Z/p"Z of
(mod p). (Hint: Let z € (Z/p"Z)* have
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