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1 Introduction

Any prime number / splits completely in the cyclotomic field Q((;—1). The primes
lying over [ all have norm / and are Galois conjugate. Consider the following set of
prime numbers:

S =1{2,3,5,7,11,13,17, 19, 23, 29, 31, 37, 41,43, 61, 67, 71}.

In this expository note we give a self-contained proof of the following theorem

Theorem 1.1 For a prime number [ the following are equivalent.

(i) 1 €S,
(ii) the class number of Q((;_1) is 1;
(iii) The prime ideals lying over [ in Q((;_,) are principal.

It is trivial that (ii) implies (iii). The fact that (i) implies (ii) is not trivial, but it is stan-
dard. In fact, using Odlyzko’s [5] discriminant bounds, Masley and Montgomery [4]
determined in the 1970’s all cyclotomic fields with class number 1. See [7]. For
proving that (i) implies (ii) one needs much less. We work this out in Sect. 3.

A proof of the fact that (ii1) implies (1) was recently published by Bernat Plans [6].
It is an application of a theorem, proved in 2000 by Amoroso and Dvornicich [1],
supplemented by computations by Hoshi [2]. In their paper, Amoroso and Dvornicich
themselves already had used their theorem in a similar way proving that certain
cyclcotomic fields have nontrivial class numbers. We prove a weak version of their
theorem in Sect. 2.

Condition (ii1) of Theorem 1.1 first came up in a 1974 paper by Lenstra [3] on
a problem related to Noether’s problem and the inverse problem of Galois theory.

R. Schoof (X)
Dipartimento di Matematica, Universita di Roma Tor Vergata, [-00133 Roma, Italy
e-mail: schoof.rene @gmail.com

© Springer Nature Singapore Pte Ltd. 2020 89
K. Chakraborty et al. (eds.), Class Groups of Number Fields and Related Topics,
https://doi.org/10.1007/978-981-15-1514-9_8



90 R. Schoof

Lenstra showed that the set of prime numbers satisfying the condition has Dirichlet
density zero [3, , Cor.6.7].
We deduce Theorem 1.1 in Sect.4 from the results in Sects. 2 and 3.

This note is based on an expository lecture given at the ICCGNFRT meeting at
the HRI, Allahabad, September 2017.

2 Heights

We recall some basic properties of heights. For every finite or infinite prime v of a
number field F, let |x|, denote the corresponding normalized valuation of x € F*.
This means that for finite primes v we put |x|, = ¢ ~""¥), where q is the cardinality
of the residue field. For infinite real primes we use the usual absolute value and for
complex primes its square.

Then the product formula holds: for every x € F* we have

[Tl = 1.
v

For any positive real t we put log™ t = max(logt, 0). The height h(x) of x € F* is
defined as

h(x) = Y log* |xl,.

Note that the value of /4 (x) depends not only on x but also on the number field F.

The absolute height
h(x)

[F: Q]

is independent of F and depends only on x.
It is easy to see that for all x, y € F* and every prime v we have

lx —yl, < 2" max(l, |x|,) - max(1, |y],),

where u,, = 0, 1 or 2, depending on whether v is finite, real or complex, respectively.
Indeed, by symmetry we may assume that |x|, > |y|,. Then the triangle inequality
implies that |1 — y /x|, is at most 2"». It follows that |[x — y|, < 2"*|x|, and the
inequality follows.

Sharper upper bounds for |x — y|, give rise to lower bounds for the heights of
either x or y.

Proposition 2.1 Let F be a number field and let x and y be distinct elements of F*.
For every prime v, let 0 < ¢, < 1. If

lx — yly, < 2"¢, -max(1, |x|,) - max(l, |y|,),  forall primes v.
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Then
h(x) +h(y) = —[F : Qllog2 — > logc,.

Proof By the product formula and the inequalities of the hypothesis we have

0=> loglx —yl, <Y log(2"c,) +h(x) + h(y).

The result then follows from the fact that Y u, = D ;s tty = [F 1 Ql.
The following lemma is used in the proof of the result by Amoroso and Dvornicich.

Lemma 2.2 Let F be a number field, let v be a finite prime of F and let x, X' :
F* — F* be two homomorphisms that preserve v-integrality. Let ¢ € R.q. If we
have

Ix(a) — x/(a)|y, < ¢, forall non-zeroa € Op,

then
Ix(e) = x/()], < c¢-max(l,|x(c),) - max(l, |x/(a)ly), foralla € F*.

Proof Let o € F*. By the Chinese remainder theorem, we can find an element 3 €
O for which a3 € O and |3, = max(l, |a|,)~". Since x preserves v-integrality,
this implies that |x ()|, = max(l, Ix(a)|,)~". From the identity

1
x(@) — x'(@) = N (x(aB) — X' (@B) + X (@)X (B) — X' (@)x(B)),

we deduce the inequality

c

Xl

IX(@) = X' (@y = max (1, |x (@)|v) = cmax(l, |x(e)]y) max(l, [x"()]v),

as required.

Proposition 2.3 (Amoroso and Dvornicich [1]) Let m be a positive integer and let
(n denote a primitive m-th root of unity. Suppose that o € Q((,,)* is not a root of
unity. Then for every prime number p we have

h(@) _ log(p/2)
(F:QI = 2p

If p does not divide m, we have the sharper estimate

h(e) _ log(p/2)
[F:Q] — p+1
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Proof Put F = Q((,,). If p does not divide m, we apply Proposition 2.1 to x = a?,
y = o(a) and ¢, = |p|, when v lies over p, while ¢, = 1 for the other primes v.
Here o is the Frobenius automorphism in Gal(F/Q) of the primes lying over p. It
fixes every v lying over p. Since h(a”) = ph(a) and h(o(a)) = h(a), the second
estimate then follows.

It remains to check that x = a”, y =o0(a) satisfy the hypotheses of
Proposition 2.1. Since « is not a root of unity, the elements x and y are distinct.
In order to check the inequality in the condition of Proposition 2.1, we recall that
the ring of integers of F is Z[(,,]. The fact that o(¢,,) = (/, implies therefore that
o(a) = o (mod p) for all integral cv. This implies that the inequality holds for inte-
gral x = o(a) and y = . An application of Lemma 2.2 to the homomorphisms
x(a) = o(a) and x/(a) = o shows that it also holds for all « € F* and we are
done.

If p divides m, we we apply Proposition 2.1 to x = o, y = o(«)? and and
¢y = |ply when v lies over p, while ¢, = 1 for the other primes v. Here o generates
the Galois group of F over its subfield Q((y/p). The first inequality follows readily.

It remains to check the hypotheses of Proposition 2.1. Since o fixes Q((n/p),
we have 0 ((,) = ¢! for some t = 1 (mod m/p). It follows that o(¢,)? = ¢, and
hence o(a)? = o (mod p) for all « € Z[(,,]. In other words, the inequality in the
hypothesis of Proposition 2.1 holds for x = o(«)? and y = o for every integral
a € F. An application of Lemma 2.2 to the homomorphisms y(a) = o(a)? and
x/(a) = o shows that the inequality holds for all « € F*.

Finally, if x and y were equal, then o = o ()¢’ for some (' € j1,. The kernel
of the homomorphism jt,, —> fi,, given by & > o(£)/& = €71, is /p- Therefore
the image is . It follows that (" = o(£) /€ for some £ € fu,,. This means that {o is
fixed by o and is hence contained in the subfield Q((,/,). Since a and o have the
same height, we may replace a by (v and F = Q((,,) by Q((/p). We repeat this
until either x # y, in which case all conditions of Proposition 1 are satisfied, or until
p does not divide m, in which case we have the sharper estimate that we already
proved.

Corollary 2.4 Let be a prime number and suppose that the prime ideals of Q((;—1)
lying over | are principal. Then we have

log! - log(5/2)
p—1) — 10 °

where ¢ is Euler’s function. Moreover, for any prime p for which | # 1 (mod p),

we have
log!/ - log(p/2)

ot -1~ p+1

Proof We put F = Q((;—;) and, as in [1, Cor.1], we put a = 7/, where 7 is a
generator of a prime of F lying over [. Since [ splits completely in F, the quotient
7/m = « is not a root of unity. Since i («) = log/, an application of Proposition 2.3
implies the result.



Heights and Principal Ideals of Certain Cyclotomic Fields 93

Remark 2.5 For p = 2, the bounds of Proposition 2.3 are trivial. However, one
can obtain nontrivial bounds by observing that for « € Z[(,,] one has o(a)? =
a* (mod 4) when m # 0 (mod 4) and o is the Frobenius automorphism of the
primes lying over 2. When m = 0 (mod 4) and o is the automorphism of Q((,;,)
for which o(() = G ™% = —(,n, one has o(a)? = o2 (mod 4). This leads to the
inequality
h(e) _ log(2)
[F: Q1 ~ 6

for all m and all o € Q((,,)* that are not a root of unity.

Remark 2.6 1In the proof of Proposition 2.3 of the case where p divides m, one may
actually take ¢, = |pl|} =D for the primes v lying over p. This is slightly smaller

and gives a better estimate in Corollary 2.4. It makes little difference for the proof
of Theorem 1.1.

3 Discriminant Bounds

In this section, we explain how to prove the implication (i) = (ii) of the main theorem.
We use Odlyzko’s discriminant bounds [5].

In general, the class number of a cyclotomic field Q((,,) is the product of the class
number of the maximal real subfield Q((,)" of Q({,) and the so-called relative
class number. The latter is a product of generalized Bernoulli numers and is easy to
compute [7, Theorem 4.17]. It is an easy matter to check that for the primes in the
set S of Theorem 1.1, the relative class numbers of Q((;_) are all equal to 1. This
is left to the reader, who may prefer to consult the table in [7, p.412]. To show that
the class numbers themselves are also 1, it suffices to show that the class numbers of
the subfields Q((,)* are 1.

The absolute degree of Q((,,) over Q is ¢(m). The root discriminant d,, of Q((,,)
is the ¢(m)-th root of the absolute value of its discriminant. Explicitly, d,, is equal
to m[], p~"/%~1, where the product runs over the prime divisors of m. See [7,

Proposition 2.7]. For m > 2, the subfield Q((,,)" has absolute degree %(b(m), while
its root discriminant is at most d,,.

Consider the set S of primes of Theorem 1.1. For the primes/ = 2,3,5,7, 11 and
13, the field Q(¢(;_1)™ is either Q or one of the quadratic fields Q(/3) or Q(v/5). It
is well known and easy to verify that the class numbers of these fields are equal to 1.
This leaves us with the primes / = 17, 19, 23, 29, 31, 37, 41, 43, 61, 67 and 71.

In Table I we list the degrees and root discriminants of these fields.

The root discriminant of any totally real number of degree d is bounded below by
Odlyzko’s discriminant bound Odl(d). See [7, , 11.4]. The function Odl((d) is mono-
tonically increasing. For degree d < 14, we list its values, or rather approximations
to them, in Table 2. See also [5].
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Table 1 Degrees and root discriminants of Q({;—1)

l o —1) 011 l ol —1) 011
17 8 8.000 41 16 13.375
19 6 5.197 43 12 8.767
23 10 8.655 61 16 11.583
29 12 10.123 67 20 14.991
31 8 5.792 71 24 16.923
37 12 10.393

Table 2 Odlyzko’s bounds

d Odl(d) d Odl(d) d Odl(d) d 0Odl(d)
1 0.996 5 6.514 9 11.787 13 16.044
2 2222 6 7.926 10 12.941 14 16.971
3 3.609 7 9.279 11 14.034
4 5.062 8 10.568 12 15.068

The Hilbert class field of Q({;_1)™ is totally real. Its degree over Q(¢(;_1)™ is equal
to the class number of Q(¢;_;)™. Since it is an everywhere unramified extension of
Q({;_1)™, its root discriminant is equal to the root discriminant of Q(¢;_;)*, which
is at most 9;_1. Therefore, we can use Odlyzko’s bounds to bound the class number
h of Q((;_1)". To be precise, we have

ho(l —1)/2 < d,

for any d for which Odl(d) exceeds d;_;. It follows easily from the entries in the two
tables that 4 < 2 in each case. For instance, for / = 71, we have §,_; = 16.923. . ..
Since Odl(14) = 16.971, we may take d = 14 and we find that / - % <24 < 14.

This implies that for the primes in the set S of Theorem 1.1, the class numbers of
Q(¢_1)™ are equal to 1, as required.

4 Plans’ Theorem

In this section, we prove the implication (iii) = (i) of Theorem 1.1.

The degree [Q((;—; : Q] = ¢(I — 1) grows faster than log!. In fact, it is easy to
prove that (I — 1) > /(I — 1)/2. Therefore the first inequality of Corollary 2.4 can
only hold for finitely many primes. It is not difficult to check that the prime numbers /
that satisfy the first inequality of Corollary 2.4 are necessarily < 211. An application
of the second inequality of Corollary 2.4 with the primes p < 11 reduces this bound
to 79 and excludes [ = 59. The only primes not in S are [ = 47, 53,73 and 79. The



Heights and Principal Ideals of Certain Cyclotomic Fields 95

relevant cyclotomic fields are Q((,,) with m = 23,52, 72 and 39, respectively. We
deal with them one by one.

The equation x? + 23y? = 4 - 47 has no solutions in integers. This implies that
there is no element of norm 47 in the ring of integers of the quadratic subfield
Q(+/—23) of Q((23). This means that the prime ideals over 47 of Q(+/—23) are not
principal. It follows that the prime ideals over 47 of Q((,3) are not principal either.
Similarly, the equation x? + 39y?> = 4 - 79 has no solutions in integers. It follows
that the prime ideals over 79 of Q((39) are not principal.

Since the image of the local norm map Z3[(i3]* — Zj; is the group 1 + 13Z3,
the norm map from Q((s») to Q(i) maps numbers that are units at the primes lying
over 13 to elements of Q(i)* that are congruent to 1 (mod 13). Therefore, the norm
map from the class group Cls; of Q((s») to the (trivial) class group of Q(i) ‘factors’
through the ray class group of conductor 13 of Q(7). In other words, the norm induces
a homomorphism

N : Cls; — (Z[i]/(13))"/(i).

It maps the class of an ideal I of Z[(s;] that is prime to 13, to a generator of the
ideal N(I) of Z[i]. In particular, any prime of Z[(s,] lying over 53 is mapped to
the image of 7 & 2i in the ray class group. Since 7 4= 2i has order 3 in the group
(Z[i]/(13))*/(i), this image is nontrivial. Therefore the class in Cls; of a prime
lying over 53 is not trivial either. It follows that the primes over 53 in Q((s;) are not
principal.

Similarly, the image of the local norm map Z3[(o]* — Zj is the group 1 4 9Z3.
Therefore, the norm map from Q((7) to Q(+~/—2) maps numbers that are units at
the primes lying over 3 to elements of Q(+/—2)* that are congruent to 1 (mod 9). It
follows that the norm maps the class group Cl7; of Q((72) to the ray class group of
conductor 9 of Q(+/—2). In other words, the norm induces a homomorphism

N : Clyy — (Z[vV/=2]/(9))* /{%1}.

It maps the class of any prime over 73 to the image of 1 & 64/—2 in the ray class

group. Since 1 # 64/—2 has order 3 in the group (Z[+v/—2]/(9))*/{=1}, this image

is nontrivial. Therefore the class in Cl;, of a prime lying over 73 is not trivial either.
This proves Theorem 1.1.
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