Heights and Principal Ideals of Certain Cyclotomic Fields

René Schoof

1 Introduction

Any prime number *l* splits completely in the cyclotomic field $\mathbf{Q}(\zeta_{l-1})$. The primes lying over *l* all have norm *l* and are Galois conjugate. Consider the following set of prime numbers:

 $S = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71\}.$

In this expository note we give a self-contained proof of the following theorem

Theorem 1.1 For a prime number *l* the following are equivalent.

(i) $l \in S$;

- (*ii*) the class number of $\mathbf{Q}(\zeta_{l-1})$ is 1;
- (iii) The prime ideals lying over l in $\mathbf{Q}(\zeta_{l-1})$ are principal.

It is trivial that (ii) implies (iii). The fact that (i) implies (ii) is not trivial, but it is standard. In fact, using Odlyzko's [5] discriminant bounds, Masley and Montgomery [4] determined in the 1970's all cyclotomic fields with class number 1. See [7]. For proving that (i) implies (ii) one needs much less. We work this out in Sect. 3.

A proof of the fact that (iii) implies (i) was recently published by Bernat Plans [6]. It is an application of a theorem, proved in 2000 by Amoroso and Dvornicich [1], supplemented by computations by Hoshi [2]. In their paper, Amoroso and Dvornicich themselves already had used their theorem in a similar way proving that certain cyclcotomic fields have nontrivial class numbers. We prove a weak version of their theorem in Sect. 2.

Condition (iii) of Theorem 1.1 first came up in a 1974 paper by Lenstra [3] on a problem related to Noether's problem and the inverse problem of Galois theory.

© Springer Nature Singapore Pte Ltd. 2020

R. Schoof (🖂)

Dipartimento di Matematica, Università di Roma Tor Vergata, I-00133 Roma, Italy e-mail: schoof.rene@gmail.com

K. Chakraborty et al. (eds.), *Class Groups of Number Fields and Related Topics*, https://doi.org/10.1007/978-981-15-1514-9_8

Lenstra showed that the set of prime numbers satisfying the condition has Dirichlet density zero [3, , Cor.6.7].

We deduce Theorem 1.1 in Sect. 4 from the results in Sects. 2 and 3.

This note is based on an expository lecture given at the ICCGNFRT meeting at the HRI, Allahabad, September 2017.

2 Heights

We recall some basic properties of heights. For every finite or infinite prime v of a number field F, let $|x|_v$ denote the corresponding normalized valuation of $x \in F^*$. This means that for finite primes v we put $|x|_v = q^{-v(x)}$, where q is the cardinality of the residue field. For infinite real primes we use the usual absolute value and for complex primes its square.

Then the *product formula* holds: for every $x \in F^*$ we have

$$\prod_{v} |x|_{v} = 1.$$

For any positive real t we put $\log^+ t = \max(\log t, 0)$. The *height* h(x) of $x \in F^*$ is defined as

$$h(x) = \sum_{v} \log^+ |x|_v.$$

Note that the value of h(x) depends not only on x but also on the number field F. The *absolute height*

$$\frac{h(x)}{[F:\mathbf{Q}]}$$

is independent of F and depends only on x.

It is easy to see that for all $x, y \in F^*$ and every prime v we have

$$|x - y|_v \le 2^{u_v} \max(1, |x|_v) \cdot \max(1, |y|_v),$$

where $u_v = 0$, 1 or 2, depending on whether v is finite, real or complex, respectively. Indeed, by symmetry we may assume that $|x|_v \ge |y|_v$. Then the triangle inequality implies that $|1 - y/x|_v$ is at most 2^{u_v} . It follows that $|x - y|_v \le 2^{u_v}|x|_v$ and the inequality follows.

Sharper upper bounds for $|x - y|_v$ give rise to lower bounds for the heights of either x or y.

Proposition 2.1 Let *F* be a number field and let *x* and *y* be distinct elements of F^* . For every prime *v*, let $0 < c_v \le 1$. If

 $|x - y|_{v} \leq 2^{u_{v}} c_{v} \cdot \max(1, |x|_{v}) \cdot \max(1, |y|_{v}), \quad \text{for all primes } v.$

Heights and Principal Ideals of Certain Cyclotomic Fields

Then

$$h(x) + h(y) \ge -[F:\mathbf{Q}]\log 2 - \sum_{v}\log c_{v}.$$

Proof By the product formula and the inequalities of the hypothesis we have

$$0 = \sum_{v} \log |x - y|_{v} \le \sum_{v} \log(2^{u_{v}}c_{v}) + h(x) + h(y).$$

The result then follows from the fact that $\sum_{v} u_{v} = \sum_{v \text{ infinite}} u_{v} = [F : \mathbf{Q}]$. The following lemma is used in the proof of the result by Amoroso and Dvornicich.

Lemma 2.2 Let *F* be a number field, let v be a finite prime of *F* and let χ, χ' : $F^* \longrightarrow F^*$ be two homomorphisms that preserve *v*-integrality. Let $c \in \mathbf{R}_{>0}$. If we have

$$|\chi(\alpha) - \chi'(\alpha)|_v \leq c, \quad \text{for all non-zero } \alpha \in O_F,$$

then

$$|\chi(\alpha) - \chi'(\alpha)|_v \le c \cdot \max(1, |\chi(\alpha)_v) \cdot \max(1, |\chi'(\alpha)|_v), \quad \text{for all } \alpha \in F^*.$$

Proof Let $\alpha \in F^*$. By the Chinese remainder theorem, we can find an element $\beta \in O_F$ for which $\alpha\beta \in O_F$ and $|\beta|_v = \max(1, |\alpha|_v)^{-1}$. Since χ preserves *v*-integrality, this implies that $|\chi(\beta)|_v = \max(1, |\chi(\alpha)|_v)^{-1}$. From the identity

$$\chi(\alpha) - \chi'(\alpha) = \frac{1}{\chi(\beta)} \left(\chi(\alpha\beta) - \chi'(\alpha\beta) + \chi'(\alpha)\chi'(\beta) - \chi'(\alpha)\chi(\beta) \right),$$

we deduce the inequality

$$|\chi(\alpha) - \chi'(\alpha)|_{v} \leq \frac{c}{|\chi(\beta)|_{v}} \max(1, |\chi'(\alpha)|_{v}) = c \max(1, |\chi(\alpha)|_{v}) \max(1, |\chi'(\alpha)|_{v}),$$

as required.

Proposition 2.3 (Amoroso and Dvornicich [1]) Let m be a positive integer and let ζ_m denote a primitive m-th root of unity. Suppose that $\alpha \in \mathbf{Q}(\zeta_m)^*$ is not a root of unity. Then for every prime number p we have

$$\frac{h(\alpha)}{[F:\mathbf{Q}]} \ge \frac{\log(p/2)}{2p}.$$

If p does not divide m, we have the sharper estimate

$$\frac{h(\alpha)}{[F:\mathbf{Q}]} \ge \frac{\log(p/2)}{p+1}.$$

Proof Put $F = \mathbf{Q}(\zeta_m)$. If p does not divide m, we apply Proposition 2.1 to $x = \alpha^p$, $y = \sigma(\alpha)$ and $c_v = |p|_v$ when v lies over p, while $c_v = 1$ for the other primes v. Here σ is the Frobenius automorphism in $\text{Gal}(F/\mathbf{Q})$ of the primes lying over p. It fixes every v lying over p. Since $h(\alpha^p) = ph(\alpha)$ and $h(\sigma(\alpha)) = h(\alpha)$, the second estimate then follows.

It remains to check that $x = \alpha^p$, $y = \sigma(\alpha)$ satisfy the hypotheses of Proposition 2.1. Since α is not a root of unity, the elements x and y are distinct. In order to check the inequality in the condition of Proposition 2.1, we recall that the ring of integers of F is $\mathbb{Z}[\zeta_m]$. The fact that $\sigma(\zeta_m) = \zeta_m^p$, implies therefore that $\sigma(\alpha) \equiv \alpha^p \pmod{p}$ for all integral α . This implies that the inequality holds for integral $x = \sigma(\alpha)$ and $y = \alpha^p$. An application of Lemma 2.2 to the homomorphisms $\chi(\alpha) = \sigma(\alpha)$ and $\chi'(\alpha) = \alpha^p$ shows that it also holds for all $\alpha \in F^*$ and we are done.

If p divides m, we we apply Proposition 2.1 to $x = \alpha^p$, $y = \sigma(\alpha)^p$ and and $c_v = |p|_v$ when v lies over p, while $c_v = 1$ for the other primes v. Here σ generates the Galois group of F over its subfield $\mathbf{Q}(\zeta_{m/p})$. The first inequality follows readily.

It remains to check the hypotheses of Proposition 2.1. Since σ fixes $\mathbf{Q}(\zeta_{m/p})$, we have $\sigma(\zeta_m) = \zeta_m^t$ for some $t \equiv 1 \pmod{m/p}$. It follows that $\sigma(\zeta_m)^p = \zeta_m^p$ and hence $\sigma(\alpha)^p \equiv \alpha^p \pmod{p}$ for all $\alpha \in \mathbf{Z}[\zeta_m]$. In other words, the inequality in the hypothesis of Proposition 2.1 holds for $x = \sigma(\alpha)^p$ and $y = \alpha^p$ for every integral $\alpha \in F$. An application of Lemma 2.2 to the homomorphisms $\chi(\alpha) = \sigma(\alpha)^p$ and $\chi'(\alpha) = \alpha^p$ shows that the inequality holds for all $\alpha \in F^*$.

Finally, if x and y were equal, then $\alpha = \sigma(\alpha)\zeta'$ for some $\zeta' \in \mu_p$. The kernel of the homomorphism $\mu_m \longrightarrow \mu_m$ given by $\xi \mapsto \sigma(\xi)/\xi = \xi^{t-1}$, is $\mu_{m/p}$. Therefore the image is μ_p . It follows that $\zeta' = \sigma(\xi)/\xi$ for some $\xi \in \mu_m$. This means that $\xi\alpha$ is fixed by σ and is hence contained in the subfield $\mathbf{Q}(\zeta_{m/p})$. Since α and $\xi\alpha$ have the same height, we may replace α by $\xi\alpha$ and $F = \mathbf{Q}(\zeta_m)$ by $\mathbf{Q}(\zeta_{m/p})$. We repeat this until either $x \neq y$, in which case all conditions of Proposition 1 are satisfied, or until p does not divide m, in which case we have the sharper estimate that we already proved.

Corollary 2.4 Let *l* be a prime number and suppose that the prime ideals of $\mathbf{Q}(\zeta_{l-1})$ lying over *l* are principal. Then we have

$$\frac{\log l}{\phi(\ell-1)} \ge \frac{\log(5/2)}{10},$$

where ϕ is Euler's function. Moreover, for any prime p for which $l \neq 1 \pmod{p}$, we have

$$\frac{\log l}{\phi(\ell-1)} \ge \frac{\log(p/2)}{p+1}.$$

Proof We put $F = \mathbf{Q}(\zeta_{l-1})$ and, as in [1, Cor.1], we put $\alpha = \overline{\pi}/\pi$, where π is a generator of a prime of F lying over l. Since l splits completely in F, the quotient $\overline{\pi}/\pi = \alpha$ is not a root of unity. Since $h(\alpha) = \log l$, an application of Proposition 2.3 implies the result.

Remark 2.5 For p = 2, the bounds of Proposition 2.3 are trivial. However, one can obtain nontrivial bounds by observing that for $\alpha \in \mathbb{Z}[\zeta_m]$ one has $\sigma(\alpha)^2 \equiv \alpha^4 \pmod{4}$ when $m \neq 0 \pmod{4}$ and σ is the Frobenius automorphism of the primes lying over 2. When $m \equiv 0 \pmod{4}$ and σ is the automorphism of $\mathbb{Q}(\zeta_m)$ for which $\sigma(\zeta_m) = \zeta_m^{1+m/2} = -\zeta_m$, one has $\sigma(\alpha)^2 \equiv \alpha^2 \pmod{4}$. This leads to the inequality

$$\frac{h(\alpha)}{[F:\mathbf{Q}]} \ge \frac{\log(2)}{6},$$

for all *m* and all $\alpha \in \mathbf{Q}(\zeta_m)^*$ that are not a root of unity.

Remark 2.6 In the proof of Proposition 2.3 of the case where *p* divides *m*, one may actually take $c_v = |p|_v^{p/(p-1)}$ for the primes *v* lying over *p*. This is slightly smaller and gives a better estimate in Corollary 2.4. It makes little difference for the proof of Theorem 1.1.

3 Discriminant Bounds

In this section, we explain how to prove the implication (i) \Rightarrow (ii) of the main theorem. We use Odlyzko's discriminant bounds [5].

In general, the class number of a cyclotomic field $\mathbf{Q}(\zeta_m)$ is the product of the class number of the maximal real subfield $\mathbf{Q}(\zeta_m)^+$ of $\mathbf{Q}(\zeta_m)$ and the so-called *relative class number*. The latter is a product of generalized Bernoulli numers and is easy to compute [7, Theorem 4.17]. It is an easy matter to check that for the primes in the set *S* of Theorem 1.1, the relative class numbers of $\mathbf{Q}(\zeta_{l-1})$ are all equal to 1. This is left to the reader, who may prefer to consult the table in [7, p.412]. To show that the class numbers themselves are also 1, it suffices to show that the class numbers of the subfields $\mathbf{Q}(\zeta_m)^+$ are 1.

The absolute degree of $\mathbf{Q}(\zeta_m)$ over \mathbf{Q} is $\phi(m)$. The root discriminant δ_m of $\mathbf{Q}(\zeta_m)$ is the $\phi(m)$ -th root of the absolute value of its discriminant. Explicitly, δ_m is equal to $m \prod_p p^{-1/(p-1)}$, where the product runs over the prime divisors of m. See [7, Proposition 2.7]. For m > 2, the subfield $\mathbf{Q}(\zeta_m)^+$ has absolute degree $\frac{1}{2}\phi(m)$, while its root discriminant is at most δ_m .

Consider the set *S* of primes of Theorem 1.1. For the primes l = 2, 3, 5, 7, 11 and 13, the field $\mathbf{Q}(\zeta_{l-1})^+$ is either \mathbf{Q} or one of the quadratic fields $\mathbf{Q}(\sqrt{3})$ or $\mathbf{Q}(\sqrt{5})$. It is well known and easy to verify that the class numbers of these fields are equal to 1. This leaves us with the primes l = 17, 19, 23, 29, 31, 37, 41, 43, 61, 67 and 71.

In Table 1 we list the degrees and root discriminants of these fields.

The root discriminant of any totally real number of degree d is bounded below by Odlyzko's discriminant bound Odl(d). See [7, , 11.4]. The function Odl((d) is monotonically increasing. For degree $d \le 14$, we list its values, or rather approximations to them, in Table 2. See also [5].

l	$\phi(l-1)$	δ_{l-1}	l	$\phi(l-1)$	δ_{l-1}
17	8	8.000	41	16	13.375
19	6	5.197	43	12	8.767
23	10	8.655	61	16	11.583
29	12	10.123	67	20	14.991
31	8	5.792	71	24	16.923
37	12	10.393			

Table 1 Degrees and root discriminants of $\mathbf{Q}(\zeta_{l-1})$

Table 2Odlyzko's bounds

d	Odl(d)	d	Odl(d)	d	Odl(d)	d	Odl(d)
1	0.996	5	6.514	9	11.787	13	16.044
2	2.222	6	7.926	10	12.941	14	16.971
3	3.609	7	9.279	11	14.034		
4	5.062	8	10.568	12	15.068		

The Hilbert class field of $\mathbf{Q}(\zeta_{l-1})^+$ is totally real. Its degree over $\mathbf{Q}(\zeta_{l-1})^+$ is equal to the class number of $\mathbf{Q}(\zeta_{l-1})^+$. Since it is an everywhere unramified extension of $\mathbf{Q}(\zeta_{l-1})^+$, its root discriminant is equal to the root discriminant of $\mathbf{Q}(\zeta_{l-1})^+$, which is at most δ_{l-1} . Therefore, we can use Odlyzko's bounds to bound the class number *h* of $\mathbf{Q}(\zeta_{l-1})^+$. To be precise, we have

$$h\phi(l-1)/2 < d,$$

for any *d* for which Odl(d) exceeds δ_{l-1} . It follows easily from the entries in the two tables that h < 2 in each case. For instance, for l = 71, we have $\delta_{l-1} = 16.923 \dots$ Since Odl(14) = 16.971, we may take d = 14 and we find that $h \cdot \frac{1}{2} \cdot 24 < 14$.

This implies that for the primes in the set *S* of Theorem 1.1, the class numbers of $\mathbf{Q}(\zeta_{l-1})^+$ are equal to 1, as required.

4 Plans' Theorem

In this section, we prove the implication (iii) \Rightarrow (i) of Theorem 1.1.

The degree $[\mathbf{Q}(\zeta_{l-1} : \mathbf{Q}] = \phi(l-1)$ grows faster than log *l*. In fact, it is easy to prove that $\phi(l-1) \ge \sqrt{(l-1)/2}$. Therefore the first inequality of Corollary 2.4 can only hold for finitely many primes. It is not difficult to check that the prime numbers *l* that satisfy the first inequality of Corollary 2.4 are necessarily ≤ 211 . An application of the second inequality of Corollary 2.4 with the primes $p \le 11$ reduces this bound to 79 and excludes l = 59. The only primes not in *S* are l = 47, 53, 73 and 79. The

relevant cyclotomic fields are $\mathbf{Q}(\zeta_m)$ with m = 23, 52, 72 and 39, respectively. We deal with them one by one.

The equation $x^2 + 23y^2 = 4 \cdot 47$ has no solutions in integers. This implies that there is no element of norm 47 in the ring of integers of the quadratic subfield $\mathbf{Q}(\sqrt{-23})$ of $\mathbf{Q}(\zeta_{23})$. This means that the prime ideals over 47 of $\mathbf{Q}(\sqrt{-23})$ are not principal. It follows that the prime ideals over 47 of $\mathbf{Q}(\zeta_{23})$ are not principal either. Similarly, the equation $x^2 + 39y^2 = 4 \cdot 79$ has no solutions in integers. It follows that the prime ideals over 79 of $\mathbf{Q}(\zeta_{39})$ are not principal.

Since the image of the local norm map $\mathbb{Z}_{13}[\zeta_{13}]^* \longrightarrow \mathbb{Z}_{13}^*$ is the group $1 + 13\mathbb{Z}_{13}$, the norm map from $\mathbb{Q}(\zeta_{52})$ to $\mathbb{Q}(i)$ maps numbers that are units at the primes lying over 13 to elements of $\mathbb{Q}(i)^*$ that are congruent to 1 (mod 13). Therefore, the norm map from the class group Cl_{52} of $\mathbb{Q}(\zeta_{52})$ to the (trivial) class group of $\mathbb{Q}(i)$ 'factors' through the ray class group of conductor 13 of $\mathbb{Q}(i)$. In other words, the norm induces a homomorphism

$$N: Cl_{52} \longrightarrow (\mathbf{Z}[i]/(13))^*/\langle i \rangle.$$

It maps the class of an ideal I of $\mathbb{Z}[\zeta_{52}]$ that is prime to 13, to a generator of the ideal N(I) of $\mathbb{Z}[i]$. In particular, any prime of $\mathbb{Z}[\zeta_{52}]$ lying over 53 is mapped to the image of $7 \pm 2i$ in the ray class group. Since $7 \pm 2i$ has order 3 in the group $(\mathbb{Z}[i]/(13))^*/\langle i \rangle$, this image is nontrivial. Therefore the class in Cl_{52} of a prime lying over 53 is not trivial either. It follows that the primes over 53 in $\mathbb{Q}(\zeta_{52})$ are not principal.

Similarly, the image of the local norm map $\mathbb{Z}_3[\zeta_9]^* \longrightarrow \mathbb{Z}_3^*$ is the group $1 + 9\mathbb{Z}_3$. Therefore, the norm map from $\mathbb{Q}(\zeta_{72})$ to $\mathbb{Q}(\sqrt{-2})$ maps numbers that are units at the primes lying over 3 to elements of $\mathbb{Q}(\sqrt{-2})^*$ that are congruent to 1 (mod 9). It follows that the norm maps the class group Cl_{72} of $\mathbb{Q}(\zeta_{72})$ to the ray class group of conductor 9 of $\mathbb{Q}(\sqrt{-2})$. In other words, the norm induces a homomorphism

$$N: Cl_{72} \longrightarrow (\mathbb{Z}[\sqrt{-2}]/(9))^*/\{\pm 1\}.$$

It maps the class of any prime over 73 to the image of $1 \pm 6\sqrt{-2}$ in the ray class group. Since $1 \pm 6\sqrt{-2}$ has order 3 in the group ($\mathbb{Z}[\sqrt{-2}]/(9)$)*/{±1}, this image is nontrivial. Therefore the class in Cl_{72} of a prime lying over 73 is not trivial either.

This proves Theorem 1.1.

References

- F. Amoroso, R. Dvornicich, A lower bound for the height in abelian extensions. J. Number Theory 80, 260–272 (2000)
- 2. A. Hoshi, On Noether's problem for cyclic groups of prime order. Proc. Japan Acad. Ser. A **91**, 39–44 (2015)
- H.W. Lenstra, Rational functions invariant under an abelian group. Invent. Math. 25, 299–325 (1974)

- 4. J. Masley, H. Montgomery, Cyclotomic fields with unique factorization. J. Reine Angew. Math. **286**(287), 248–256 (1976)
- 5. A. Odlyzko, Table 2. Unconditional bounds for discriminants, 29 Nov 1976. http://www.dtc. umn.edu/~odlyzko/unpublished/discr.bound.table2
- 6. B. Plans, On Noether's rationality problem for cyclic groups over Q. Proc. AMS **145**, 2407–2409 (2016)
- 7. L.C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math, vol. 83, 2nd edn. (Springer-Verlag 1997)