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1 Introduction

Any prime number l splits completely in the cyclotomic field Q(ζl−1). The primes
lying over l all have norm l and are Galois conjugate. Consider the following set of
prime numbers:

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71}.

In this expository note we give a self-contained proof of the following theorem

Theorem 1.1 For a prime number l the following are equivalent.

(i) l ∈ S;
(ii) the class number of Q(ζl−1) is 1;
(iii) The prime ideals lying over l in Q(ζl−1) are principal.

It is trivial that (ii) implies (iii). The fact that (i) implies (ii) is not trivial, but it is stan-
dard. In fact, using Odlyzko’s [5] discriminant bounds, Masley and Montgomery [4]
determined in the 1970’s all cyclotomic fields with class number 1. See [7]. For
proving that (i) implies (ii) one needs much less. We work this out in Sect. 3.

A proof of the fact that (iii) implies (i) was recently published by Bernat Plans [6].
It is an application of a theorem, proved in 2000 by Amoroso and Dvornicich [1],
supplemented by computations byHoshi [2]. In their paper, Amoroso andDvornicich
themselves already had used their theorem in a similar way proving that certain
cyclcotomic fields have nontrivial class numbers. We prove a weak version of their
theorem in Sect. 2.

Condition (iii) of Theorem 1.1 first came up in a 1974 paper by Lenstra [3] on
a problem related to Noether’s problem and the inverse problem of Galois theory.
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Lenstra showed that the set of prime numbers satisfying the condition has Dirichlet
density zero [3, , Cor.6.7].

We deduce Theorem 1.1 in Sect. 4 from the results in Sects. 2 and 3.
This note is based on an expository lecture given at the ICCGNFRT meeting at

the HRI, Allahabad, September 2017.

2 Heights

We recall some basic properties of heights. For every finite or infinite prime v of a
number field F , let |x |v denote the corresponding normalized valuation of x ∈ F∗.
This means that for finite primes v we put |x |v = q−v(x), where q is the cardinality
of the residue field. For infinite real primes we use the usual absolute value and for
complex primes its square.

Then the product formula holds: for every x ∈ F∗ we have

∏

v

|x |v = 1.

For any positive real t we put log+ t = max(log t, 0). The height h(x) of x ∈ F∗ is
defined as

h(x) =
∑

v

log+ |x |v.

Note that the value of h(x) depends not only on x but also on the number field F .
The absolute height

h(x)
[F : Q]

is independent of F and depends only on x .
It is easy to see that for all x, y ∈ F∗ and every prime v we have

|x − y|v ≤ 2uv max(1, |x |v) ·max(1, |y|v),

where uv = 0, 1 or 2, depending on whether v is finite, real or complex, respectively.
Indeed, by symmetry we may assume that |x |v ≥ |y|v . Then the triangle inequality
implies that |1 − y/x |v is at most 2uv . It follows that |x − y|v ≤ 2uv |x |v and the
inequality follows.

Sharper upper bounds for |x − y|v give rise to lower bounds for the heights of
either x or y.

Proposition 2.1 Let F be a number field and let x and y be distinct elements of F∗.
For every prime v, let 0 < cv ≤ 1. If

|x − y|v ≤ 2uvcv ·max(1, |x |v) ·max(1, |y|v), for all primes v.
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Then
h(x)+ h(y) ≥ −[F : Q] log 2 −

∑

v

log cv.

Proof By the product formula and the inequalities of the hypothesis we have

0 =
∑

v

log |x − y|v ≤
∑

v

log(2uvcv)+ h(x)+ h(y).

The result then follows from the fact that
∑

v uv =
∑

v infinite uv = [F : Q].
The following lemma is used in the proof of the result byAmoroso andDvornicich.

Lemma 2.2 Let F be a number field, let v be a finite prime of F and let χ,χ′ :
F∗ −→ F∗ be two homomorphisms that preserve v-integrality. Let c ∈ R>0. If we
have

|χ(α) − χ′(α)|v ≤ c, for all non-zeroα ∈ OF ,

then

|χ(α) − χ′(α)|v ≤ c ·max(1, |χ(α)v) ·max(1, |χ′(α)|v), for allα ∈ F∗.

Proof Let α ∈ F∗. By the Chinese remainder theorem, we can find an element β ∈
OF for which αβ ∈ OF and |β|v = max(1, |α|v)−1. Since χ preserves v-integrality,
this implies that |χ(β)|v = max(1, |χ(α)|v)−1. From the identity

χ(α) − χ′(α) = 1
χ(β)

(
χ(αβ) − χ′(αβ)+ χ′(α)χ′(β) − χ′(α)χ(β)

)
,

we deduce the inequality

|χ(α) − χ′(α)|v ≤ c
|χ(β)|v

max(1, |χ′(α)|v) = cmax(1, |χ(α)|v)max(1, |χ′(α)|v),

as required.

Proposition 2.3 (Amoroso and Dvornicich [1]) Let m be a positive integer and let
ζm denote a primitive m-th root of unity. Suppose that α ∈ Q(ζm)∗ is not a root of
unity. Then for every prime number p we have

h(α)
[F : Q] ≥ log(p/2)

2p
.

If p does not divide m, we have the sharper estimate

h(α)
[F : Q] ≥ log(p/2)

p + 1
.
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Proof Put F = Q(ζm). If p does not divide m, we apply Proposition 2.1 to x = αp,
y = σ(α) and cv = |p|v when v lies over p, while cv = 1 for the other primes v.
Here σ is the Frobenius automorphism in Gal(F/Q) of the primes lying over p. It
fixes every v lying over p. Since h(αp) = ph(α) and h(σ(α)) = h(α), the second
estimate then follows.

It remains to check that x = αp, y = σ(α) satisfy the hypotheses of
Proposition 2.1. Since α is not a root of unity, the elements x and y are distinct.
In order to check the inequality in the condition of Proposition 2.1, we recall that
the ring of integers of F is Z[ζm]. The fact that σ(ζm) = ζ p

m , implies therefore that
σ(α) ≡ αp (mod p) for all integralα. This implies that the inequality holds for inte-
gral x = σ(α) and y = αp. An application of Lemma 2.2 to the homomorphisms
χ(α) = σ(α) and χ′(α) = αp shows that it also holds for all α ∈ F∗ and we are
done.

If p divides m, we we apply Proposition 2.1 to x = αp, y = σ(α)p and and
cv = |p|v when v lies over p, while cv = 1 for the other primes v. Here σ generates
the Galois group of F over its subfieldQ(ζm/p). The first inequality follows readily.

It remains to check the hypotheses of Proposition 2.1. Since σ fixes Q(ζm/p),
we have σ(ζm) = ζ tm for some t ≡ 1 (mod m/p). It follows that σ(ζm)p = ζ p

m and
hence σ(α)p ≡ αp (mod p) for all α ∈ Z[ζm]. In other words, the inequality in the
hypothesis of Proposition 2.1 holds for x = σ(α)p and y = αp for every integral
α ∈ F . An application of Lemma 2.2 to the homomorphisms χ(α) = σ(α)p and
χ′(α) = αp shows that the inequality holds for all α ∈ F∗.

Finally, if x and y were equal, then α = σ(α)ζ ′ for some ζ ′ ∈ µp. The kernel
of the homomorphism µm −→ µm given by ξ )→ σ(ξ)/ξ = ξt−1, is µm/p. Therefore
the image is µp. It follows that ζ ′ = σ(ξ)/ξ for some ξ ∈ µm . This means that ξα is
fixed by σ and is hence contained in the subfield Q(ζm/p). Since α and ξα have the
same height, we may replace α by ξα and F = Q(ζm) by Q(ζm/p). We repeat this
until either x *= y, in which case all conditions of Proposition 1 are satisfied, or until
p does not divide m, in which case we have the sharper estimate that we already
proved.

Corollary 2.4 Let l be a prime number and suppose that the prime ideals ofQ(ζl−1)

lying over l are principal. Then we have

log l
φ(! − 1)

≥ log(5/2)
10

,

where φ is Euler’s function. Moreover, for any prime p for which l *≡ 1 (mod p),
we have

log l
φ(! − 1)

≥ log(p/2)
p + 1

.

Proof We put F = Q(ζl−1) and, as in [1, Cor.1], we put α = π/π, where π is a
generator of a prime of F lying over l. Since l splits completely in F , the quotient
π/π = α is not a root of unity. Since h(α) = log l, an application of Proposition 2.3
implies the result.
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Remark 2.5 For p = 2, the bounds of Proposition 2.3 are trivial. However, one
can obtain nontrivial bounds by observing that for α ∈ Z[ζm] one has σ(α)2 ≡
α4 (mod 4) when m *≡ 0 (mod 4) and σ is the Frobenius automorphism of the
primes lying over 2. When m ≡ 0 (mod 4) and σ is the automorphism of Q(ζm)
for which σ(ζm) = ζ1+m/2

m = −ζm , one has σ(α)2 ≡ α2 (mod 4). This leads to the
inequality

h(α)
[F : Q] ≥ log(2)

6
,

for all m and all α ∈ Q(ζm)∗ that are not a root of unity.

Remark 2.6 In the proof of Proposition 2.3 of the case where p divides m, one may
actually take cv = |p|p/(p−1)

v for the primes v lying over p. This is slightly smaller
and gives a better estimate in Corollary 2.4. It makes little difference for the proof
of Theorem 1.1.

3 Discriminant Bounds

In this section,we explain how to prove the implication (i)⇒ (ii) of themain theorem.
We use Odlyzko’s discriminant bounds [5].

In general, the class number of a cyclotomic fieldQ(ζm) is the product of the class
number of the maximal real subfield Q(ζm)+ of Q(ζm) and the so-called relative
class number. The latter is a product of generalized Bernoulli numers and is easy to
compute [7, Theorem 4.17]. It is an easy matter to check that for the primes in the
set S of Theorem 1.1, the relative class numbers of Q(ζl−1) are all equal to 1. This
is left to the reader, who may prefer to consult the table in [7, p.412]. To show that
the class numbers themselves are also 1, it suffices to show that the class numbers of
the subfields Q(ζm)+ are 1.

The absolute degree ofQ(ζm) overQ is φ(m). The root discriminant δm ofQ(ζm)
is the φ(m)-th root of the absolute value of its discriminant. Explicitly, δm is equal
to m

∏
p p

−1/(p−1), where the product runs over the prime divisors of m. See [7,
Proposition 2.7]. For m > 2, the subfieldQ(ζm)+ has absolute degree 1

2φ(m), while
its root discriminant is at most δm .

Consider the set S of primes of Theorem 1.1. For the primes l = 2, 3, 5, 7, 11 and
13, the field Q(ζl−1)

+ is either Q or one of the quadratic fields Q(
√
3) or Q(

√
5). It

is well known and easy to verify that the class numbers of these fields are equal to 1.
This leaves us with the primes l = 17, 19, 23, 29, 31, 37, 41, 43, 61, 67 and 71.

In Table1 we list the degrees and root discriminants of these fields.
The root discriminant of any totally real number of degree d is bounded below by

Odlyzko’s discriminant boundOdl(d). See [7, , 11.4]. The function Odl((d) is mono-
tonically increasing. For degree d ≤ 14, we list its values, or rather approximations
to them, in Table2. See also [5].
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Table 1 Degrees and root discriminants of Q(ζl−1)

l φ(l − 1) δl−1 l φ(l − 1) δl−1

17 8 8.000 41 16 13.375

19 6 5.197 43 12 8.767

23 10 8.655 61 16 11.583

29 12 10.123 67 20 14.991

31 8 5.792 71 24 16.923

37 12 10.393

Table 2 Odlyzko’s bounds
d Odl(d) d Odl(d) d Odl(d) d Odl(d)

1 0.996 5 6.514 9 11.787 13 16.044

2 2.222 6 7.926 10 12.941 14 16.971

3 3.609 7 9.279 11 14.034

4 5.062 8 10.568 12 15.068

The Hilbert class field of Q(ζl−1)
+ is totally real. Its degree over Q(ζl−1)

+ is equal
to the class number of Q(ζl−1)

+. Since it is an everywhere unramified extension of
Q(ζl−1)

+, its root discriminant is equal to the root discriminant of Q(ζl−1)
+, which

is at most δl−1. Therefore, we can use Odlyzko’s bounds to bound the class number
h of Q(ζl−1)

+. To be precise, we have

hφ(l − 1)/2 < d,

for any d for which Odl(d) exceeds δl−1. It follows easily from the entries in the two
tables that h < 2 in each case. For instance, for l = 71, we have δl−1 = 16.923 . . ..
Since Odl(14) = 16.971, we may take d = 14 and we find that h · 1

2 · 24 < 14.
This implies that for the primes in the set S of Theorem 1.1, the class numbers of

Q(ζl−1)
+ are equal to 1, as required.

4 Plans’ Theorem

In this section, we prove the implication (iii) ⇒ (i) of Theorem 1.1.

The degree [Q(ζl−1 : Q] = φ(l − 1) grows faster than log l. In fact, it is easy to
prove that φ(l − 1) ≥ √

(l − 1)/2. Therefore the first inequality of Corollary 2.4 can
only hold for finitely many primes. It is not difficult to check that the prime numbers l
that satisfy the first inequality of Corollary 2.4 are necessarily≤ 211. An application
of the second inequality of Corollary 2.4 with the primes p ≤ 11 reduces this bound
to 79 and excludes l = 59. The only primes not in S are l = 47, 53, 73 and 79. The
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relevant cyclotomic fields are Q(ζm) with m = 23, 52, 72 and 39, respectively. We
deal with them one by one.

The equation x2 + 23y2 = 4 · 47 has no solutions in integers. This implies that
there is no element of norm 47 in the ring of integers of the quadratic subfield
Q(

√−23) of Q(ζ23). This means that the prime ideals over 47 of Q(
√−23) are not

principal. It follows that the prime ideals over 47 of Q(ζ23) are not principal either.
Similarly, the equation x2 + 39y2 = 4 · 79 has no solutions in integers. It follows
that the prime ideals over 79 of Q(ζ39) are not principal.

Since the image of the local normmapZ13[ζ13]∗ −→ Z∗
13 is the group 1+ 13Z13,

the norm map from Q(ζ52) to Q(i) maps numbers that are units at the primes lying
over 13 to elements of Q(i)∗ that are congruent to 1 (mod 13). Therefore, the norm
map from the class group Cl52 ofQ(ζ52) to the (trivial) class group ofQ(i) ‘factors’
through the ray class group of conductor 13 ofQ(i). In other words, the norm induces
a homomorphism

N : Cl52 −→ (Z[i]/(13))∗/〈i〉.

It maps the class of an ideal I of Z[ζ52] that is prime to 13, to a generator of the
ideal N (I ) of Z[i]. In particular, any prime of Z[ζ52] lying over 53 is mapped to
the image of 7± 2i in the ray class group. Since 7± 2i has order 3 in the group
(Z[i]/(13))∗/〈i〉, this image is nontrivial. Therefore the class in Cl52 of a prime
lying over 53 is not trivial either. It follows that the primes over 53 inQ(ζ52) are not
principal.

Similarly, the image of the local norm map Z3[ζ9]∗ −→ Z∗
3 is the group 1+ 9Z3.

Therefore, the norm map from Q(ζ72) to Q(
√−2) maps numbers that are units at

the primes lying over 3 to elements ofQ(
√−2)∗ that are congruent to 1 (mod 9). It

follows that the norm maps the class group Cl72 of Q(ζ72) to the ray class group of
conductor 9 of Q(

√−2). In other words, the norm induces a homomorphism

N : Cl72 −→ (Z[
√

−2]/(9))∗/{±1}.

It maps the class of any prime over 73 to the image of 1± 6
√−2 in the ray class

group. Since 1± 6
√−2 has order 3 in the group (Z[√−2]/(9))∗/{±1}, this image

is nontrivial. Therefore the class in Cl72 of a prime lying over 73 is not trivial either.
This proves Theorem 1.1.
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