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We prove the analogue of the Riemann hypothesis for ζ-functions associated to curves
over finite fields. This result was claimed by André Weil in 1940. Weil published his proof
in 1948. Our proof follows E. Bombieri’s 1973 Séminaire Bourbaki exposé of Stepanov’s
proof.

Let Fq be a finite field of characteristic p. Let X be a smooth projective absolutely
irreducible curve over Fq of genus g. Stepanov’s proof proceeds by constructing a rational
function f on X that vanishes to high order m at the Fq-rational points of X, but whose
number of poles is bounded by B. Since the number of poles of f is equal to its number
of zeroes, we find that

m#X(Fq) ≤ B.

This implies an upper bound for #X(Fq). A modification of this idea leads to a lower
bound and to an estimate for the absolute values of the reciprocal zeroes φ of the zeta
functions ZX(T ) of X. The functional equation implies then that |φ| =

√
q which is the

analogue of the Riemann hypothesis.
Let ∞ be a point in X(Fq). We study the spaces

H0(m(∞)) = {f ∈ Fq(X) : ord∞(f) ≥ −m}

for m ≥ 0. By the Riemann-Roch Theorem, the dimension of H0(m(∞)) is equal to
m− g + 1 whenever m > 2g − 2. We have that

. . . ⊂ H0(m(∞)) ⊂ H0((m + 1)(∞)) ⊂ . . .

Let π denote a uniformizer at ∞. The sequences

0 −→ H0(m(∞)) −→ H0((m + 1)(∞)) e−→ Fq

given by e(g) = (gπm+1)(∞) are exact. Therefore the codimension of H0(m(∞)) inside
H0((m + 1)(∞)) is at most 1. It follows that we can choose an Fq-basis e1, . . . , et of
H0(m(∞)) for which

ord∞(e1) > ord∞(e2) > . . . > ord∞(et). (∗)

For a positive integer µ we let H0(m(∞))pµ

denote the Fq-vector space of functions of the
form fpµ

where f ∈ H0(m(∞)). By H0(a(∞))pµ

H0(b(∞))q we denote the Fq-subspace
of H0((apµ + bq)(∞)) generated by products fg of functions f ∈ H0(a(∞))pµ

and g ∈
H0(b(∞))q.

Lemma 1. Let a, b > 2g − 2 and let pµ be a power of p for which apµ < q. Let
e1, . . . , ea−g+1 and f1, . . . , fb−g+1 denote bases as in (*) of the vector spaces H0(a(∞)) and

H0(b(∞)) respectively. Then the products epµ

i fq
j for 1 ≤ i ≤ a−g+1 and 1 ≤ j ≤ b−g+1

form an Fq-basis for H0(a(∞))pµ

H0(b(∞))q.

Proof. Clearly the products epµ

i fq
j generate the vector space H0(a(∞))pµ

H0(b(∞))q. The
point is to show that they are independent. To this end we observe that the functions epµ

i fq
j

have poles of distinct orders at ∞. Indeed, if ord∞(epµ

i fq
j ) = ord∞(epµ

i′ fq
j′) we have that

pµ(ord∞(ei)− ord∞(ei′)) = q(ord∞(fj′)− ord∞(fj).
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Since the absolute value of pµ(ord∞(ei)−ord∞(ei′)) does not exceed pµa < q, we conclude
that i = i′ and hence that j = j′.

The lemma now follows from the fact that any functions hi ∈ H0(m(∞)) with poles
of distinct orders at ∞, are necessarily linearly independent. This proves the lemma.

Proposition 2. Let X be a curve of genus g over Fq. If q is a square and q > (2g + 2)2

then we have that
#X(Fq) < q + (3g + 1)

√
q.

Proof. We may assume that X(Fq) 6= ∅ and choose a point ∞ ∈ X(Fq). We consider
the space H0(a(∞))pµ

H0(b(∞))q of Lemma 1 with pµ =
√

q and a =
√

q − 1. Then
a > 2g − 2. We choose b > 2g − 2 later. These choices imply that the dimension of the
space H0(a(∞))pµ

H0(b(∞))q is equal to

dim H0(a(∞))× dim H0(b(∞)) = (a− g + 1)(b− g + 1).

We define an Fq-linear homomorphism

H0(a(∞))pµ

H0(b(∞))q −→ H0((apµ + b)(∞))

by mapping the basis vectors epµ

i fq
j to epµ

i fj . This homomorphism is well defined by
Lemma 1. The dimension of H0((apµ + b)(∞)) is equal to apµ + b− g + 1. Therefore, if

(a− g + 1)(b− g + 1) > apµ + b− g + 1,

there is a non-zero function f =
∑

ij cije
pµ

i fq
j in the kernel of this homomorphism. This

function f has the property that

f(P ) =
∑
ij

cijei(P )pµ

fj(P )q =
∑
ij

cijei(P )pµ

fj(P ) = 0

whenever P ∈ X(Fq). Since pµ < q, this shows that f has a zero of multiplicity at least
pµ in every P ∈ X(Fq) − {∞}. On the other hand the order of its pole at ∞ is at most
apµ + bq. It follows that

pµ(#X(Fq)− 1) ≤ #{zeroes of f} = #{poles of f} ≤ apµ + bq.

Substituting pµ =
√

q and a =
√

q − 1 this means that

#X(Fq) ≤ (b + 1)
√

q.

Now we choose b. This number should be at least 2g−2 and satisfy (a−g+1)(b−g+1) >
apµ − g + 1. This means that any choice of b must satisfy

b > g − 1 +
(q − 1)

√
q

√
q − 1− g

.
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Note that the right hand side of this inequality is larger than 2g− 2. We choose b as small
as possible. This b satisfies b ≤ g + (q−1)

√
q√

q−1−g so that

#X(Fq) ≤ (1 + g +
(q − 1)

√
q

√
q − 1− g

)
√

q ≤ √
q(g + 1) + q +

g
√

q − 1− g

which is at most q + (3g + 1)
√

q since
√

q > 2g + 2. This proves the Proposition.

Theorem 3. Let X be a curve of genus g over a finite field k. Then there is an extension
field k ⊂ Fq for which q is a square larger than (2g + 2)2 and

#X(Fqk) = qk + O(qk/2)

for all k > 0. Here the O-symbol depends only on the curve X.

Proof. Let f ∈ Fq(X) be a function that is not a p-th power. Then the field extension
Fq(f) ⊂ Fq(X) is separable and corresponds to a non-constant separable morphism πX :
X −→ P1. Let K be a finite extension of Fq(X) that is also a Galois extension of Fq(f).
Then K is the function field of an absolutely irreducible projective curve Y over Fqk for
some k ≥ 1. It may happen that the field of constants Fqk of K is strictly larger than Fq.
Extending the field of constants of Fq(f) and Fq(X) if necessary, we may assume that all
three curves P1, X and Y have the same field of constants, which we denote by Fq again.

Corresponding to the field inclusions Fq(f) ⊂ Fq(X) ⊂ Fq(Y ) = K we have the
Fq-morphisms

Y
π−→ X

πX−→ P1.

Let πY = πX · π be the composite morphism Y −→ P1. Let G = Gal(K/Fq(f)) =
Gal(Y/P1) and let H denote its subgroup Gal(K/Fq(X)) = Gal(Y/X).

Fix k ≥ 1. Let A denote the set of unramified points P ∈ Y (Fq) whose image πY (P )
is in P1(Fqk). Since P1 has qk + 1 rational points over Fqk , it is immediate that

#A = (qk + 1)#G + O(1)

where O(1) indicates a number that is at most the number of ramification points of the
covering Y of P1 over Fq. In particular, it is bounded independently of k.

Let ϕ denote the Frobenius morphism. It raises the coordinates of a point to the
power q. The Fq-morphisms π, πX and πY introduced above all commute with ϕ. It
follows that f or every unramified point P ∈ A the conjugate point ϕ(P ) maps to the same
point in P1 as P does. Therefore there is a unique σ ∈ G such that ϕ(P ) = σ(P ). For
every σ ∈ G put

Aσ = {P ∈ A:ϕ(P ) = σ(P )}.

The set A is a disjoint union of the Aσ’s.
By taking q so large that q > (2g + 2)2 we may assume that there is a point ∞ ∈

Y (Fq) and that the conditions of Proposition 2 are satisfied. Let σ ∈ G. If σ = idY ,
Proposion 2 implies that #Aσ ≤ qk + (3g + 2)

√
qk. We modify the proof of Prop. 2 and
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show that the same inequality holds for every σ. We let a =
√

q − 1 and pµ =
√

q and
consider the vector space H0(a(∞))pµ

H0(b(∞))q of functions in Fqk(Y ). We map it to
H0(pµa(∞) + b(σ−1(∞)) by mapping, in the notation of the proof of Prop. 2, the basis
vector epµ

i fq
j to epµ

i · (fj ◦ σ). Any function f =
∑

ij cije
pµ

i fq
j in the kernel of this map has

the property that

f(P ) =
∑
ij

cijei(P )pµ

fj(P )q =
∑
ij

cijei(P )pµ

fj(ϕ(P )) =
∑
ij

cijei(P )pµ

fj(σ(P )) = 0.

for every point P ∈ Aσ. The same arguments as in Prop. 2 now show that

#Aσ ≤ qk + (2g + 3)
√

qk

for every σ ∈ G. Since ∑
σ∈G

#Aσ = #A = (q + 1)#G + O(1),

there is a constant C > 0 so that #Aσ ≥ qk + 1 − Cqk/2. Since ∪σ∈HAσ is precisely the
set of unramified points P ∈ Y (Fq) for which π(P ) ∈ X(Fq), we see that

#H ·#X(Fq) =
∑
σ∈H

#Aσ = #H(qk + 1) + O(qk/2)

as k →∞. This proves the Theorem.

Corrolary 3. (A. Weil, 1948) Let X be a curve of genus g over a finite field Fq. Then
the reciprocal roots φ ∈ C of the function ZX(T ) satisfy

|φ| = √
q.

Proof. Since the reciprocal zeroes of the zeta function of X over Fqm are the m-th powers
of the zeroes of ZX(T ), it suffices to give the proof for a power of q. We will call this
power q again and choose it so large that the condition of Proposition 2 is satisfied: q is
a square exceeding (2g + 2)2 and the curves X, Y and the morphisms πY , πX and π of
Proposition 2 are all defined over Fq. We deduce that for large enough k we have that

#X(Fqk) = qk + 1 + O(qk/2).

and therefore, with the usual notation, that∑
φ

φk = O(qk/2).

This implies that the function f(z) =
∑

φ
1

1−φz has a radius of convergence at least as large
as q−1/2. Therefore |φ| ≤ √

q for each φ. The theorem now follows from the functional
equation satisfied by ZX(T ): when φ is a reciprocal root, so is q/φ and it follows that
|φ| = √

q for all φ as required.
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