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In the proof by Wiles, completed by Taylor-Wiles, of the fact
that all semistable elliptic curves over Q are modular, certain
deformation rings play an important role. In this note, we ex-
plicitly compute these rings for the elliptic curve Y 2 +XY =

X3 −X2 −X − 3 of conductor 142.

1. INTRODUCTION

In order to prove that semistable elliptic curves E over Q

are modular, A. Wiles [Wiles 95] considers the Galois

representation ρ : Gal(Q/Q) −→ GL2(F3) provided by

the 3-torsion points E[3] of a semistable elliptic curve E.

He proves that certain rather restricted deformations of

ρ are modular. It follows then that, in particular, the

deformation provided by the Galois representation ρE :

Gal(Q/Q) −→ GL2(Z3) associated to the 3-adic Tate

module of E is modular. This implies that the curve E

is modular.

Wiles proceeds in two steps. First, he considers certain

minimal deformations of ρ. Using the Langlands-Tunnell

Theorem [Gelbart 97, Theorem 1.3] and some so-called

“level lowering theorems” [Edixhoven 97], he constructs

a normalized eigenform of weight 2 and minimal level N

whose associated Galois representation

ρmin : Gal(Q/Q) −→ GL2(R)

is a minimal deformation of ρ. Here the ring R is a fi-

nite extension of Z3. R. Taylor and Wiles [Taylor and

Wiles 95] then show that the universal minimal deforma-

tion ring is isomorphic to a ring T of Hecke operators of

level N . It follows that the minimal deformations are all

modular.

It may happen that the representation ρE associated

to the 3-adic Tate module of E is itself not minimal.

Therefore, Wiles’s second step is to consider deforma-

tions of ρ that are not necessarily minimal, but satisfy
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p 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

ap 0 2 0 6 4 6 −8 −4 −2 −8 10 −2 −8 −4 0 10 −8 2

TABLE 1. Fourier coefficients ap.

more relaxed conditions at the primes that divide the

conductor of E. From the fact that the minimal defor-

mation ring is a Hecke ring, Wiles then deduces that the

corresponding universal deformation rings are also iso-

morphic to certain Hecke rings. It follows then that the

representation ρE is modular.

In this short note, we explicitly compute the relevant

universal deformation rings for a specific elliptic curve E.

The main result is Theorem 3.1. Our example is the

elliptic curve E of conductor 142 which is denoted by

“142A” in the Antwerp Tables [Birch and Kuyk 75] (it is

the curve 142C1 in J. Cremona’s Tables [Cremona 92]).

A Weierstrass equation for E is given by

Y 2 +XY = X3 −X2 −X − 3.

As we explain below, the representation

ρ : Gal(Q/Q) −→ GL2(F3)

provided by the 3-torsion points E[3] is unramified out-

side 3 and 71. Since 2 divides the conductor of E, but ρ

is not ramified at the prime 2, the representation ρE as-

sociated to the 3-adic Tate module of E is not a minimal

deformation of ρ. Indeed, the minimal universal deforma-

tion ring is isomorphic to a ring Tmin of Hecke operators

of level 71 rather than 142 = 2 · 71. We compute it in
Section 2. It has two Z3-valued points, one of which we

call ρmin and take it as the “origin” of the deformation

space Spec(Tmin). In Section 3, we study deformations

ρ of ρ that need not be unramified at 2. In this case, the

universal deformation ring considered by Wiles is isomor-

phic to a ring of Hecke operators of level 284 = 4 ·71. We
show that it is a complete intersection algebra of rank 8

over Z3. Since the elliptic curve E has conductor 142,

one might have expected the universal deformation ring

to be isomorphic to a Hecke ring of level 2 · 71 rather
than 4 · 71. Therefore, we also determine the two nat-
ural Hecke algebras of level 142 in Section 4. These have

Z3-ranks equal to 3 and 4 respectively. Both rings are

complete intersections.

For the Hecke rings T of levels 71, 142, and 284,

we also compute two invariants associated to the Z3-

algebras T and the morphisms π : T −→ Z3 provided

by ρmin. Writing I = ker(π), we determine the congru-

ence ideal η = π(Ann(I)) and the cotangent space I/I2

of T. We have that #(I/I2) = [Z3 : η] if and only if T

is a complete intersection [De Smit et al. 97, Criterion

I]. We conclude this introduction by giving some relevant

information concerning the curve 142A. Counting points

on E modulo the primes p with 3 ≤ p ≤ 67, one finds
that #E(Fp) = p+ 1− ap with ap as in Table 1.
For p 6= 2, 3, 71, the characteristic polynomial of a

Frobenius automorphism ϕp acting on E[3] is given by

T 2 − apT + p ∈ F3[T ]. As in [Serre 72, Section 5.5],

one deduces from Table 1 that ρ is surjective and hence

irreducible. Alternatively, the X-coordinates of the 3-

torsion points are the zeroes of the polynomial 3X4 −
3X3− 6X2− 36X +8. It is not difficult to show directly
that the Galois group of this polynomial is isomorphic

to S4, and deduce that the representation ρ is surjective.

We briefly discuss the behavior of the critical primes

2, 3, and 71 with respect to the representation ρ. The

discriminant of the curve 142A is equal to −2671.
• Since E has good reduction modulo 3, the represen-
tation ρ is “flat at 3”, i.e., the Zariski closure of the

3-torsion points in the Néron model of E over Z3 is

a finite flat group scheme. Since a3 = 0, the elliptic

curve E is supersingular modulo 3 and the represen-

tation ρ is non-ordinary.

• The curve E has multiplicative reduction modulo 71.
Since the 71-adic valuation of the discriminant is not

divisible by 3, the theory of the Tate curve implies

that the representation ρ is ramified at 71. More-

over, ρ is of type (A) at 71. This means that the

image ρ(I71) of the inertia group I71 at any prime

over 71 is contained in a subgroup conjugate toµ
1 ∗
0 1

¶
.

• The curve E has nonsplit multiplicative reduction

at 2. Since the 2-adic valuation of ∆ is divisible

by 3, the representation ρ is unramified and hence

flat at 2. Alternatively, one can show directly that

the number field generated by a zero of the quar-

tic polynomial above is only ramified at 3 and 71.

Because of this, the Galois representation ρE associ-

ated to the 3-adic Tate module of E is not a minimal

deformation of ρ in the sense of Wiles. See [Rio 95]

for similar octahedral calculations.
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2. THE HECKE RING OF LEVEL 71

In this section, we consider minimal deformations ρ :

Gal(Q/Q) −→ GL2(R) of the representation ρ :

Gal(Q/Q) −→ GL2(F3) associated to the 3-torsion

points of the elliptic curve 142A mentioned in the intro-

duction. Here R is a local Noetherian Z3-algebra with

residue field F3 and the diagram

GL2(R)

ρ%
y

Gal(Q/Q)
ρ−→ GL2(F3)

is commutative. We consider deformations ρ of the fol-

lowing type:

• ρ is unramified outside {3, 71};
• ρ is flat at 3;

• ρ is of type (A) at 71;

• the determinant of ρ is the cyclotomic character.
The first condition ensures that ρ is minimal. See [Mazur

97, Section 29]. Since the representation ρ is irreducible,

there exists by [Mazur 97, Sections 26, 29, and 31] a

universal deformation of this type:

ρuniv : Gal(Q/Q) −→ GL2(Runiv).

Wiles shows [De Shalit 97, Theorem 8] that the universal

deformation ring Runiv is isomorphic to a certain local

3-adic ring Tmin of Hecke operators Tn. The ring Tmin

is the Z3-subalgebra

Tmin ⊂ T̃ =
Y
f

Of

generated by the vectors Tn = (an(f))f . Here f runs

over the normalized 3-adic eigenforms of level 71 whose

Fourier coefficients ap(f) are congruent to the coefficients

ap associated to the curve 142A. The rings Of denote

the rings of integers of the extension of Q3 generated by

the Fourier coefficients ap(f) of f . By Theorem 5.2 in

the appendix, Tmin is generated as a Z3-module by the

operators Tn with n ≤ 2 · 72/12 = 12. Note that by [Di-
amond and Ribet 97, Lemma 3.2], the Hecke operators

Tp with p 6= 3 generate Tmin as a Z3-algebra. Therefore,
our definition of Tmin agrees with the one in [Diamond

and Ribet 97, Section 3].

The space S2(Γ0(71)) of weight 2 cusp forms of level 71

has dimension 6 and a basis can be found in [Darmon 95]

or can be computed with W.A. Stein’s package [Stein 00].

n an(f71) an(f
0
71) mod 81

1 1 1 (1,1)

2 u 3− u− u2 (60,69)

3 3− u2−3 + u+ u2 (48,12)

4 −2 + u2 1 + u (34, 61)

5 −1− u 5− 2u− u2 (20, 11)

6 3− 2u −3− u (45, 18)

7 −6 + 2u+ 2u2 −6 + 2u+ 2u2 (24,24)

8 −3 + u −u (57, 21)

9 6− 3u− u2 u (33,60)

10 −u− u2 6 + u− u2 (66, 30)

11 6− 2u− 2u2 2u (57,39)

12 −6 + 3u −6 + 3u+ 2u2 (12, 3)

TABLE 2. Hecke operators Tn.

The Hecke action decomposes S2(Γ0(71)) over Q into a

product of two subspaces of dimension 3 corresponding to

a pair of new forms f71 and f
0
71. The Fourier coefficients

an(f71) of f71 or an(f
0
71) of f

0
71 are contained in the same

totally real cubic field of discriminant 257, generated by

u where u3 − 5 u+ 3 = 0. For n ≤ 12, they are listed in
Table 2.

The polynomial X3 − 5X + 3 ∈ Z3[X ] factors as a
product of a linear and an irreducible quadratic factor.

Mapping u to the unique root u0 of X
3 − 5X + 3 in Z3,

we obtain a 3-adic eigenform which we also denote by

f71 and whose Fourier coefficients ap(f71) are congruent

to the coefficients ap associated to the curve 142A. See

Table 1. On the other hand, mapping u to a root of the

irreducible quadratic divisor of X3 − 5X + 3, gives rise

to a 3-adic eigenform whose Fourier coefficients are not

congruent to the coefficients ap. The same happens with

the other eigenform f 071.
Using the approximation u0 ≡ 60 (mod 34), we list the

vectors Tn = (an(f71), (an(f
0
71))in the rightmost column

of Table 2 with a precision of O(34). The Hecke ring

Tmin is the Z3-submodule of T̃ = Z3 × Z3 generated by
the vectors Tn for n ≤ 12.
The following lemma enables us to do the 3-adic com-

putations with finite precision.

Lemma 2.1. Let R be a Noetherian local ring with maxi-
mal ideal m and let M be a finitely generated R-module.

Let M1 and M2 be two submodules of M and suppose

there is an integer k > 0 for which

(i) M1 +m
kM =M2 +m

kM ,

(ii) mk−1M ⊂M2;

then M1 =M2.
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Proof: Since mk−1M ⊂ M2 ⊂ M1 +m
kM , Nakayama’s

Lemma implies that mk−1M ⊂ M1. This implies that

mkM is contained inM1 as well asM2 so thatM1 =M2

as required.

Theorem 2.2. There is an isomorphism between complete
intersections

Tmin ∼= Z3[[X]]/(X2 − 9X).

Proof: We apply Lemma 2.1 to the Z3-module M = T̃

and to the submodules M1 = T and M2, the Z3-

submodule generated by any lifts of the row vectors in

the rightmost column of Table 2. It is easy to see that

M2 has Z3-basis (1, 1) and (0, 9) so that 3
2T̃ ⊂ M2.

Now let k = 3; then 3k−1T̃ ⊂ M2. Since the compu-

tations were done with an accuracy of O(34), we have

that M1 = M2 modulo 3
kT̃. It follows that Tmin is

the Z3-module generated by 1 = (1, 1) and x = (0, 9).

As a Z3-algebra, Tmin is therefore generated by x. Since

x2 = 9x, the homomorphism Z3[X]/(X
2−9X) −→ Tmin

given by X 7→ x is an isomorphism. Since the natural

map Z3[X]/(X
2− 9X) −→ Z3[[X]]/(X

2− 9X) is an iso-
morphism, the theorem follows.

The two Z3-valued points π,π0 : Z3[[X ]]/(X
2 −

9X) −→ Z3 given by π(X) = 0 and π0(X) = 9

are precisely the algebra homomorphisms given by, say,

Tn 7→ an(f71) and Tn 7→ an(f
0
71), respectively. The η-

invariant with respect to the first point is the Z3-ideal

η = π(AnnT(I)) where I = ker(π) = (X). Since T

is a complete intersection, η is also the ideal for which

#Z3/η = #(X)/(X
2). Using either description, one eas-

ily checks that η is the Z3-ideal generated by 3
2. See [De

Smit et al. 97, Criterion I].

3. THE HECKE RING OF LEVEL 284

In this section, we consider deformations ρ :

Gal(Q/Q) −→ GL2(R) of the representation ρ that are

not necessarily minimal at the prime 2. As in Wiles’s

paper [Wiles 95], these representations are supposed to

satisfy the following more relaxed conditions:

• ρ is unramified outside {2, 3, 71};

• ρ is flat at 3;

• ρ is of type (A) at 71;

• the determinant of ρ is the cyclotomic character.

It follows from the theory of the Tate curve that the

deformation given by the 3-adic Tate module of the curve

142A is of this type. According to Wiles, the universal

deformation ring is isomorphic to a certain 3-adic Hecke

ring T of level 284 = 4 · 71 rather than 142 = 2 · 71. See
the remarks in [Diamond and Ribet 97, p. 361].

The Hecke operators Tn in the algebra T of level 284

can be represented as row vectors (an(f))f with f =

f(z) running through the normalized 3-adic eigenforms

of level 284 whose Fourier coefficients ap(f) are, for prime

p 6= 2, 3, congruent to the coefficients ap associated to the
elliptic curve 142A, while a2(f) = 0. The forms f are of

the form g(z), g(z)− b2g(2z) or g(z)− b2g(2z) + 2g(4z)
where g(z) =

P
n≥1 bnq

n is a newform of level 284, 142,

or 71, respectively. Since T2 = 0, the vectors Tn are

zero whenever n is even. The newforms of level 71 have

already been described in the previous section. The new

part of the space of weight 2 cusp forms S2(Γ0(142)) is a

product of 1-dimensional eigenspaces for the action of the

Hecke algebra. The Fourier coefficients of the eigenforms

can be found in the Antwerp Tables [Birch and Kuyk 75].

The Fourier coefficients of three of these, viz. 142A, 142F

and 142G, are for p 6= 2, congruent to the coefficients

ap of the curve 142A. Finally, there is up to conjugacy

only one newform of level 284 whose Fourier coefficients

ap(f284) are for p 6= 2, congruent to the coefficients ap of
the curve 142A. Its coefficients are contained in the cubic

field Q3(t) where t
3 + 3 t2 − 3 = 0. This totally ramified

extension of Q3 has discriminant 81. Its ring of integers

is Z3[t].

In this way, the Hecke ring T becomes the Z3-

subalgebra of T̃

T ⊂ T̃ = Z3 × Z3 × Z3 × Z3 × Z3 × Z3[t]
generated as a Z3-module by the Hecke operators Tn with

n odd. Here Tn is identified with the row vector con-

sisting of the n-th Fourier coefficients of the eigenforms

f71, f
0
71, 142A, 142F , 142G, and f284 as displayed in

the n-th row of Table 3. The q-expansion of the new-

form of level 284 was computed using modular symbols

as in [Stein 00].

By Theorem 5.2 in the appendix, T is generated as a

Z3-module by the operators Tn with n ≤ 2·6·72/12 = 72.
Since Tn is zero when n is even, it suffices to consider only

the Tn for n odd. We remark that by [Diamond and Ri-

bet 97, Lemma 3.2] one does not need T3 to generate T.

Therefore our Hecke algebra agrees with the one in [Di-

amond and Ribet 97, Section 3].

The additive group of T̃ is a free Z3-module of rank 8.

Choosing the Z3-basis {1, t, t2} for Z3[t], we view the
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n an(f71) an(f
0
71) 142A 142F 142G an(f284)

1 1 1 1 1 1 1

3 3− u2 −3 + u+ u2 0 −3 3 t

5 −1− u 5− 2u− u2 2 −4 2 −1− 3t− t2
7 −6 + 2u+ 2u2 −6 + 2u+ 2u2 0 −3 −3 −6 + 2t+ 2t2
9 6− 3u− u2 u −3 6 6 −3 + t2
11 6− 2u− 2u2 2u 6 0 −6 2t

13 4 −2− 2u 4 1 −5 4− 6t− 4t2
15 −6 + 2u+ u2 −6− u+ u2 0 12 6 −3− t
17 −6 + 2u+ 2u2 6− 2u2 6 0 6 −6 + 6t+ 4t2
19 7− u− u2 7− u− 2u2 −8 −5 1 −2− t2
21 −12 + 2u+ 2u2 6 + 2u 0 9 −9 3− 6t− t2
23 −4 + 2u2 −4 −4 −7 5 8− 2t2
25 −4 + 2u+ u2 8− 3u− u2 −1 11 −1 5 + 9t+ 2t2

...
...

...
...

...
...

...

67 −4 + 4u −4− 2u 2 −4 2 −4 + 2t2
69 −12 + 6u 12− 4u− 4u2 0 21 15 −6 + 8t+ 6t2
71 1 1 1 1 1 1

TABLE 3. Hecke operators Tn.

Hecke operators Tp as vectors in Z
8
3. For example, the

Hecke operator T25 in Table 3 becomes the vector

(−4 + 2u+ u2, 8− 3u− u2 ,−1 , 11 ,−1 , 5 , 9 , 2).

We do the computations modulo 37. As in Section 2,

let u denote the unique root in Z3 of the polynomial

X3 − 5X + 3. We have that

u = 2·3 + 2·33 + 34 + 2·35 + 2·36 +O(37).

Applying Hermite reduction to the row vectors, we find

the matrix below. Let M2 be the Z3-submodule of T̃

spanned by its rows. Incidentally, we find the same ma-

trix using only the rows n = 1, 3, . . . , 17. This means

that the moduleM2 is already generated by the Tn with n

odd and n ≤ 17. Now we apply Lemma 2.1 withM = T̃,

M1 = T, and M2. It is easy to see that 3
5T̃ ⊂ M2. We

take k = 6. Then 3k−1T̃ ⊂ M2 and, since we did the

computations with an accuracy of O(37), we certainly

have M1 + 3
kT̃ = M2 + 3

kT̃. It follows that T = M2.

Thus, as a Z3-module, T is generated by the rows of the

matrix 

1 1 1 1 1 1 0 0

0 9 0 6 18 0 0 1

0 0 3 0 54 0 −1 −1
0 0 0 9 0 0 0 1

0 0 0 0 81 0 0 1

0 0 0 0 0 3 0 0

0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 3


.

For later use, we observe that the determinant of the

matrix and hence the index [T̃ : T] are equal to 312. The

first row of the matrix is the unit element 1 ∈ T. We let
x = (0, 9, 0, 6, 18 , t2) be the element corresponding

to the second row and y = (0, 0, 3, 54, −t − t2) be
the one corresponding to the third row. The morphism

ϕ : Z3[X,Y ] −→ T given by f(X,Y ) 7→ f(x, y) extends

to a Z3-algebra morphism

bϕ : Z3[[X,Y ]] −→ T.

This follows from the fact that xn, yn → 0 in T̃ as n →
∞.

Theorem 3.1. The ring homomorphism bϕ induces an iso-
morphism of Z3-algebras

Z3[[X,Y ]]/(F1, F2)
∼=−→T,

where

F1 = 29412Y − 9804Y 2 − 91158XY − 1641XY 2
+ 11618X2Y − 787(X3 − 15X2 + 54X),

F2 = 8514Y − 477Y 2 − 8204XY + 1741XY 2
+ 2369X2Y − 787Y 3.

Proof: We compute a few monomials in x and y of low

degree in the subring T of T̃:
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1 = ( 1, 1, 1, 1, 1, 1 ),

x = ( 0, 9, 0, 6, 18, t2 ),

y = ( 0, 0, 3, 0, 54, −t− t2 ),

x2 = ( 0, 81, 0, 36, 324, −9 + 3t+ 9t2 ),

xy = ( 0, 0, 0, 0, 972, 6− 3t− 6t2 ),

y2 = ( 0, 0, 9, 0, 2916, −3 + 3t+ 4t2 ),

x2y = ( 0, 0, 0, 0, 17496, 45− 18t− 39t2 ),

xy2 = ( 0, 0, 0, 0, 52488, −27 + 12t+ 24t2 ).

Using the Z3-basis {1, t, t2} for the ring Z3[t], we write
these eight vectors as row vectors in Z83. The determi-

nant of the resulting 8× 8 matrix is equal to −22312787.
Since the index [T̃ : T] is equal to 312, this implies that

the Hecke ring T is equal to the Z3-span of the eight

monomials above. It follows that ϕ and hence bϕ are sur-
jective. In order to determine the kernels of ϕ and bϕ, we
express x3, y3, and x2y2 as Z3-linear combinations of the

eight monomials above. Solving the corresponding linear

systems of eight equations in eight unknowns, one finds

that

787x3 = 29412y − 9804y2 − 91158xy − 1641xy2
+ 11618x2y − 787(54x− 15x2),

787y3 = 8514y − 477y2 − 8204xy + 1741xy2 + 2369x2y,
787x2y2 = 15444y − 5148y2 − 15870xy + 12657xy2

+ 6219x2y.

In other words, F1(x, y) = F2(x, y) = F3(x, y) = 0 where

F1 and F2 are as above and

F3 = 15444Y − 5148Y 2 − 15870XY + 12657XY 2
+ 6219X2Y − 787X2Y 2.

Therefore, J = (F1, F2, F3) ⊂ ker(ϕ). Since Z3[X,Y ]/J
has Z3-rank at most 8, it follows that ker(ϕ) = J . Writ-

ing J 0 for the Z3[[X,Y ]]-ideal (F1, F2, F3), there is a com-
mutative diagram

Z3[X,Y ]/J
∼=−→ T.y %

Z3[[X,Y ]]/J
0

Here the diagonal arrow is the morphism induced by bϕ.
It is surjective. Reducing everything modulo 3, we obtain

the diagram

F3[X,Y ]/J
∼=−→ T/3T,y % ϕ

F3[[X,Y ]]/J
0

where J and J
0
denote the ideals generated by the re-

duced polynomials F 1, F 2 and F 3 in the rings F3[X,Y ]

and F3[[X,Y ]], respectively, and ϕ : F3[[X,Y ]]/J
0 −→

T/3T denotes the surjective morphism induced by bϕ.
Since F3[X,Y ]/J is an Artin ring, the natural map to

the product of the completions at its maximal ideals is

an isomorphism. Since the vertical map is the natural

map from F3[X,Y ]/J to its completion at the maximal

ideal (X,Y ), it is surjective. We conclude that ϕ is an

isomorphism

F3[[X,Y ]]/J
0 ∼=−→ T/3T.

From

F 1 = −X3 −X2Y,

F 2 = −Y 3 +X Y +X Y 2 −X2Y,

F 3 = −X2Y 2,

we obtain the relation

−Y (X − 1)F 1 +X2F 2 = (1 +X + Y )F 3

in F3[[X,Y ]]. Since 1 + X + Y is a unit in F3[[X,Y ]],

the monomial F 3 belongs to the ideal (F 1, F 2) so that

J
0
= (F 1, F 2). We claim that the ideal bJ = ker(bϕ) ⊂

Z3[[X,Y ]] is generated by F1 and F2. Indeed, since the

Hecke algebra T is free over Z3, the exact sequence,

0 −→ bJ −→ Z3[[X,Y ]] −→ T −→ 0,

remains exact after tensoring with F3. It follows thatbJ/3 bJ = J 0 = (F 1, F 2). Therefore
bJ ⊂ (F1, F2) + 3 bJ ⊂ (F1, F2) +m bJ

where m = (3, X, Y ) denotes the maximal ideal of the

local ring Z3[[X,Y ]]. Nakayama’s Lemma implies then

that bJ = (F1, F2). This proves the theorem.
The “points” of the Hecke algebra T are (X,Y ) =

(0, 0), (9, 0), (0, 3), (6, 0), (18, 54), and the three conju-

gates of (t2,−t− t2). The first two points correspond to
the newforms of level 71, the next three to eigenforms of

level 142 and the three conjugates of (t2,−t − t2) to an
eigenform of level 284. The point (0, 3) corresponds to

the elliptic curve 142A of the introduction. The point

(0, 0) is our origin. The canonical morphism from T to

the minimal universal deformation ring of Section 2 is

given by X 7→ X and Y 7→ 0. Since T is a complete in-

tersection, the η-invariant associated to it is equal to the

Z3-ideal generated by #I/I
2 where I is the ideal (X,Y ).
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The order of I/I2 is given by the determinant of the ma-

trix of the coefficients of the linear terms of F1 and F2.

Since

F1 = −787·54X + 29412Y + terms of deg ≥ 2,
F2 = 8514Y + terms of deg ≥ 2,

it is the Z3-ideal generated by

η = det

µ−787·54 29412

0 8514

¶
= 35 · (unit).

This is 33 times the η-invariant of the minimal defor-

mation ring computed in Section 2. This agrees with

[Diamond and Ribet 97, Lemma 4.4] because the con-

tribution there of the Euler factors at 2 is equal to

(1 − 2)((1 + 2)2 − a2(f71)2) = −32 + u2 and has 3-adic
valuation equal to 3.

4. THE HECKE RINGS OF LEVEL 142

In this section, we study 3-adic Hecke ringsT of level 142.

In contrast to the Hecke rings of levels 71 and 284, there

are two natural Hecke algebras of level 142 to consider.

One is the completion Tm of the Hecke algebra at the

maximal ideal m corresponding to the representation ρ

on the 3-torsion points of the elliptic curve 142A. Since E

has nonsplit multiplicative reduction modulo 2, the ideal

m is generated by 3, by Tp− ap for p odd and by T2+1.
The other is the completion Tm0 at the maximal ideal

m0 generated by 3, by Tp − ap for p odd and by T2 − 1.
In order to describe these two Hecke rings, we re-

call that f71 and f
0
71 denote the two 3-adic newforms

of level 71 and let α,β ∈ Z3 denote the zeroes of

the characteristic polynomial T 2 − a2(f71)T + 2. Sim-
ilarly, α0,β0 ∈ Z3 denote the zeroes of the polynomial
T 2 − a2(f 071)T + 2. We choose α,α0 ≡ 1 (mod 3) so that
β,β0 ≡ −1 (mod 3). Then

fα(z) = f71(z)− βf71(2z),
fβ(z) = f71(z)− αf71(2z),

are eigenforms of level 142. We have that T2(fα) = αfα
and T2(fβ) = βfβ . Similarly,

fα0(z) = f
0
71(z)− β0f 071(2z),

fβ0(z) = f
0
71(z)− α0f 071(2z),

are eigenforms with T2-eigenvalues equal to α0 and β0,
respectively. The forms fα, fβ , fα0 , and fβ0 are also

eigenforms of the Hecke operators Tn with n odd with

eigenvalues equal to the ones of level 71.

The elliptic curve 142G has equation Y 2 + XY =

X3−X2−2626X+52244. Like 142A, it has nonsplit mul-
tiplicative reduction at 2. On the other hand, the curve

142F given by Y 2 + XY + Y = X3 − X2 − 12X + 15

has split multiplicative reduction. Therefore, the Hecke

algebra Tm is isomorphic to the Z3-subalgebra of T̃ =

Z3×Z3×Z3×Z3 of the row vectors consisting of the n-th
Fourier coefficients of fβ, fβ0 , 142A, and 142G, while the

Hecke algebra Tm0 is isomorphic to the Z3-subalgebra of

T̃0 = Z3×Z3×Z3 consisting of the row vectors consisting
of the n-th Fourier coeffients of fα, fα0 and 142F.

Consider the Hecke algebra Tm first. The operators

Tn with odd n ≤ 71 generate the Z3-submodule spanned
by the rows of the 8 × 8 matrix of Section 3, omitting the
columns corresponding to the curve 142F and the new-

forms of level 284, i.e., omitting columns 4, 6, 7, and 8.

In other words, the Hecke operators Tn with odd n ≤ 71
generate the Z3-submodule M of T̃ = Z3×Z3×Z3×Z3
spanned by the rows of the matrix

1 1 1 1

0 9 0 18

0 0 3 54

0 0 0 81

 .
Since a2(f71) = u ≡ 627 (mod 36), the zeroes α and β

of the characteristic polynomial T 2 − a2(f71)T + 2 sat-
isfy α ≡ 448 (mod 36) and β ≡ 179 (mod 36), respec-

tively. Similarly, a2(f
0
71) = 3 − u − u2 ≡ 636 (mod 36)

and hence α0 ≡ 709 (mod 36) and β ≡ 656 (mod 36).

Therefore, the Hecke operator T2 corresponds to the row

vector (179, 656,−1,−1). It is not difficult to check that
T2 · M ⊂ M so that M is actually equal to the Z3-

submodule generated by all Hecke operators Tn with

n ≤ 71. Therefore, by the results of the appendix,

M = Tm.

In order to calculate the algebra structure of Tm, we

let x and y ∈ Tm be the elements corresponding to the

second and third row of the matrix above. The matrix

with row vectors corresponding to 1, x, x2 and y is equal

to 
1 1 1 1

0 9 0 18

0 81 0 324

0 0 3 54

 .
It has determinant −2 · 36 which, up to a unit, is equal
to the determinant of the 4 × 4 matrix we started with.
Therefore, the elements 1, x, x2, and y form a Z3-basis for

Tm. One checks that y
2−3y−17(x2−9x), xy−6(x2−9x),
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and (x−18)(x2−9x) are all zero. The last polynomial is
a linear combination of the first two in the ring Tm/3Tm

and hence in the Hecke ring Tm itself. Nakayama’s

Lemma and the arguments of the proof of Theorem 3.1

imply, therefore, that there is an isomorphism of Z3-

algebras

Tm ∼= Z3[[X,Y ]]/(Y 2 − 3Y − 17(X2 − 9X),
XY − 6(X2 − 9X)),

mapping x, y to X,Y , respectively. As predicted by

[Tilouine 97, Theorem 3.4], the ring Tm is a Gorenstein

ring. It is even a complete intersection. The four “points”

of Tm are (X,Y ) = (0, 0), (0, 3), (9, 0), and (18, 54). The

point (0, 3) corresponds to the elliptic curve 142A. The

point (0, 0) corresponds to the form fβ of level 71. It

is the ‘origin’ of the deformation space. It follows that

Wiles’s η-invariant is generated by the order of I/I2,

where I = (X,Y ). One easily checks that it is equal

to 34.

For the sake of completeness, we also determine the

structure of the Z3-algebra Tm0 . Note however that

the associated modular representation Gal(Q/Q) −→
GL2(Tm0) is not a deformation of the representation ρE
we started with. The operators Tn with odd n ≤ 71 gen-
erate the Z3-submodule spanned by the rows of the 8 ×
8 matrix of Section 3, omitting columns 3, 5, 6, 7, and 8.

In other words, they generate the Z3-submodule M
0 of

T̃0m = Z3 × Z3 × Z3 spanned by the rows of the matrix1 1 1

0 9 6

0 0 9

 .
The Hecke operator T2 corresponds to the row vector

(448, 709, 1). It is not difficult to check that T2 ·M 0 ⊂M 0

so that M 0 is actually equal to the Z3-submodule gener-
ated by all Hecke operators Tn with n ≤ 71. Therefore,
by the results of the appendix, M 0 = Tm0 .

In order to calculate the algebra structure of Tm0 , we

let x be the element corresponding to the second row of

the matrix. The matrix with row vectors corresponding

to 1, x and x2 has determinant 2 ·34 which, up to a unit,
is equal to the determinant of the 3 × 3 matrix above.
Therefore, the elements 1, x, and x2 form a Z3-basis for

Tm0 . One checks that (x − 6)(x2 − 9x) = 0. It follows

that there is an isomorphism of Z3-algebras

Tm0 ∼= Z3[[X ]]/(X(X − 6)(X − 9)),

mapping x to X. As predicted by [Tilouine 97, Theo-

rem 3.4], the ring Tm0 is a Gorenstein ring. It is even

a complete intersection. The three “points” of Tm0 are

X = 0, 6, and 9, respectively. None of these points cor-

responds to the elliptic curve 142A. The point (0, 0) cor-

responds to the form fα of level 71. If we take it as the

origin of the deformation space, the η-invariant is equal

to the ideal generated by 33.

5. APPENDIX

In this appendix, we1 apply a result of J. Sturm to obtain

a bound on the number of Hecke operators needed to

generate the Hecke algebra as an abelian group. This

bound was suggested to the authors of this appendix by

Löıc Merel and Ken Ribet.

Theorem 5.1. The ring T of Hecke operators acting on

the space of cusp forms of weight k and level N is gener-

ated as an abelian group by the Hecke operators Tn with

n ≤ kN
12

·
Y
p|N

µ
1 +

1

p

¶
.

Proof: For any ring R, let Sk(N ;R) = Sk(N ;Z) ⊗ R,
where Sk(N ;Z) is the subgroup of cusp forms with in-

teger Fourier expansion at the cusp ∞, and let TR =

T⊗ZR. There is a perfect pairing Sk(N ;R)⊗RTR → R

given by hf, T i 7→ a1(T (f)).

Let M be the submodule of T generated by

T1, T2, . . . , Tr, where r is the largest integer ≤ kN
12 ·Q

p|N
³
1 + 1

p

´
. Consider the exact sequence of additive

abelian groups:

0→M
i→ T→ T/M → 0.

Let p be a prime and use the fact that the tensor product

is right exact to obtain an exact sequence

M ⊗ Fp i→ T⊗ Fp → (T/M)⊗ Fp → 0.

Suppose that f ∈ Sk(N ;Fp) pairs to 0 with each of

T1, . . . , Tr. Then am(f) = a1(Tmf) = hf, Tmi = 0 in

Fp for each m ≤ r. By Theorem 1 of Sturm’s paper, it

follows that f = 0. Thus the pairing restricted to the

image of M ⊗ Fp in T⊗ Fp is nondegenerate, so

dimFp i(M ⊗ Fp) = dimFp Sk(N,Fp) = dimFp T⊗ Fp.

It follows that (T/M)⊗Fp = 0; repeating the argument
for all primes p shows that T/M = 0, as claimed.

1This appendix was contributed by A. Agashe and W. Stein.
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Remark 5.2. In general, the theorem is not true if one

considers only Tn where n runs over the primes less than

the bound. Consider, for example, S2(11), where the

bound is 2 and T2 is the 1 × 1 matrix [2], which does
not generate the full Hecke algebra as a Z-submodule

of End(S2(Γ0(N),Z)). One needs, in addition, the ma-

trix [1].
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