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ABSTRACT. It is conjectured that there exist finitely many isomorphism classes
of simple endomorphism algebras of abelian varieties of GLa-type over Q of
bounded dimension. We explore this conjecture when particularized to quater-
nion endomorphism algebras of abelian surfaces by giving a moduli interpreta-
tion which translates the question into the diophantine arithmetic of Shimura
curves embedded in Hilbert surfaces. We address the resulting problems on
these curves by local and global methods, including Chabauty techniques on
explicit equations of Shimura curves.

1. INTRODUCTION

An abelian variety A defined over Q is said to be of GLa-type over Q if the
endomorphism algebra End%(A) = Endg(A4) ® Q is a (necessarily totally real or
complex multiplication) number field of degree [End?Q(A) :Q] = dim A. An abelian
variety A is called modular over Q if it is a quotient of the Jacobian variety J; ()
of the modular curve X;(N) defined over Q. If moreover A is simple over Q, its
modularity over Q is equivalent to the existence of an eigenform f € Sy(T'1(N))
such that A is isogenous over Q to the abelian variety A attached by Shimura to f.
As is well-known, all simple modular abelian varieties A over Q are of GLa-type
over Q and the generalized Shimura-Taniyama-Weil Conjecture predicts that the
converse holds (cf. [29]).

We might ask what simple algebras B arise as the endomorphism algebra End’) (A)
of an abelian variety A of GLa-type over Q for some field extension L/Q. As mod-
ular computations show, it might be predicted that these should not constitute a
very large class of algebras (cf. also [9]). This is gathered in the following conjecture.

Conjecture 1.1. Let g > 1 be a positive integer. The set &, = {End) (A)} of
isomorphism classes of endomorphism algebras of abelian varieties A of GLa-type
over Q of dimension g over any field extension L/Q is a finite set.

The conjecture holds for g = 1: namely,
& ={Qtu{Q(v—-d):d=1,2,3,7,11,19,43,67,163}.

On the other hand, the case g > 2 is completely open. It is known that if A is
an abelian surface of GLo-type over Q then, for any number field L, the endomor-
phism algebra End (A) is either a quadratic field, Ms(Q), My (K) for an imaginary
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quadratic field K, or a division quaternion algebra over Q (cf. [28], Proposition 1.1
and Theorem 1.3, [36]).

The aim of this article is to address the question for g = 2, and in particular for
quaternion endomorphism algebras. We make the following definitions.

Definition 1.2. Let Bp be a division quaternion algebra over Q of reduced dis-
criminant D and let m # 1 be a square-free integer.
(1) The pair (D,m) is modular (resp. of GLa-type) over Q if there exists an
abelian surface A modular (resp. of GLa-type) over Q such that End%(A) ~
Bp and Endg(A) ~ Q(y/m).
(2) The quaternion algebra Bp is modular (resp. of GLa-type) over Q if (D, m)
is modular (resp. of GLa-type) for some square-free integer m.

As a first observation, we point out that if (D, m) is a pair of GLa-type, then
[12] yields that m > 1 and Shimura [36] proved that Bp is indefinite, i.e., that
Bp ® R ~ M3(R). We state a particular consequence of Conjecture 1.1 separately.

Conjecture 1.3. The set of pairs (D,m) of GLa-type over Q is finite.

This conjecture implies that there are only finitely many quaternion algebras of
GLa-type over Q and a fortiori that there are only finitely many modular quaternion
algebras over QQ as well. It is also worth noting that, given a fixed quaternion algebra
Bp, there are infinitely many real quadratic fields Q(y/m) that embed in Bp, since
any field Q(y/m) with m such that () # 1 for all p|D does.

One of the motivations for Conjecture 1.3 is computational. Let us agree to
define the minimal level of a modular pair (D, m) as the minimal N such that there
exists a newform f € Sa(To(N)) with (Bp, Q(y/m)) ~ (End%(Af),End(%(Af)). The
computations below are due to Koike and Hasegawa for N < 3000, and extended
to N < 5000 by Clark and Stein.

Proposition 1.4. [1], [18] The only modular pairs (D,m) of minimal level N <
5000 are:

(D.m) [ (6.2) [ (6,3) [ (6.6) [ (10,10) [ (14,7) [ (15,15)
N 675 1568 | 243 2700 1568 | > 3000

In Theorem 1.9 we show that, despite the finiteness Conjecture 1.3, the above
are not the only examples of pairs (D, m) of GLa-type over Q. According to the
generalized Shimura-Taniyama-Weil Conjecture in dimension two, the pairs of The-
orem 1.9 below should actually be modular pairs.

On the other hand, it is remarkable that not a single example of a quaternion
algebra Bp nor a pair (D, m) has ever been excluded from being modular or of
GLy-type over Q. In this work we present the first examples, either obtained by
local methods or by methods using global information.

The strategy followed in this paper is to prove that the condition for a pair
(D,m) to be of GLa-type over Q is equivalent to the existence of a point in a
suitable subset of the set of rational points on an Atkin-Lehner quotient of the
Shimura curve Xp attached to Bp, which we make fully explicit in Section 4.

The article is organized as follows. In Section 2, we give a moduli interpretation
of Conjecture 1.3 which is based on the results in [32], [33]. By using this moduli
interpretation, in Section 3 we obtain the following finiteness theorem.
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Theorem 1.5. If the pair (D, m) is of GLa-type over Q, then m|D and the set of
rational points on the quotient of the curve Xp by the Atkin-Lehner involution wy,
contains a non-Heegner point. In particular, for a given quaternion algebra Bp the
set of pairs (D, m) of GLa-type is finite.

For the proof of Theorem 1.5 we refer to Theorem 3.1. In view of the above
result, we wonder which pairs (D, m), m|D, are of GLa-type and the first natural
step in our programm is the consideration of the set of rational points on Xgn) over
the local completions of Q.

The study of local points on Xj(jm) over Q, for primes p { D has been considered
in [35] by means of trace formulae of Hecke operators. As we show in Section 3,
Proposition 3.3 (i), this serves us to exhibit some isolated pairs (p - ¢, ¢) which are
not of GLa-type over Q.

Over the field R of real numbers and the p-adic fields Q, for p|D, this question
was studied by Ogg in [27]. We obtain from his work and Theorem 1.5 the following
result, which establishes that all pairs (D, m) for m = D/p;-... pg, k > 2, are not
of GLa-type.

A stronger result is given in Proposition 3.3 (ii), (iii) and (iv). For the sake of
neatness, we only give here the precise statement in the case that D = p - q is the
product of two primes.

Proposition 1.6. Let (D,m) be a pair of GLa-type over Q. Then either m = D
orm = D/p for some p|D.
Assume that (D,m) = (p-q,q).

(i) Ifp, g # 2, then (%) = —1 and either p=3 mod 4 or p=>5 mod 12, ¢ =3
mod 4.
(ii) Ifp=2, then ¢ =3, 5 or 7 mod 8.
(i) If g =2, then p=3 or 5 mod 8.

It follows from Proposition 1.6 and the Cebotarev density Theorem that there
actually exist infinitely many pairs (p - ¢, ¢) which are not of GLa-type.

However, local methods are insufficient to prove that a given quaternion algebra
Bp is not of GLa-type over Q. More precisely, due to Proposition 3.3 (v), it follows
that only global approaches can be used to prove that the pairs (D, D) are not of
GLs-type over Q, because the curves X E)D) have rational points everywhere locally.

The second step is to study the set of global rational points in X(Dm)((@) and to
compare its cardinality with the number of rational Heegner points on that curve.
This procedure allows us to exclude a pair (D, m) from being of GLy-type over Q
whenever the rational Heegner points exhaust all points in Xj(jm)(Q).

By using the explicit equations of Atkin-Lehner quotients of Shimura curves in
[16], [22], [23] and Chabauty methods using elliptic curves, we are able to prove that
several quaternion algebras Bp and pairs (D, m) are not of GLa-type over Q, even
in cases when the above purely local methods do not apply. These are collected in
the following theorem.

Theorem 1.7.

(i) The quaternion algebra Biss is not of GLa-type over Q.
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(ii) The pairs

(D,m) € {(15,5), (21, 3), (26, 2), (33,11), (38, 2), (46, 23), (58, 2), (91,91),
(106,53), (118, 59), (123,123), (142, 2), (158, 158), (202, 101), (326, 326),
(446, 446) }

are not of GLa-type over Q.

The third step is to characterize the rational non-Heegner points P € Xj(:,m) (Q)
which can be represented by a polarized abelian surface defined over Q. The solution
to this problem depends on the vanishing of an obstruction &, (P) in the 2-torsion of
the Brauer group of Q. In Section 4, Theorem 4.3, we explicitly compute &,,(P) €
Bra(Q) and thus give a necessary and sufficient condition for the existence of such
an abelian surface. As an application, we obtain the following.

Theorem 1.8. The pairs (D, m) = (10,2), (15,3), (26,13) and (38,19) are not of
GLsy-type over Q.

Theorem 1.9.
(i) The pairs

(D,m) € {(6,2),(6,3), (6,6), (10,5), (10, 10), (22,2), (22, 11), (22,22),
(14,7), (14, 14), (15, 3), (15, 15), (21, 21), (33, 33), (46, 46), (26, 26),
(38,38), (58,29), (58, 58)}

are of GLo-type over Q.
(ii) For the pairs

(D,m) € {(6,2),(6,3), (6,6), (10,5), (10, 10), (14, 14), (15, 15), (21,21),
(22,2), (22,11), (22, 22), (33,33), (46, 46)},

there exist infinitely many nonisomorphic abelian surfaces A defined over
Q such that End%(A) = Q(v/m) and Endg(A) = Op is a mazimal order in
Bp.

(iii) There exist exactly two abelian surfaces A/Q with End%(A) = Q(V7) and
Endg(A4) = O14 up to isomorphism over Q.

It is remarkable that in the cases (D, m) = (10,2) and (15, 3), the curve Xgn)
is isomorphic to I%g and therefore there are infinitely many non-Heegner rational

points in Xj(jm) (Q). However, it turns out that &,,(P) # 1 for all these points (cf.
Section 5) and thus (D, m) is not of GLa-type over Q.

Remark 1.10. All pairs (D, m) for D < 33 are covered by the above results.

2. TOWERS OF SHIMURA CURVES AND HILBERT SURFACES

Let S = Resc/r(Gm,c) be the algebraic group over R obtained by restriction of
scalars of the multiplicative group. A Shimura datum is a pair (G, X), where G
is a connected reductive affine algebraic group over Q and X is a G(R)-conjugacy
class in the set of morphisms of algebraic groups Hom(S, Gg), as in [25].

Let Ay denote the ring of finite adeles of Q. For any compact open subgroup U
of G(Ay), let

Shy (G, X)(C) = G(Q) \ (X x G(Af))/U,
which has a natural structure of quasi-projective complex algebraic variety, that we
may denote by Shy (G, X)c.
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Let (G,X) and (G’, X’) be two Shimura data and let U, U’ be compact open
subgroups of G(Ay) and G'(Ay), respectively. A morphism f : G — G’ of algebraic
groups which maps X into X’ and U into U’ induces a morphism

Shf : ShU(G,X)C — ShU/(GI,X’)C

of algebraic varieties.

In this section, we consider two particular instances of Shimura varieties: Shimura
curves attached to an indefinite quaternion algebra and Hilbert surfaces attached
to a real quadratic number field.

2.1. Shimura curves. Let Bp be an indefinite quaternion algebra over Q of re-
duced discriminant D and fix an isomorphism ® : Bp @ R 5 My (R). Let Op C Bp
be a maximal order and let G/Z be the group scheme O7%,. We have that G(Q) = B},
and G(Ay) = [[,(Op);, where for any prime number p, we let O = O ® Z,. Let
b _ab). As complex
analytical spaces, HT is the union of two copies of Poincaré’s upper half plane H.

For any compact open subgroup U of G(Ay), let Xy ¢ = Shy(G, X)c be the
Shimura curve attached to the Shimura datum (G, X) and U. It is the union
of finitely many connected components of the form I'; \ H, where I'; are discrete
subgroups of PSLy(R).

Let P — P denote the conjugation map on Bp. Fix a choice of an element
w € Bj, such that p? + 6 = 0 for some § € Q*,§ > 0 and let g, : Bp—Bp,
B — p~tBu. For any scheme S over Q, let Fo, ,.(S) be the set of isomorphism
classes of (A,t,L,v), where A is an abelian scheme over S, ¢ : Op — Endg(A4)
is a ring monomorphism, £ is a polarization on A such that the Rosati involution
* : Endg(A4) ® Q — Endg(A) ® Q is g, on Bp and v is an U-level structure on
A (cf. [2], p. 128). As is well known, Xy ¢ coarsely represents the moduli functor
Fop.u-

A point [A, ¢, L,v] € Xy c(C) is called a Heegner point or a CM point if ¢ is not
surjective or, equivalently, if A is isogenous to the square of an elliptic curve with
complex multiplication.

The modular interpretation implies that the reflex field of the Shimura datum
(G,X) is Q and that Xy ¢ admits a canonical model Xy g over Q, which is the
coarse moduli space for any of the above moduli functors Fo,, , extended to ar-
bitrary bases over Q (cf. [2], [25, Section 2]). We remark that the algebraic curve
Xu,g does not depend on the choice of u € Bj), although its moduli interpretation
does.

As a particular case, let O C Op be an integral order contained in Op, and let
OF = Hp O,. Let us simply denote by X0 g the Shimura curve X@*@. Again,

X = H* be the GLo(R)-conjugacy class of the map a-+bi <a

for any fixed u € B}, p? + 6 = 0, it admits the following alternative modular
interpretation: Xo g coarsely represents the functor .7:"@, u Sch/Q— Sets , sending
a scheme S over Q to the set of isomorphism classes of triplets (A, ¢, £), where (A, £)
is a polarized abelian scheme over S as above and ¢ : Bp — Endg(A) ® Q is a ring
monomorphism such that «(Bp) NEndg(A) = ¢(O).

2.2. Hilbert surfaces. Let F' be a real quadratic extension of Q, let Rp be its ring
of integers and let G be the Z-group scheme Resg,. /z(GL2(RF)). Since F@R ~ R?,
we have G(R) = GLy(R) x GLa(R). Let X = H* x H*. For any compact open
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subgroup U of G(Ay), let Hyc = Shy (G, X)c be the Hilbert surface attached to
the Shimura datum (G, X) and U.

The Hilbert surface Hy,c admits, in the same way as Xy ¢, a canonical model
Hy,g over Q which is the coarse moduli space of abelian surfaces (4, j, £, v) together
with a ring homomorphism j : Rp— End(A4), a polarization £ on A such that *|;(g,.)
is the identity map and a U-level structure. When U is the restriction of scalars of
GLy(R) for a given quadratic order R C Rp, we write Hp g := Shy (G, X)g. As in
the Shimura curve case, Hg g can also be regarded as the coarse moduli space of
polarized abelian surfaces with real multiplication by R and no level structure.

2.3. Forgetful maps. We consider various forgetful maps between Shimura curves
and Hilbert surfaces with level structure.

For any integral quaternion order O of Bp, let O+ C (;),’5 be the natural inclusion
of compact groups. The identity map on the Shimura data (O%,H¥) induces a
morphism

Xo,0 — Xop,0

which can be interpreted in terms of moduli as forgetting the level structure:
[A, ¢, L,v] — [A, ¢, L].

Similarly, for any quadratic order R of F', there is a natural morphism
Hro — Hrp 0

Finally, let R C O be a real quadratic order optimally embedded in O, which
means that R = F N O, and fix an element u € By, p> +5=0,0 € Q*, § >0
symmetric with respect to R (that is, 9,|R = 1g). Regard Xp as representing the
moduli functor }A"o’#. Attached to the pair (R, u) there is a distinguished forgetful
morphism

W(R’“) : XO,Q — HR@
[A,0: O—=End(A), L] +— [A,yg: R—End(A),L]

of Shimura varieties which consists on forgetting the ring endomorphism structure
in the moduli interpretation of these varieties.

Let R’ be a quadratic order of F' optimally embedded in Op. Writing R = R'NO,
we obtain the following commutative diagram.

Xoo — Xopo
T(Ropu) 4 L (R
Hro — Hrygo

The main consequence we wish to derive from the above with regard to the
problem posed in Section 1 is the following.

Let A/K be an abelian surface over a number field K with quaternionic multi-
plication over Q by a quaternion algebra Bp. Let O ~ End@(A). Assume further
that Endg (4) ® Q is a real quadratic number field F' and let R = Endx (A); as was
remarked in Section 1, this is always the case for modular abelian surfaces over Q.
By construction, the order R is optimally embedded in O. Since A is projective
over K, it admits a (possibly non-principal) polarization £ defined over K. Let x
denote the Rosati involution on Bp attached to L. It follows from [31], pp.6-7,
that * = g, for some p € B}, with y? 4+ = 0 for some § € Q*, § > 0. By choosing
an explicit isomorphism ¢ : O = End@(A), the triplet (A, ¢, £) produces a point P
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in X0 0(Q), when we regard the Shimura curve as coarsely representing the functor
Fo,u-

Moreover, we have ¢z : R ~ Endg(A). ;From the fact that £ is defined over
K, it follows that * g is an anti-involution on R. Since R is totally real, it follows
that *|p is the identity. Hence, the point P is mapped to a point Pr € Hr g(K)
by the forgetful map 7z ) : Xo,o—Hg,q-

Let Op be a maximal order in Bp containing @ and let R = F N Op, where
we regard F' = R ® Q as naturally embedded in Bp. By the above commutative
diagram of Shimura varieties, we obtain a point Pr € Hps o(K) which lies in the
image of the forgetful map Xo, 0—Hr -

The above discussion yields the following proposition.

Proposition 2.1. Let Bp be an indefinite division quaternion algebra over Q, let
Op be a mazimal order and let F = Q(y/m) for some square-free integer m > 1.

Assume that, for any order R of F, optimally embedded in Op, and p € B},
symmetric with respect to R, the set of rational points of m(g .\ (Xop.q) in the
Hilbert surface Hp g consists entirely of Heegner points. Then, the pair (D,m) is
not of GLa-type over Q.

If this holds for (D,m) for all square-free integers m > 1, then Bp is not of
GLsy-type over Q.

3. ATKIN-LEHNER QUOTIENTS OF SHIMURA CURVES

Fix a maximal order Op in an indefinite division quaternion algebra Bp and
let us simply denote Xp = Xp, 0. The curve Xp is equipped with a group
of automorphisms W C Aut(Xp) which is called the Atkin-Lehner group. As
an abstract group, W = Normp: (Op)/(Q* - O},) and we have W ~ (Z/2Z)*",
where 2r = #{p prime : p|D} is the number of ramified primes of D. A full set
of representatives of W is {w,, : m|D,m > 0}, where wy, € Op, n(wy,) = m. As
elements of W, these satisfy w2, = 1 and w,y, -wy, = Wy for any two coprime divisors
m, n|D (ct. [30]). Recall that we write Xgn) for the quotient curve Xp/(wm,).

The following result relates the condition for a quaternion algebra Bp to be of
GLa-type to the diophantine arithmetic of the Atkin-Lehner quotients of Xp.

Theorem 3.1. Let m > 1 be a square-free integer. Assume that the pair (D, m) is
of GLo-type over Q. Then,

(i) m|D and all prime divisors p|2 do not split in Q(\/m).

(ii) Xgn)(@) contains a non-Heegner point.
Proof. Assume that (D, m) is of GLa-type over Q. By Proposition 2.1, there exists
an order R of F' = Q(y/m) optimally embedded in Op and u € B}, symmetric with
respect to R such that the set of rational points of 7(g ,)(Xo,,q) in the Hilbert
surface Hr g contains a non-Heegner point.

It was shown in [32], Theorem 4.4, [33], Section 6, that if m|D then there is a
birational equivalence
T (Xopa) > X5

and if m { D, there is a birational equivalence

T(r (Xop.0) --* Xb.
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These birational morphisms are defined over Q and become isomorphisms when
restricted to the set of non-Heegner points.

Since Xp(R) = () (by [38)]), it follows that m|D and X](Dm) (Q) contains a non-
Heegner point. Moreover, since F' must embed in B, it follows from the theory of
optimal embeddings that all primes p|D do not split in F. O

As an immediate consequence of (i), we obtain the following corollary.

Corollary 3.2. Given a discriminant D of a division quaternion algebra over Q,
the set of modular pairs (D, m) is finite.

In view of Theorem 3.1, the diophantine properties of these curves are crucial
for the understanding of Conjecture 1.3. We first study under what circumstances
the curve Xgn) has no points over some completion of Q.

Part (i) of the proposition below follows from [35]. Parts (ii), (iii) and (iv) follow
from [27] and [35]. Part (v) has been shown in [9] by using supersingular abelian
surfaces and also in [35] by means of trace formulae of Hecke operators.

Proposition 3.3. Let Xj(jm) be as above and let ¢ and p; denote a prime number.
(i) Let £1 D. If there exists no imaginary quadratic field K that splits Bp and
contains an integral element of norm £ or fm, then X(Dm)((@z) =.
(ii)) If m=D/(p1-...-pk), k> 2, then Xgn)(Qv) = for some place v|D - oo.
(iii) If m = D/p for p an odd prime satisfying one the following conditions:
(@)=
- Hm: (a) (F)=1o0r (5*)# 1 and (b) =1 or p=3 mod 4
- 3m: (a) (F2L) =1 and (b) m # € or p=1 mod 12
- D is even and 3|2 : £ =1 mod 4 and (= /2) =1,
then X(Dm) (Qy) = 0 for some place v|D - .

(iv) If m = D/2 satisfies one the following conditions:
(3=
<32 =1 mod 8

-m/l
S35 (73 =1,

then Xj(jm) (Qu) =0 for some place v|D - .

(v) XEDD) (Qy) # O for all places v of Q.

When D = p- q is the product of two primes, the congruence conditions of parts
(iii) and (iv) above simplify notably and they were stated in Proposition 1.6 for
the convenience of the reader. As a consequence of part (v), we conclude that only
global methods may enable us to prove that any pair (D, D) is not of GLa-type.

Finally we remark that part (i) of the above result allows us to produce examples
of pairs like (159, 3), (215,43), (591, 3) and (1247, 43) which are not of GLa-type over
Q and are not covered by the statements (ii)-(v).

4. A DESCENT THEOREM ON RATIONAL MODELS OF ABELIAN SURFACES WITH
QUATERNIONIC MULTIPLICATION

Let Xp be the Shimura curve of discriminant D and let the curve X gn) be as in
the previous section. Let R denote the ring of integers of Q(y/m). For any choice
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of d > 0 such that Bp =~ (%)7 we may regard Xj(jm) as parameterizing abelian
surfaces (A,t : R — End(A), £) with real multiplication by R and a polarization
L of degree d symmetric with respect to ¢. A point P = [A,¢: R — End(A), L] €

Xg") is rational over a field K if and only if the field of moduli of (4,¢,£) is K.
However, (A, ¢, £) may or may not admit a rational model over K.

The obstruction &, (P) for a point P € XI(Dm)(K) to be represented by a triplet
(A;1: R — End(A), L) defined over K lies in the two torsion part of the Brauer
group Br(K) = H?(Gk,K*), where G stands for the absolute Galois group over

K. According to this, the set of rational points on X(Dm) over Q may be described
as

X = UJ x5,
£€eBr2(Q)

where we let Xgm)((@)g ={Pe X(Dm)(Q) 1ém(P) = £}

Remark 4.1. The obstruction &,,(P) of a point P = [A,. : R — End(A),L] €
Xg")((@) only depends on the polarized abelian surface (A, L). Indeed, assume
that (A, L) is defined over Q. Let P = [A,:: Op — End(A4), L] € Xp(K) be the
preimage of P in Xp for a certain imaginary quadratic field K. Let o € Gg denote
the complex conjugation. Since wy,(P) = [A, w,, wwm, L], we have that
End(%(A) ={a € End%(A):a° =a} = {a € End%(A) : wlaw, = a} ~ Q(v/m).
This implies that ¢ : R < Endg(A).

Let Xgn) (Q) 1, denote the set of rational Heegner points on X (Dm) and let us denote
by Xgn) (Q)pr = Xj(jm) (Q)\X,(jm)((@)h the set of rational non-Heegner points.

Definition 4.2. We define the set of descent points on X](Dm) to be

X5(Q)a = X5 (Q)ezr N X5 Q)i
Set

= #XTQ),  thy = #XSV Q) rdp = #XTV(Q)a.
Note that r,, and rd,, may be +oco. It follows from the above discussion that the
pair (D, m) is of GLa-type over Q if and only if X(Dm)(Q)d £ ().

In [26], Murabayashi proved a descent result for principally polarized abelian
surfaces with quaternionic multiplication under certain hypotheses. We give an
alternative proof of his result that allows us to generalize it to arbitrarily polarized
abelian surfaces and which is unconditionally valid.

Theorem 4.3. Let P € Xp(K) be a non-Heegner point over an imaginary qua-
dratic field K = Q(v/—0) such that ©(P) € Xl()m)((@) and write

-4, m
m(P) = .
Em(P) = ( 0

If &,,,(P) vanishes, then there is a polarized abelian surface (A, L) defined over Q

together with an isomorphism v : Op — Endg(A) such that P = [A, 1, L]. In that
case, we have End?Q(A) = Q(v/m).

) ® Bp.
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Proof. If there exists a polarized abelian variety (A, L) defined over Q such that
P =[A,, L], then we know (cf. [29], [26] when deg(L) = 1) that Bp ~ (_?ST’”) and
hence &, (P) = M2(Q) = [1] € Br(Q).

Let us assume that Bp ~ (_%m). Choose pu,w € Op, pu? = —6, w? = m,
pw = —wp and let R = Q(w) N Op.

Since K = Q(v/—0) embeds in Bp, it follows from [20], Ch.2, that the point
P may be represented by the Q-isomorphism class of a polarized simple abelian
surface with quaternionic multiplication (Ag, tg, £o) completely defined over K and
such that the Rosati involution that £y induces on Bp is g,. We stress that Lo
will not always be principal.

Since g,, is symmetric with respect to R, the forgetful morphism 7(g ) : Xp —

Hp g is the composition of the projection 7 : XD—>XJ(3m) and an immersion of
X E,m) into Hpg g, at least when we restrict these morphisms to the respective dense
subsets of non-Heegner points. Hence, because 7(P) € Xl()m)((@) is a non-Heegner
point, this amounts to saying that the field of moduli of the triplet (Ao, to|,,Lo)
is Q.

Let 0 € Gg\Gk. Then there exists an isomorphism v : Ay — A§ such that
V*(LE) = Loand v-w™'-a-w = a? -v for all endomorphisms o € Bp = End% (A).
In particular,

vow=w v, v-pu=-—-u’ - -v.
We split the proof into two parts.

Step 1: We show that v may be assumed to be defined over K.

To prove this claim, note that Autg(Ag, Lo) = {£1} (cf.[26] or [31], Theorem
2.2) and let p, : Gx — Autx(Ag, Lo) = {£1} be the group homomorphism defined
by pu(1) =v=t 07,

Suppose that v was not defined over K, that is p, (Gx) = {£1}. Let L/K be the
quadratic extension such that G = ker p,. Since L is the minimal field of definition
of all homomorphisms in Hom(Ay, AF) and Hom(Ag, Ag), we deduce that L/Q is
a Galois extension. Since K is imaginary, L/Q can not be cyclic and there exists a
square-free integer d > 1 such that L = K(V/d).

It follows from the Skolem-Noether Theorem (cf.[40], p.6) that we may choose
basis of Vi = HY(Ay, Q}%/K) such that the matrix expressions of w* and p* acting

(0 1 _ -0 0
Mm_(mo), Mg_(vo _:5>,
respectively.

Let N € GLy(K (v/d)) be the matrix expression of v € Hom(Ag, AZ) with respect
to this basis of Vi and its Galois conjugate of ViZ. Then N satisfies

N =—-N, M, N=N-M =N -M,, Ms-N=—-N-MJ=N-Ms,

on Vi are

form € Gk \GyL. Hence,N:\/g( g g ) ,ﬁEK.FixainGQ(\/&),agGK. We

have v7 -v € Aut(Ag, Lo) = {1}, thus N- N° = +id and §-3° = 1/d. Hence, the
normal closure F of K(y/B)/Q is dihedral containing K (v/d) and F/Q(v/—d - ) is
cyclic. Let pg : Gk — {£1} be the surjective morphism such that ker pg = Gr(vp)-

Attached to the cocycle pg € H'(Gk,{£1}) there is an abelian surface A; defined
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over K together with an isomorphism X : Ag — A; such that A7 = X\ pg(7). We
claim that ¢ = X7 -v- A\71: A} — AJ is defined over K. Indeed, for any 7 € Gk,

d)T _ (}\g.r»a—l)g T ()\—1)7— — Pﬁ(U . 0_71 .7_71) . Pu(T) . d)

Since 0 -7 -0~ 1

rle Gr(yp) if and only if 7 € GK(\/E)’ we obtain that ¢7 = ¢.
Moreover, all endomorphisms of A; are of the form A-p-A~! with ¢ in End g (4y).
These are all defined over K because (A-p-A71)7" = dg(r-77H A0 A7 = X A1

We therefore assume that v is defined over K.

Step 2: We show that Ay admits a model over Q with all its endomorphisms defined
over K.

We do so by applying Weil’s criterion (cf.[41]). Since v7 - v € Aut(A4y, Lo), we
have 17 - v = eid with e € {£1}. Using the same basis of H°(A4g, 2} ) and
HO(Ag,th/K) as above, the matrix expression N € GLy(K) of v is such that
My -N=N-M% =N-M,, Ms-N=—N-M?=N-M;.Itfollows that

6 0
N:<0 5), feK.

Hence, - 3° = e. Since K is imaginary, e = 1. Weil’s criterion [41] applies to
ensure the existence of an abelian surface A defined over Q and isomorphic over K
to Ag. Since A is isomorphic over K to Ay, we obtain that End%(A) = Bp. The
equality End%(A) = Q(y/m) follows from Remark 4.1. O

Let (D, m) be a pair of GLa-type over Q. One may wonder how many abelian sur-
faces A/Q exist up to isomorphism such that End%(A) = Q(v/m) and Endg(4) =
Op. We make this precise in what follows.

Definition 4.4. Let Q(p ,,)(Q) denote the set of Q-isomorphism classes of abelian
surfaces A defined over Q such that Endg(A) = Op is a mazimal order in Bp and

End}(4) = Q(y/m).
For a pair (D, m) of GLy-type over Q, regard the Atkin-Lehner group W,, =
W/{wm) as a subgroup of Ath(X](:,m)) which freely acts on Xgn)(@)d.

Theorem 4.5. Let (D,m) be a pair of GLy-type over Q. There is a canonical
one-to-one correspondence

Q(p.m) (@) — Wi\ X" (Q)a
and hence, if D = py - ... - pa,., then

rd,y,

1Q(D.m)(Q)] = 521

Proof. Let [A] € Q(p, m)(Q) represented by an abelian surface A defined over Q. Let
d > 1 be the minimal integer such that Bp ~ (%) We know from Proposition
4.6 that there exists at least one polarization £ on A of degree d defined over Q.
Fix an isomorphism ¢ : Op = Endg(A) that restricts to ¢ ® Qiq(ym) : Q(vm) 5
End(%)(A). By [11], Theorem 3.4, we have that Endg(A4) = Endg(A) = Op for
some imaginary quadratic field K.

Let % : Bp—Bp be the Rosati involution induced by L. It follows from [20],
Ch.1, [31], pp.6-7, that 8* = p,(8) = p~'Bu for some pu € Op, p*> + Dd =
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0. If we regard the Shimura curve Xp as coarsely representing .7:"@#, the triplet
[A, ¢, L] produces a point P in Xp(K). By [32], Theorem 4.4, [33], Section 6,
the point P projects onto a rational point 7(P) = [A, tg(,/m), £] € Xj(j)m)(Q). By
construction we actually have 7(P) € Xgm)((@)d. Since, as shown in [20], Ch. 1, [32],
Section 3.1, the group W, acts on w(P) = [A, LQ(y/m) L] by fixing the isomorphism
class of A and switching ¢ and £, we deduce that A produces a well-defined point in
W, \X " (Q)4. Constructing the inverse map from W,,\ X7 (Q), onto Qp,m)(Q)
is now obvious. 0

As a refinement of the above considerations, we wonder for which pairs (D, m)
there exists a curve C'/Q of genus 2 such that the Jacobian J(C) has multiplication

by Q(v/m) over Q and quaternionic multiplication by Op over Q.

Proposition 4.6. [11] Let A/Q be an abelian surface such that End%(A) =Q(vm),
m > 1 square-free and Endg(A) = Op. Then m|D and A admils a polarization

L e H(Gal (@/(@),NS(A@)) of degree d > 0 if and only if B = (7%{’”).

Let P = (A,1, L) € Xp(K) be a non-Heegner point such that 7(P) € Xl()m)(Q).
We know by [20], Ch. 1 and [31], Corollary 6.3, that there is a principal polarization
Lo on A defined over K and hence there exists a genus 2 curve Cy defined over K
whose canonically polarized Jacobian variety is isomorphic to (A4, L) over K. As
a corollary of Theorem 4.3 and Proposition 4.6, we obtain the following. We keep
the same notation as above.

Corollary 4.7. There exists a curve C/Q defined over Q such that (A, Ly) ~
(Jac(C),©¢) over Q if and only if

o= () (%)

Next, we illustrate the above results with several examples.

Example 4.8. In [19], Hashimoto and Tsunogai provided a family of curves of
genus 2 whose Jacobians have quaternionic multiplication by Og. These families
specialize to infinitely many curves defined over Q. However, one can not expect
that to be always possible for a discriminant D even when there is an Atkin-Lehner
quotient X gﬂ) ~ I%. As we pointed out in Section 1, computations due to Hasegawa
[18] exhibit B4 as a modular quaternion algebra. This is indeed possible because
X {}14) o~ ]P’(b but there does not exist a curve C/Q of genus 2 whose Jacobian J(C')

is of GLa-type over Q and has quaternionic multiplication by 014 over Q, because
Z14.2\ -147 —14,14
By % ( Q )7((@ ) nor ( Q )-

Example 4.9. An affine equation of the Shimura curve Xg is 22 +y?> +3 = 0

and the action of we on this model is (z,y) — (—z,y). We have Xé6) ~ Pg, and
there exist infinitely many points on Xg(K), K = Q(1/—21), mapping to a rational
point on XéG). Since K splits Bg, it follows from [20], Ch.2, and [33], Section 6,
that there exist simple principally polarized abelian surfaces (A, Ly)/K which are
isomorphic to their Galois conjugate abelian surface (A%, L£g). However, they do
not admit a rational model over Q, since (%) % Bg. Thus, there do not exist
curves C defined over Q such that (A, Ly) ~ (J(C), ©¢) for these abelian surfaces.
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Example 4.10. Let f be the newform of S3(I'9(243)) with g-expansion
f:q+\/6q2+4q4+... .

The modular abelian surface Ay obtained as an optimal quotient of the Jacobian
of X(43) satisfies that Endg /=) (Ay) is a maximal order of the quaternion al-
gebra Bg. We know by [31], Theorem 7.1, that there is a single class of principal
polarizations Ly on Ay up to Q-isomorphism defined over K = Q(y/—3). Hence
Af ® K is the Jacobian of a curve C'/Q(v/=3). Since Ly is isomorphic to its Galois
conjugate Lg, it follows that Cy is isomorphic to C§ but, although its Jacobian
Jac(Cp) = Ay ® K admits a projective model over Q, the curve Cy can not be
defined over Q because Bg % ( _(g;ﬁ). In fact, by using similar methods to [17], we
obtain the following equation for Cjy:
y? = (24 2v=3)2® +12(=3 4+ V=3)z® — 12(3 + 7v/=3)z* + 4(69 + 7\/=3)z> +
8(—11 4 7/=3)x? — 18(1 + 5¢v/=3) + 12(2 + v/=3).

It can be checked that its Igusa invariants are rational and there is a morphism
v: Cy — Cf defined over K such that v? - v is the hyperelliptic involution.

5. RATIONAL POINTS ON QUOTIENT SHIMURA CURVES Xl()m) OF GENUS < 1

The set of rational Heegner points Xé,m)((@)h on an Atkin-Lehner quotient of

a Shimura curve is finite and its cardinality rh,, can be computed by using the
following formula, which stems from the work of Jordan on complex multiplication
(cf. [20], Ch. 3, [35]).

Proposition 5.1. Let D = p; - ... pa, and let m|D. For i =1 or 2, let us denote
by R; the set of orders of imaginary quadratic fields whose class number is i. For
any R € Ry, set pgr = 2 when disc (R) = —2F and pgr to be the single odd prime
dividing disc( R), otherwise. The number rh,, is given by the following formula:
922 14IR € R, : (g) = —1 for all p;| D} +

22124 R € Ry : pr|D, (f) = —1 for all pi|p%} +

#{R € Ry :2D = —disc(R)} ,ifm=D,
rhy, =
22 {ReRy i pr=L2} +#{R e Ry : —%QR) € Q*?} +

EUH R e Ry 12D = —disc(R)} , if m=2,

0 otherwise.

where (%) stands for the Eichler symbol.

We refer to [40], p.43 for the definition of the Eichler symbol. In any case,
0 < rd,, <ry —rhy. The condition r,, = rh,, implies rd,, = 0 and allows us
to claim the non existence of an abelian surface A/Q with End?Q A = Q(y/m) and
End%A = Bp. Nevertheless, proving the existence of such an abelian surface, i. e.
rd, > 0, requires the knowledge of an equation for Xp and the action of w,, on it.

There are exactly twelve Shimura curves Xp of genus g < 2. For all of them,
D = p-q with p,q primes and affine equations for these curves are known (cf.
[16], [22], [23]) except for D = 2-17 (¢ = 1). For these equations, the Atkin-
Lehner involutions wy,wy,wp.q act on the curve, sending (z,y) to (—=z,y), (z, —y)



14 NILS BRUIN, E. VICTOR FLYNN, JOSEP GONZALEZ, AND VICTOR ROTGER

and (—z,y) in some suitable order. The next table shows equations, genera and
the actions of wy, and w, for these curves.

D=p-q|y Xp wp(z,y) | we(z,y)
2-3 0 2+942+3=0 (—z,—y) | ( z,—y)
2:5 |0 2 +y?+2=0 ( 2,-y) | (—2,—y)
2-11 |0 22 +y?+11=0 (—z,—y) | ( z,—y)
2.7 1 (22— 132+ 73 +2y> =0 (—z, v) | (—z,—y)
3-5 1 (@2 +3%) (22 +3)+3y>=0 (—z, y) | (—z,—y)
3.7 1 zt — 65822 + 70+ 7y =0 (—x,—y) | (==, y)
3-11 1 224+ 3002 + 3% +3y2 =0 (—z, y)| (—z,—y)
2-23 |1 (2% —45)* +23 +2y? =0 (—z, y) | (—z,—v)
2-13 2| 2 =—-225+1927 — 2422 — 169 | (—x,—y) | (-2, v)
2.19 [2] 3?2 =-162% — 5927 — 8222 — 19 | (—x,—y) | (—=, ¥)
2-29 2 2y% = —25 — 392% —4312% — 841 | (—x,—y) | ( z,—y)

Table 1. Equations and Atkin-Lehner involutions on Shimura curves

Unfortunately, the construction of the above equations does not allow us to
distinguish the rational Heegner points among the rational points on the curves
X](jm), unless they are fixed by some Atkin-Lehner involution (however, for D = 6
and 10, cf. [10]). This forces the proof of next theorem to be more elaborate.

Theorem 5.2. For the eleven values of D as above, the triplets (v, 7y, rdm)
take the following values:

D=p-q| (rp,rhy,rdy) | (rq,7hq,7dy) | (rp,rhp,rdp)
2-3 (00,1, 00) (00,1, 00) (00,8, 00)
2-5 (00,2,0) (00,2, 00) (00,11, 00)
9.7 0,0,0) 6,2, 1) (50,8, 00)
2-11 (00,2, 00) (00,2, 00) (00,8, 00)
2-13 1,1,0) 3.1,0) (>0,10,> 0)
2-19 (1,1,0) (3,1,0) (>,8,> 0)
2.23 0,0,0) 2.2,0) (50,8, 0)
2.29 1.1,0) | (00,2,50) | (00,13, 0)
3-5 (00,2,0) (4,4,0) (00,10, 00)
3.7 2.2,0) 0,0,0) (50, 10, o0)
311 0,0,0) 2,2,0) (00, 10, o0)

Table 2. Rational, Heegner and descent points

Proof. We split the proof in three parts according to the genus g of Xp.

Case g = 0. In all these cases the equation is 2 +y? = —d, for some prime d|D.
For each pair (D, m), the points on Xp(v/—6) of the form (a,byv/—6), (bv/—6, a) or
(av/=0,by/=9), with a,b € Q and a square-free integer § > 1, are the only affine
points on X p(Q(v/—9)) which may provide rational points on Xg") (Q), depending
on whether w,,, maps (z,y) to either (z, —y), (—z,y) or (—x, —y). Let (-,-) denote
the global Hilbert symbol over Q. When wp,(z,y) = (z,—y) or (—=z,y), such

rational points exist if and only if (§, —d) = 1. Similarly, when w,,(z,y) = (—z, —y),
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there exist points on X p(Q(v/—4)) which project onto a rational point on Xgn) (Q)
if and only if (—1,d-d) = 1. It is easy to check that, for all pairs (D, m) # (10, 2),
these conditions and the descent condition of Theorem 4.3 have infinitely many
solutions for 4. If we let [ be a prime number, we may take ¢ as follows.

(D, m) d | Conditions on [
(6,2) 3l | I=1 (mod 8)
6,3),(6,6) | I |I=1 (mod24)
(10,5) 20 |1=1 (mod 20)

(10, 10) 20 [1=1 (mod 40)
(22,2) 117 I=1 (mod 8)
(22.11),(22,22) | 1 [I=1 (mod 89)

For the pair (10,2), we have d = 2 and the condition (4, —2) = 1 implies 5 [¢ and

thus (782’2) # Byg, since (—4,2)5 = 1. Moreover, the two points (1 : £4/—1:0) at

infinity on the curve Xig produce a rational point on X fg) which is Heegner because
its preimages are fixed points by the Atkin-Lehner involution ws. We conclude that
for D = 10, rds = 0 despite 1o = co.

Case g = 1. The genus of X(Dm) is zero except for the cases in which w,, maps
(x,y) to (—z, —y). The latter holds for the pairs (D,m) = (14,7), (15,5), (21, 3),
(33,11) and (46,23), and in these cases g(Xgn)) = 1. To be more precise, the

curves Xj(jm) are elliptic curves over Q and there is a single isogeny class of con-
ductor D in each case. Their Mordell-Weil rank over Q is 0 and the orders of the
group of rational torsion points on them are 6, 4, 2, 2 and 2, respectively. Only
for the pair (D,m) = (14,7) do we have r,, > rh,,. But in this case, the two
rational Heegner points can be recognized from the affine equation of the curve
X 1(1) because they are fixed points by some Atkin-Lehner involution. It then turns
out that the four rational non-Heegner points on X 1(1) are the projections of the
points (£8v/—1,£56y/—1), (£2v/—2, £14y/—2) € X14(Q). Since § = 1,2 satisfy
the descent condition, we have rd; = 4.

When wy, acts as (z,y) — (—z,y), we have r,, = 0 except for (D, m) = (15, 3).
The affine equation (X + 3°)(X + 3) + 3y? = 0 for Xg) shows that there are
no rational points at infinity on this model. Moreover, it turns out that for all
(X,y) € Xg) (Q), the 5-adic valuation of the X-coordinate is vs(X) = 0. Since
§ = —X (mod Q?), we have 5 /5. Thus, (_&3) # Bjs because (—9,3)s = 1. It
follows that rds = 0.

For the case wy, : (z,y) — (z, —y), we have m = D and the curve Xj(:,D) admits
an affine model of the form f(z) +dY =0, where f(z) € Z[z] is monic of degree 4
and d is a prime dividing D. Moreover, (%) ~ Bp. A point (z,Yp) € XI(DD) Q)
satisfies the descent condition if and only if (f(z¢), D) = 1, that is, f(z¢) = up —
Dv3 for some ug,vgp € Q. Hence, the descent condition for (xg,Yp) turns out to
be equivalent to the existence of a rational point on the algebraic surface Sp :
f(x) = u? — Dv? with = 2. For D = 14,15,21, 33 and 46 we have the following
rational points on Sp: (zg,ug,ve) = (0,64,16),(1,44,8), (1,944, 192), (8,145, 16)
and (4,408, 60), respectively. The elliptic curves Ep : f(z) = u? — Dv3 have at
the least three rational points: two rational points at infinity and the affine point
(o, up). It can be easily checked that, for the above values of D, the rational torsion
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subgroup Ep tors(Q) of Ep is of order 2. We conclude that the Mordell-Weil rank
of Ep(Q) is greater to 0 and thus rdp = oco.

Case g = 2. The three curves Xp are bielliptic. In Cremona notation, the three
elliptic quotients Xp/{wq) are 2682, 38B2, 58 B2, while Xag/{(w13), X3s/{(wig),
Xss/{wss) are 26 A1, 38A1 and 58A1, respectively.

For the three curves Xg), we have rhy = ry and hence the pairs (D, 2) are not
of GLa-type over Q. For (26,13) and (38,19), the single rational Heegner point
corresponds to the projection of the two points at infinity because they are fixed
points by wy. The preimages of the other two rational points are (£+v/—5, £26) and
(£v/=5/2,419/4) for D = 26 and 38 respectively. In both cases (=5, q)s = —1 and

hence rd, = 0. For the remaining cases, we have r,, = co and we can easily find

)

rh.,, + 1 rational points on X(Dm satisfying the descent condition. O

When the genus of Xp is larger than 2, there exist exactly 21 elliptic Atkin-

Lehner quotients Xj(jm) (cf.[30]), but only three of them have rank zero. Namely,

these are X {82), Xﬁg) and Xg(égl), which correspond to the elliptic curves 106D1,
118D1 and 202A; respectively. In all these cases the number of rational points is
m = 1. Thus rh,, = 1 since r,, — Th,, is even whenever r,,, < co. In particular,
we get rd,, = 0.

Combining the above with Theorems 4.5 and 5.2, we obtain Theorems 1.8 and
1.9 and part (ii) of Theorem 1.7 for all pairs but a few ones which deserve more
attention: namely, those (D, m) such that X(Dm) is a curve of genus 2. Indeed,
computing the full list of rational points on these curves is a harder task that we
address in the next section.

)

6. COVERING TECHNIQUES ON BIELLIPTIC SHIMURA CURVES Xg" OF GENUS 2

It was shown in [16] that there exist exactly ten Shimura curve quotients X g”)
which are bielliptic of genus 2. Applying Proposition 5.1, the triplets (D, m, rh,,)
are (91,91,10), (123,123, 10), (141,141, 10), (142, 2,0), (142, 142,10), (155, 155, 10),
(158,158, 10), (254,254, 8), (326,326,4) and (446, 446, 6).

In this section we study the set of rational points on these curves. We first

list the Q-rational points on each Xj(jm) which are easily found by a short search.
Table 3 lists some small rational points on the bielliptic curves X77') of genus 2.

In this section, we show that Table 3 lists all rational points for each X (Dm). The
case D = 142, m = 2 is straightforward: there are no points in X {?2 (R) from which

it follows that there are none in X 1(2)2 (Q). For the other values of D, m, each Xgn)
has points everywhere locally and so cannot be resolved in this way. We first recall
the techniques from [3],[6],[13],[14],[15], which we summarize here in a simplified

form adapted to the curves Xém). The fact that each Xé,m) is bielliptic allows a
specialized version ([13]) of the same ideas of [7]; similar methods are available for

arbitrary hyperelliptic curves, as described in [5] and [6]. Each of the curves X gn)
is of genus 2 and of the form

X0V Y2 = f5X0 4 X4+ 1X2 + fo, with fi € Z.

Any such curve Xl()m) has a map (X,Y) — (X2Y) from Xl()m) to the elliptic
curve Y2 = faw?+ fow?+ fiw+ fo, and map (X,Y) — (1/X2,Y/X3) from X,(jm) to
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D [m xp" x5"(@Q)

91 [ D|Y?= —X0+19X*T-3X2+1 (0, £1), (1, 44), (£3,£28)

12 D][Y?2= —9X®+19X*+5X2+1 (0,41), (£1,44), (£1/3, +4/3)

41[D[|Y?2= 27X0 —5XT —T7X?2 +1 (£1,+4), (£1/3,£4/9),
(0,41), (£11/13,4+4012/2197)

142 2 [ Y?2= —16X°%—87X* —146X2% - T1 0

142 [ D[Y?= 16X° +9X%—10X2+1 +o0, (0, £1), (1, £4), (£1/3,£4/27)

55| D|Y?2= 25X%—19X*+11X2—1 +oo, (£1, +4), (£1/3,£4/27)

158 D[ Y2= —8X®+9X*+14X2+1 (£1, +4), (0, 1), (£1/3, £44/27)

254 | D[ Y?=  8X®+25X%—18X2+1 (0, £1), (£1, £2), (£2,£29)

326 | D | Y?= X0 +10X*T-63X%2+4 +00, (0, £2)

446 | D | Y?= —16X°—7X*4+38X%2+1 (0, £1), (£1,+4)

Table 3. Known Rational Points on the bielliptic Xl()m) of genus 2

the elliptic curve Z2 = foa3+ fiz2+ foz+ f3. The Jacobian of X U™ is Q-isogenous
to the product of these elliptic curves over Q which, in all of these examples, each

have rank 1 (and no nontrivial torsion). It follows that Jac(Xj(jm))(@) has rank 2,
and so Chabauty techniques [8] cannot be used, since they only apply when the
rank of the Mordell-Weil group of the Jacobian is strictly less than the genus of the
curve. It is therefore necessary to imitate the technique in [13], which we briefly
summarize here in a simplified form suited to these examples. We first fix one
of the above two elliptic curves — it does not matter which one; we shall use the
latter elliptic curve, since the resulting models will typically be slightly simpler.

Define E(Dm), (70, Z0), ¢, t as follows.

) E(Dm) 2 7% = ford + izt + fox + fa,
) (@0, Zo) generates E(Dm)((@),

) b0 XUV B (X,Y) e (17X, Y/ X0,
) t:= root of fox® + frx?® + fox + f3,

so that El(jm)((@)/2E§3m) (Q) = {o0,(m0,Z0)}. Suppose that (X,Y) € Xj(jm)(Q).
Then, applying ¢, we let x = 1/X? and Z = Y/X?3 so that (z,2) € Ej(jm)((@). We
recall the injective homomorphism x : EW™(Q)/2EY(Q) — Q(£)*/(Q(t)*)? de-
fined by p(oc0) =1 and u((z, Z2)) = fo(z —t) from Chapter X of [39]. It follows that
w((w, Z)) equals either 1 or fo(zo—1t) in Q(t)*/(Q(¢)*)%. Hence, either foZ2/(x—t)
or (xg —t)Z?/(x —t) is a square. We can eliminate Z?2 using (1) and simplification
yields:
either  fo(for® + (fot + f)z + (fo + 11 + f2)) € (Q(1)*)°
or  (zo —t)(for® + (fot + fi)z + (B fo + th1 + f2)) € (Q1)*)*.

Note that we do not really need (zg, Zy); we only need the square class of zo—t. This

can already be determined from the 2-Selmer group of Egn), without computing an
explicit generator of the Mordell-Weil group. In our examples, however, the curve
Ej(jm) has small coefficients and finding an actual generator is little more work.
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Since z = 1/X? is a square itself, we can multiply either quantity with = without

changing its square class. Hence, we have shown that if (X,Y) € Xj(jm)(Q) then
there exists y € Q(¢) such that (x,y) = (1/X?,y) is a Q(¢)-rational point on one of
the curves

(5) FO oy = fo(for® + (fot + f1)z + (B2fo +th + f2)),
(6) GO sy = (w0 — t)a(for® + (fot + f)x + (2o +Lf1 + f2).

This gives a strategy for trying to prove that we have found all of Xj(jm) (Q); it

is sufficient find all (z,y) € Fj(jm)((@(t)) such that £ € Q and similarly for ngm).
This can be attempted using the techniques in [3],[6],[13],[14],[15], which apply local
techniques to bound the number of such points. Since these articles already contain
several worked examples of this type, we merely provide a brief sketch of one case,
to give an idea of the general strategy, and to allow the reader to interpret the
tabular summary given later. This will be followed by a description of any unusual
features of difficult special cases. The full details of the computations are available

at:
ftp://ftp.liv.ac.uk/pub/genus2/shimura/ or

http://www.cecm.sfu.ca/ nbruin/shimura/

Consider Xﬁ;g) 1 Y2 =16X% + 9X% — 10X?2 + 1, where we wish to show that
the only Q-rational points have X-coordinate co,0,1,+1/3 (we use oo, depending
on context, as the notation both for the point at infinity and its X-coordinate).
Then E&ém of (1) is the elliptic curve V2 = 2® — 1022 + 9z + 16 over Q, which has
rank 1, with generator (zg, V) = (1,4). Under (X,Y) — (1/X2,Y/X?), the known
points in X532 (Q) map to (0, +4), oo, (1,44) and (9, £4) = 2(1, £4) in E122(Q).
Letting ¢ be the cubic number satisfying t3 —10t2+9¢+16, the curves (5),(6) become

Fa 2 =28+ (t— 10)22 + (2 — 10t + 9)a,
GO iy = (=) (a® + (t - 10)22 + (2 — 10t + 9)).

Our known points in E\j32(Q) induce oo, (0,0), (9, (32 — 15¢) /4) € FLa2(Q(t))
and o0, (0,0), (1,£4) € Gﬁf) (Q(¢)). It is sufficient to show that there are no
other points (z,y) in Fl(i;m) (Q(¢)) or Gﬁf)((@(?ﬁ)) for which z € Q. Note that,
in each case oo, (0,0) give the entire torsion group, and so we have a point of
infinite order. Furthermore, a standard complete 2-descent or 2-isogeny descent, as
recently implemented by N. Bruin in Magma [24] (or for an older version, see [4]),
gives a Selmer bound of 1 on the rank, and so both Fl(i;m((@(t)) or G&f)((@(t))
have rank 1.

Consider, for example, the second curve G142. One can easily check with finite
field arguments, that R = (0,0) +4(1,4) € G142(Q(¢)) is in the kernel of reduction
modulo 3, which is inert in Q(¢)/Q (so that (R) is of finite index in G142(Q(?))),
and can check that (R), (0,0) + (R), (1,4) + (R) and (1,—4) + (R) and the only 4
cosets containing possible (z,y) € GgiéQ)(Q(t)) for which x € Q (note that, al-
though (0,0), (1,4) do not generate G142(Q(¢)), we do have that (0,0), (1 — ¢, —
t — 4) generate G142(Q(t)) and that (1,4) = (0,0) + 2(1 — t,t> — t — 4), so that
(0,0), (1,4) can be treated as if they are generators for the purposes of our 3-adic ar-
gument). This means that we only need to consider (z,y) = nR, (0,0)+nR, (1,4)+
nR,(1,—4) + nR, for n € Z3, and it is sufficient in each case to show that n = 0 is
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the only case where x € Q. Using the formal exp and log functions in the 3-adic
formal group [13], we can express nR as exp(n - log(R)) and deduce that

1/(x-coordinate of nR) = 8 - 3%n? + (2 - 32n? + 33n?)t + (32n? + 33n1)t? (mod 3*%),

where each coeflicient of a power of ¢ is a power series in n defined over Z3 whose
coefficients converge to 0. If x € Q then the coefficients of ¢ and t?> must be 0.
Taking the coefficient of ¢, we have a power series n for which n = 0 is a known
double root, and for which the coefficient of n? has 3-adic absolute value strictly
greater than all subsequent coefficients of powers of n. It follows that n = 0 is the
only solution. A 3-adic analysis of (0,0) + nR, (1,4) +nR, (1, —4) + nR also shows
that these can only have Q-rational z-coordinate when n = 0. We know that the

only (z,y) € GSéQ) (Q(t)) with € Q are the points with © = 00,0,1. Similarly,

a b-adic argument shows that the only (z,y) € Fl(i;m (Q(¢t)) with = € Q are the
points with z = 00, 0,9, as required.

These methods can be applied when the ranks of F0™ (Q(t)) and G177 (Q(¢)) are
less than the degree of Q(t), that is, less than 3. Fortune is in our favour, since the
ranks for these examples indeed all turn out to be 0,1 or 2. Note that, in the above
rank 1 example, there was information to spare, since either the coefficient of ¢ or
that of 2 could be used to bound the number of solutions. For the rank 2 cases,
one can still obtain a bound, but the information from both power series must be
used.

The following table summarizes the computations.

D=m Fém) and G([;"’) r reQ P
91 | FUM 12 23 + (t — 3)a2 4 (12 — 3t + 19) 1| 0,01 |5
91 | GOV 2= (1—0)(a+(t—3)2+ (2 —3t+19z) | 1] 00,0,1,4 |5
123 | FUV g2 = a3 4 (t+5)a2 4 (12 + 5t + 19)x 1| 0,09 |5
123 |GU 2= (-0 + (t+5)a2+ (2 +5t+19)z) | 1] o00,0,1 |7
141 | FOV g2 = 234 (t—T)a2 + (12 — Tt — 5)x 1| 00,09 |7
141 |G iy2= (-0 + -T2+ (2 —Tt—5)z) |2]00,0,1,18 |7
142 | FOV g2 = 23+ (t— 10)22 + (2 — 10t + 9)z 1| 0,09 |5
142 [ GYV 2= (-0 +(t—10022+ (2 —10t+9)z) | 1] o0,0,1 |3
155 | FO g2 = 23 4 (t—11)a2 + (12 — 11t + 19)z 1| 00,09 |7
155 | GYY 2= (t-D(@®+ (- 1022+ (2 - 11t +19)2) | 2] o0,0,1 |3
158 | FU g2 = 23+ (t+ 14)2% + (12 + 14t 4+ 9)z 2| 00,0,1,9 |5
158 | GYV 2= (3-0)(@*+ (t+14)2>+ (2 +14t+9)2) | 0] 00,0 |-
254 | FUV g2 = 28+ (t — 18)22 + (12 — 18t + 25)z 0] o0,0 |-
254 |GV iyP= (1—t)(a®+ (t—18)22 + (> — 18t +25)z) | 2| 00,0,1,% [5
326 | FS™ 2= 4(4a® 4+ (40 —63)a2 + (42— 63t +10)2) | 1] 0,0 |5
326 | GUY 2= —t(40d + (4 —63)2% + (42 —63t+10)z) |0 0,0 |-
446 | FUV 12 = 23 4 (t + 38)22 + (12 + 38t — T)x 1] 0,01 |3
446 | GUM 1y (5—1)(a®+ (t+38)2 + (2 +38t —7)x) | 0| o000 |-

Table 4. Summary of computations
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The second column gives the models for the curves F’ ém) and ng), and the third
column gives the rank over Q(t), where the cubic number ¢ is as defined in (4). In
all cases, the torsion over Q(¢) consists only of co and (0,0). The fourth column
gives the list of all € Q which are z-coordinates of a point (z,y) on the curve and
defined over Q(t); the final column gives a prime p such that a p-adic argument
proves that no other such = € Q are possible. Of course, the rank 0 cases are trivial
and so no such prime is required.

The computations referenced above verify the following theorem.

Theorem 6.1. The curves X(Dm) have no Q-rational points apart from those given
in Table 3.

We conclude with mention of a few special features of the computations. Recall
that in the sketched worked example for the case D = m = 142, it turned out that
the Selmer bound from a complete 2 descent was the same as the rank. However,
for the six cases Fg((fl), Gggll), G%%B), F1(51§5), F2(§24), Gé?é%@, this bound is two greater
than the actual rank. In order to find a sharp bound, one can perform a complete
2-descent on the 2-isogenous curve. It follows that each of these cases has nontrivial
members of the 2-part of the Shafarevich-Tate group over Q(¢).

In the other direction, there are two curves G%@S) and Fésgﬁ), where the group

generated by images of the known points in X ,(Jm) (Q) is less than the actual rank, so
one must search for the missing independent points of infinite order. For example,

the 2-Selmer bound on the rank of G%‘?)(Q(t)) is 2, and the images of the known

points in X%gs) (Q) give only o0, (0,0), (1,4), of which only (1,4) is of infinite order,
so that we are missing an independent point of infinite order. In this case, a naive

short search discovers the required point ((¢? + 10t + 25)/4,13t> — 11t + 10). The

2-Selmer bound on the rank of Fég’gﬁ) (Q(t)) is 1, and the images of the known points

in X :,E%G) (Q) do not give any points of infinite order, and in fact the required point
is

(z,y) = (63540t2—1005167t+228495 90341332152—1429154471t+325168047)
_ Y= 2888 ' 109744 :
This could not be found by a naive search, and we needed to use the improved

search techniques described in the appendix of [6], and recently implemented by
N. Bruin into Magma [24].

Theorem 6.1 combined with Proposition 1.6 allows us to complete the proof of
Theorem 1.7. From Theorem 6.1 and an analogue of Theorem 4.5 we can also derive
the following result.

Corollary 6.2. For each of the pairs
(D, m) = (141, 141), (142,142), (254, 254)

we know ezactly the number of Q-isomorphism classes of abelian surfaces A/Q that
admit an embedding ¢ : Q(y/m) — Endg(A)) whose field of moduli is Q and such
that Endg(A) ~ Op. The numbers are 2, 1 and 1, respectively.
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