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Abstract. We show that there are no non-zero semi-stable abelian varieties over Q(
√

5)
with good reduction outside 3 and we show that the only semi-stable abelian varieties over
Q with good reduction outside 15 are, up to isogeny over Q, powers of the Jacobian of the
modular curve X0(15).

1. Introduction

In his paper [6], Luis Dieulefait gives a proof of Serre’s modularity conjecture
for the case of odd level and arbitrary weight. By means of an intricate inductive
procedure he reduces the issue to the case of Galois representations of level 3 and
weight 2, 4 or 6. As explained in [6], these cases are taken care of by the following
three theorems respectively.

Theorem 1.1. There are no non-zero semi-stable abelian varieties over Q with
good reduction outside 3.

Theorem 1.2. There are no non-zero semi-stable abelian varieties over Q(
√

5)
with good reduction outside 3.

Theorem 1.3. Every semi-stable abelian variety over Q with good reduction out-
side 15 is isogenous, over Q, to a power of the Jacobian of the modular curve
X0(15).

Theorem 1.1 is due to Brumer and Kramer [5]. In this paper we prove Theorems
1.2 and 1.3, each of which directly imply Theorem 1.1.

In Sect. 2, we discuss extensions of μp and Z/pZ by one another. These play
an important role in this paper.

In Sect. 3, we prove Theorem 1.2 and in Sect. 4, we prove Theorem 1.3. I thank
Hendrik Verhoek for catching several inaccuracies in earlier drafts of the paper.
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2. Extensions of µp and Z/pZ by one another

This section contains preliminary material used in the proofs of Theorems 1.2 and
1.3 given in the next two sections. Let F be a number field and set � = Gal(F/F).
Let S be a finite set of primes of F and let R denote the ring of S-integers.

Lemma 2.1. Let p be a prime and let G, H be finite flat commutative group schemes
over R that are killed by p. Let Ext1

R,[p](G, H) denote the subgroup of Ext1
R(G, H)

consisting of the extensions of G by H that are killed by p. Then there is a natural
exact sequence

0 −→ Ext1
R,[p](G, H) −→ Ext1

R(G, H) −→ (
Homab(H(F),G(F))�

)∨
.

Proof. First we consider extensions of G by H over the quotient field F . Clearly
Ext1

F,[p](G, H) is the kernel of the natural map Ext1
F (G, H) −→ Ext1

ab(G(F),

H(F)). Moreover, � acts on Ext1
ab(G(F), H(F)) and the image of the map is con-

tained in the subgroup of the �-invariant extensions. Since Ext1
ab(G(F), H(F)) is

naturally isomorphic to the Fp-dual of Homab(H(F),G(F)), the lemma follows,
but with the ring R replaced by its quotient field F .

To get the sequence over R, we observe that the following diagram is Cartesian

Ext1
R,[p](G, H)

⊂−→ Ext1
R(G, H)⏐⏐�

⏐⏐�

Ext1
F,[p](G, H)

⊂−→ Ext1
F (G, H)

Indeed, if the generic fiber of a finite flat group scheme over R is killed by p, then
so is the group scheme itself. Therefore the induced map between the cokernels of
the two horizontal homomorphisms is injective. This implies the lemma.

We first discuss extensions of Z/pZ by μp. We begin by constructing one such
extension over the ring Z[ζp]. Applying the functor Hom(Z/pZ,−) to the exact
sequence 0 → μp → μp2 → μp → 0, we obtain an injective homomorphism
Hom(Z/pZ, μp) −→ Ext1(Z/pZ, μp). The group Hom(Z/pZ, μp) has order p
and the image of any non-zero morphism Z/pZ → μp is a non-split extension

0 −→ μp −→ V −→ Z/pZ −→ 0

with group of points V (F) cyclic of order p2.

Definition. For every S-unit ε ∈ R∗ we let Gε denote the R-group scheme defined
in [11, p. 418]. It is an extension of Z/pZ by μp. Its group of points is killed by p
and the Galois group � = Gal(F/F) acts through matrices of the form

(
ω ψ

0 1

)
,

where ω is the cyclotomic character and, for a suitable choice of a pth root of unity
ζp in F , the cocycle ψ is given by the formula ζψ(σ)p = σ( p

√
ε)/ p

√
ε for every

σ ∈ �. Two group schemes Gε and Gε′ are isomorphic if and only if ε and ε′
generate the same subgroup of R∗/R∗ p.
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Proposition 2.2. Let p be a prime and let wp denote the number of p-th roots of
unity in R. Then

(i) The index of Ext1R,[p](Z/pZ, μp) inside Ext1R(Z/pZ, μp) is equal to wp;

(ii) If the class number of R is not divisible by p, then Ext1
R,[p](Z/pZ, μp) con-

sists of the extensions provided by the group schemes Gε with ε ∈ R∗ and
the map ε 	→ Gε induces an isomorphism between the groups R∗/R∗ p and
Ext1

R,[p](Z/pZ, μp).

Proof. (i) A non-trivial homomorphism μp(F) −→ Z/pZ is �-equivariant if and
only if the field F contains the p-th roots of unity. Therefore Lemma 2.1 implies
that the index is at mostwp. Whenwp = 1 we have equality. Ifwp = p we observe
that the group scheme V constructed above is not killed by p and we again have
equality. This proves (i). (ii) By the long exact sequence of cohomology groups
associated to the exact sequence 0 → Z → Z → Z/pZ → 0 of sheaves for the
fppf topology, we get an exact sequence

0 −→ μp(R) −→ Ext1
R(Z/pZ, μp) −→ H1

flat(Spec(R), μp) −→ 0.

The classes in Ext1
R(Z/pZ, μp) that come from μp(R) are either trivial or isomor-

phic to the group scheme V constructed above. By part (i), the group Ext1
R,[p](Z/pZ,

μp) is therefore isomorphic to H1
flat(Spec(R), μp). The latter group sits in the exact

Kummer sequence

0 −→ R∗/R∗ p −→ H1
flat(Spec(R), μp) −→ Cl(R)[p] −→ 0.

The leftmost map is induced by the usual map F∗/F∗ p −→ H1(�, μp) from
Kummer theory. Since p does not divide the class number of R, part (ii) follows.

Example. For R = Z and S = ∅ there are no non-split extensions of Z/pZ by μp,
except when p = 2. In this case the F2-vector space Ext1

Z(Z/2Z, μ2) has dimen-
sion 2. It is generated by the group scheme V constructed above and the group
scheme Gε with ε = −1. The latter is the unique extension of Z/2Z by μ2 that is
killed by 2. So it is self-dual. The Galois group acts on its points through matrices
of the form

(
1 ω2
0 1

)
,

where ω2 : Gal(Q/Q) −→ F2 is the character corresponding to the field Q(i). The
reader may check that the Hopf algebra of G−1 is Z[X,Y ]/(X2 −1+2Y,Y 2 −Y ).
The neutral element is (1, 0) and the addition formula is given by

(x, y)+ (x ′, y′) = (xx ′(1 − 2yy′), y + y′ − 2yy′).

The subgroup schemeμ2 is given by the equation Y = 0, while the subring Z[Y ]/(Y 2

− Y ) gives rise to the morphism G−1 −→ Z/2Z. See [1, 2].
The rest of this section is devoted to extensions of the form

0 −→ Z/pZ −→ G −→ μp −→ 0

We restrict ourselves to the case p = 2. This is all we need in the applications.
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Proposition 2.3. Suppose that 2 is prime in F and that 2 �∈ S. Then every extension
of μ2 by Z/2Z over the ring of S-integers R is killed by 2. If in addition the class
number of R is odd, then there is a natural isomorphism

Ext1
R(μ2,Z/2Z)

∼=−→ {ε ∈ R∗ : ε is a square in F∗
2 }/R∗2

.

Here F2 denotes the 2-adic field F ⊗ Q2 and the isomorphism maps an extension
G to the unit ε ∈ R∗ that has the property that the Galois group acts on the points
of G through matrices of the form

(
1 χ

0 1

)

where χ is the character given by the formula (−1)χ(σ) = σ(
√
ε)/

√
ε for every

σ ∈ �.

Proof. Since 2 �∈ S the ring R ⊗ Z2 is not the zero ring. Since μ2 is connected and
Z/2Z is étale over R ⊗ Z2, the group HomR⊗Z2(μ2,Z/2Z) vanishes. This implies
that HomR(μ2,Z/2Z) = 0. For the same reason, every extension of μ2 by Z/2Z
over R ⊗ Z2 is split. It follows that every extension of μ2 by Z/2Z over R is killed
by 2. In addition the Mayer–Vietoris sequence in [11, Cor. 2.4] gives rise to the
exact sequence

0 −→ Ext1
R(μ2,Z/2Z) −→ Ext1

R[ 1
2 ](μ2,Z/2Z) −→ Ext1

F2
(μ2,Z/2Z).

Since the group schemes μ2 and Z/2Z are isomorphic over the rings R[ 1
2 ] and F2,

we may switch their roles and compute the Ext-groups using Kummer theory. See
[12, Sect. 4] for a similar calculation. A short computation, using the fact that 2
does not divide the class number of R, leads to the following commutative diagram
with exact rows

0 → μ2(R[ 1
2 ]) −→ Ext1

R[ 1
2 ](μ2,Z/2Z) −→ R[ 1

2 ]∗/R[ 1
2 ]∗2 → 0,

∥∥∥
⏐⏐�

⏐⏐�

0 → μ2(F2) −→ Ext1
F2
(μ2,Z/2Z) −→ F∗

2 /F∗
2

2 → 0.

The Snake Lemma implies that Ext1
R(μ2,Z/2Z) is isomorphic to the kernel of

the rightmost vertical map. Since 2 is prime in R, this is equal to the kernel of
R∗/R∗2 −→ F∗

2 /F∗
2

2 as required.
We apply Proposition 2.3 to F = Q and S = {3, 5}. We have that R = Z[ 1

15 ].
The unit group R∗ is generated by −1, 3 and 5. The kernel of the map R∗/R∗2 −→
Q∗

2/Q
∗
2

2 is the cyclic group generated by −15. Therefore Ext1
R(μ2,Z/2Z) has order

2.

Definition. Let	 denote the unique non-split extension ofμ2 by Z/2Z over Z[ 1
15 ]:

0 −→ Z/2Z −→ 	 −→ μ2 −→ 0.
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Since	 is unique, it is self-dual. The Galois group Gal(Q/Q) acts on	(Q) through
the unique quadratic character χ of conductor 15. The endomorphism ring of 	 is
F2. Explicitly, the Hopf algebra of 	 is Z[ 1

15 ][X,Y ]/(X2 − X − 2Y,Y 2 + 2Y ).
The neutral element is (0, 0) and the addition formula is given by

(x, y)+ (x ′, y′) = (x + x ′ − 2xx ′ + 2
15 yy′(1 − 2x)(1 − 2x ′), y + y′ + yy′).

The subgroup scheme Z/2Z of	 is given by the equation Y = 0, while the subring
Z[Y ]/(Y 2 + 2Y ) gives rise to the morphism 	 −→ μ2.

The group scheme 	 is isomorphic to the group scheme of 2-torsion points
of the semi-stable elliptic curve [4, p. 82] of conductor 15 given by the minimal
Weierstrass equation Y 2 + XY + Y = X3 + X2. The coordinates of the points

of order 2 are x = −1 and x = −1±√−15
8 . The Zariski closure of the subgroup

generated by the integral point (−1, 0) is the closed subgroup scheme Z/2Z.

Remark 2.4. Let F = Q(
√

5) and S = {3}. The ring of S-integers is Z[η, 1
3 ] where

η = 1
2 (1 + √

5). Put F2 = F ⊗ Q2. Since the kernel of the natural map

Z[η, 1
3 ]∗/(Z[η, 1

3 ]∗)2 −→ F∗
2 /F∗

2
2
.

is the cyclic group generated by −3, Proposition 2.3 implies that over Z[η, 1
3 ] there

is a unique non-split extension of μ2 by Z/2Z. This group scheme is self-dual. It
is related to 	 as follows. Let S′ = {3,√5}. The ring of S′-integers is Z[η, 1

15 ].
Since the kernel of the natural map

Z[η, 1
15 ]∗/(Z[η, 1

15 ]∗)2 −→ F∗
2 /F∗

2
2
.

is the cyclic group generated by −3, we see that also over Z[η, 1
15 ] there is a unique

non-split extension of μ2 by Z/2Z. It is the base change of the group scheme over
Z[η, 1

3 ] constructed above. Since −15 = −3(
√

5)2, it is also the base change of
the Z[ 1

15 ]-group scheme 	.

Remark 2.5. Let E = Q(ζ3) and S = {5}. The ring of S-integers is Z[ζ3,
1
5 ]. Put

E2 = E ⊗ Q2. Since the kernel of the natural map

Z
[
ζ3,

1
5

]∗
/(Z[ζ3,

1
5 ]∗)2 −→ E∗

2/E∗
2

2
.

is the cyclic group generated by 5, Prop. 2.3 implies that over Z[ζ3,
1
5 ] there is a

unique non-split extension of μ2 by Z/2Z. This group scheme is self-dual. Like in
Remark 2.4 it is related to 	. Indeed, since −15 = 5(

√−3)2, its base change to
the ring Z[ζ3,

1
15 ] is isomorphic to the base change of the Z[ 1

15 ]-group scheme 	.
In this paper we abuse notation somewhat and denote the various base changes

of the group scheme 	 described in Remarks 2.4 and 2.5 by 	.
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3. Proof of Theorem 1.2

Put η = 1+√
5

2 and F = Q(
√

5). Let C be the category of finite flat commutative
2-power order group schemes G over the ring Z[η, 1

3 ] for which (σ − id)2 = 0 on
G(F) for all σ ∈ Gal(F/F) in the inertia group of any of the primes of F lying
over 3. Morphisms are morphisms of group schemes.

The category C has good stability properties. Duals and subquotients of objects
in C are again objects of C . An object G is simple if and only if the Galois action
on its group of points G(F) is irreducible. For two objects G, G ′ in C , the group
Ext1(G,G ′) classifies extensions of G by G ′ in the category of group schemes over
Z[η, 1

3 ]. The subset Ext1
C (G,G ′) of such extensions that are themselves objects in

C , is a subgroup. To any exact sequence 0 −→ G −→ G ′ −→ G ′′ −→ 0 of group
schemes in C and any H in C there is associated a long exact sequence of the form

0 −→ HomC (H,G) −→ HomC (H,G ′) −→ HomC (H,G ′′) −→
−→ Ext1

C (H,G) −→ Ext1
C (H,G ′) −→ Ext1

C (H,G ′′).

There is an analogous contravariant exact sequence. For all objects G, H of C the
group HomC (H,G) is equal to the group Hom(H,G) of all group scheme mor-
phisms H −→ G. In general, the group Ext1

C (H,G) is strictly smaller than the

group Ext1(H,G) of all extensions of H by G. The two extension groups are equal
when the Galois action on the points of G and H is unramified at 3. This happens
for instance when both G and H are isomorphic to Z/2Z or μ2.

In particular, the group schemes 	 and Gε for ε ∈ Z[η, 1
3 ]∗ defined in Sect. 2,

are objects of C .

Proposition 3.1. The only simple objects in the category C are Z/2Z and μ2.

Proof. Let G be a simple object. Then G is killed by 2. Let G ′ be the product of
G and the group schemes Gε that were discussed in Sect. 2. The result is again an
object of C that is killed by 2. The field K generated by the points of G ′ is a Galois
extension of F . The square roots of the generators −1, η and 3 of the group Z[η, 1

3 ]∗
are in K . Since (σ − id)2 = 0 on G(F) for all σ in any of the inertia subgroups
of Gal(F/F) of the primes lying over 3, the field K is tamely ramified at 3 with
ramification index ≤ 2. By Fontaine [8, Cor. 3.3.2] or Abrashkin [3, p. 38] the root
discriminant of K is therefore at most 4

√
15 = 15.49 . . . Odlyzko’s discriminant

bounds [10] imply [K : Q] < 76. We have the inclusions

Q
2⊂ F

8⊂ k
≤4

⊂ K ,

where k denotes the field F(
√−3, i,

√
η). We show that the index of the right-

most inclusion cannot be 3. Note that the unique prime over 3 ramifies in F ⊂ k,
so that the extension k ⊂ K is unramified outside 2. Since η3 is congruent to 1
modulo 2, the relative discriminant of k over F(

√−3, i) divides 2. Therefore the
root discriminant of k is at most

√
2 · √

60 = 10.95 . . . Odlyzko’s bounds imply
that any unramified extension of the latter field has degree < 26/16 and hence is
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trivial. There are two primes lying over 2 in F(ζ3), generated by ζ3 +η and ζ−1
3 +η

respectively. Since the extension F(ζ3) ⊂ k is totally ramified at both primes over
2, there are also precisely two primes in k lying over 2. The residue fields are both
equal to F4. One checks that the product of the two multiplicative groups of the
residue fields is generated by the global units ζ3 and η. Therefore class field theory
implies that the field k does not admit any odd degree non-trivial extension inside
K . In particular [K : k] cannot be 3.

It follows that Gal(K/F) is a 2-group. The subfield K ′ ⊂ K generated by
the points of the group scheme G we started with, is Galois over F . Therefore
Gal(K ′/F) is also a 2-group and hence it fixes some non-zero point P of the 2-
group G(F). Since G is simple, G(F) must be generated by P . Therefore G has
order 2. Since 2 is prime in the ring Z[η, 1

3 ], the theorem by Oort–Tate [13] implies
that G is isomorphic to Z/2Z or μ2, as required.

Proposition 3.2. The ring Z[η, ζ3,
1
3 ] is an unramified quadratic extension of Z[η,

1
3 ]. It does itself not admit any non-trivial 2-power degree unramified Galois
extension.

Proof. Clearly the ring Z[η, ζ3,
1
3 ] is an unramified quadratic extension of Z[η, 1

3 ].
The quotient field H of the maximal 2-power degree unramified Galois extension
of Z[η, 1

3 ] is an extension of F that is unramified outside 3 and the infinite primes.
Let π = Gal(H/F). By class field theory, the maximal abelian quotient of π is
isomorphic to the multiplicative group F∗

9 ×R∗/R∗
>0 ×R∗/R∗

>0 modulo the image
of the global units of Z[η]. It is easy to see that the units −1 and η of Z[η] generate
a subgroup of index 2. Therefore the quotient of π by its commutator subgroup
has order 2. Group theory implies then that π itself is also cyclic of order 2. This
proves the proposition.

Let ω3 : Gal(F/F) −→ F2 denote the restriction of the unique Dirichlet
character of Q of conductor 3.

Corollary 3.3. The F2-vector space Ext1(Z/2Z,Z/2Z) of extensions of Z/2Z by
Z/2Z over Z[η, 1

3 ] has dimension 2. It is generated by the class of Z/4Z and by
an extension killed by 2 on which the Galois group acts via matrices of the form

(
1 ω3
0 1

)
.

Proof. The action of the Galois group on the points of an étale group scheme is
unramified and étale group schemes are characterized by this action. The corollary
follows from the fact that the maximal unramified 2-power degree Galois extension
of Z[η, 1

3 ] is the ring Z[η, 1
3 , ζ3].

Corollary 3.4. Any extension of group schemes Z/2Z over Z[η, 1
3 ] becomes con-

stant over Z[η, ζ3,
1
3 ]. Any extension of group schemes μ2 over Z[η, 1

3 ] becomes
diagonalizable over Z[η, ζ3,

1
3 ].

Proof. This follows inductively from Prop. 3.2 and Cartier duality.
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The group of upper triangular 3 × 3-matrices over F2 is isomorphic to the
dihedral group D4. Consider a subgroup

� ⊂
⎧
⎨

⎩

⎛

⎝
1 a c
0 1 b
0 0 1

⎞

⎠ : a, b, c ∈ F2

⎫
⎬

⎭
.

The maps � −→ F2 given by γ 	→ a and γ 	→ b are group homomorphisms. The
following elementary lemma is repeatedly used in the sequel.

Lemma 3.5. Let � be as above and let N ⊂ � be a normal subgroup of order at
most 2. Then either a(N ) = b(N ) = 0 or one of a, b vanishes on �.

Proof. If neither a nor b vanishes on �, then � must contain a matrix of the form
⎛

⎝
1 1 c
0 1 1
0 0 1

⎞

⎠ .

This matrix has order 4. It follows that � is either the full dihedral group or its
unique cyclic subgroup of order 4. Either group has a unique normal subgroup of
order 2. It is given by a = b = 0.

This proves the lemma.
Let 	 denote the group scheme over Z[η, 1

3 ] that was introduced in Remark
2.4. It is a self-dual object of the category C . The action of Gal(F/F) on the points
of 	 is through the character ω3.

Proposition 3.6. We have

Ext1
C (	,Z/2Z) = Ext1

C (μ2,	)= 0.

Proof. By Cartier duality it suffices to show that Ext1
C (	,Z/2Z) vanishes. Con-

sider an extension in the category C

0 −→ Z/2Z −→ G −→ 	 −→ 0.

Then G is killed by 4. Let C be the kernel of the morphism G −→ 	 −→ μ2.
Then C is an extension of Z/2Z by Z/2Z and we have an exact sequence

0 −→ C −→ G −→ μ2 −→ 0.

If C(F) were cyclic, any σ ∈ Gal(F/F) would necessarily act trivially on the
quotient of G(F) by the subgroup 2C(F). Since the Galois action on 	(F) is
non-trivial, this cannot happen. Therefore C is killed by 2. It follows from the con-
nected-étale exact sequence that G is killed by 2 over the completion at the prime
2. This implies that G itself is also killed by 2. By Remark 2.4 the Galois group
acts on G(F) through matrices of the form

⎛

⎝
1 ψ a
0 1 ω3
0 0 1

⎞

⎠
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Since C is étale, the characterψ : Gal(F/F) −→ F2 is unramified outside 3. Since
G is an object of C , the action of Gal(F/F) on G(F) is tamely ramified at every
prime over 3. Moreover, the inertia group has order ≤ 2. Therefore Lemma 3.5
applies with � equal to the decomposition group of a prime over 3 and N its inertia
subgroup: since ω3(N ) �= 0, we have ψ(�) = 0. It follows that ψ is unramified at
all finite primes. Since the narrow class number of F is 1, class field theory implies
ψ = 0.

To finish the proof, we consider the exact sequence

Hom(Z/2Z,Z/2Z)
g−→ Ext1(μ2,Z/2Z) −→ Ext1(	,Z/2Z)

h−→ Ext1(Z/2Z,Z/2Z).

The map h sends the class of G to the class of the extension determined by ψ . By
Remark 2.4 the map g is an isomorphism of two groups of order 2. It follows that
h is injective. This implies the proposition.

Proposition 3.7. The natural maps

Ext1
C (Z/2Z,	) −→ Ext1(Z/2Z, μ2),

Ext1
C (	,μ2) −→ Ext1(Z/2Z, μ2)

are both zero.

Proof. By Cartier duality it suffices to deal with the first map. Since the Galois co-
variants of Homab(	(E),Z/2Z) have order 2, Lemma 2.1 implies that Ext1

C (Z/2Z,
	) is generated by the extensions that are killed by 2 and by the image of the class
of Z/4Z. The latter is mapped to zero because the sequence

Ext1(Z/2Z,Z/2Z) −→ Ext1
C (Z/2Z,	) −→ Ext1(Z/2Z, μ2).

is exact. Therefore it suffices to show that any extension in C of the form

0 −→ 	 −→ G −→ Z/2Z −→ 0,

that is killed by 2, is mapped to zero in Ext1
C (Z/2Z, μ2).

The Galois group acts on the points of G via matrices of the form
⎛

⎝
1 ω3 a
0 1 ψ

0 0 1

⎞

⎠

The homomorphism Ext1
C (Z/2Z,	) −→ Ext1

C (Z/2Z, μ2) maps G to the quo-
tient of G by the subgroup scheme Z/2Z of 	. This is an extension of Z/2Z
by μ2. By Proposition 2.2 it is a group scheme of the form Gε for some ε in
Z[η, 1

3 ]∗ = 〈−1, 3, η〉. We want to show that the corresponding character, i.e. the
character ψ given by (−1)ψ(σ) = σ(

√
ε)/

√
ε, vanishes.

Let K denote the field generated by the points of G and let � ⊂ Gal(K/F)
denote the decomposition group of a prime over 3. Since G is an object of C , the
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ramification indices of the primes over 3 are at most 2. Therefore Lemma 3.5 applies
to � with N equal to its inertia subgroup: since ω3 is ramified at 3, the character ψ
is trivial on �. We conclude that 3 splits in F(

√
ε), so that ε is a square modulo 3.

Since ε = ±η are not squares in the residue field F9, we have therefore ε = ±1.
If ε = −1, then the field K is a quadratic extension of F(i,

√−3). Locally at 2 the
extension of Z/2Z by 	 looks like

0 −→ Z/2Z × μ2 −→ G −→ Z/2Z −→ 0.

Therefore the ramification index of the prime 2 in the extension F ⊂ K is equal to
2. It follows that K is everywhere unramified over F(i,

√−3) = Q(i,
√−3,

√
5).

A standard computation involving Odlyzko’s discriminant bounds shows that the
latter field does not admit any non-trivial everywhere unramified extension. Con-
tradiction. It follows that ε = 1 and hence ψ = 0 as required.

This proves the proposition.
Next we compute the long exact sequences that we obtain by applying the bi-

functor HomC (−,−), in both arguments, to the exact sequence 0 −→ Z/2Z −→
	 −→ μ2 −→ 0. By Corollary 3.3 and Propositions 3.6 and 3.7 we obtain the
following commutative diagram with exact rows and columns

0⏐⏐�
0 −→ F2⏐⏐�

⏐⏐�
0 −→ Ext1

C (	,	) −→ Ext1
C (Z/2Z,	)⏐

⏐�
⏐
⏐�

⏐
⏐�

0 −→ F2 −→ Ext1
C (	,μ2) −→ 0

Here the “F2” in the upper right corner is the image of the map from Ext1(Z/2Z,Z/
2Z) to Ext1

C (Z/2Z,	). It is the image of the class of Z/4Z. It is also the unique non-
split extension of μ2 by Z/4Z. Similarly, the “F2” in the lower left corner denotes
the extension of 	 by μ2 that is the image of the class of μ4 in Ext1(μ2, μ2). It is
also the unique non-split extension of μ4 by Z/2Z. It follows at once that in the
category C there is at most one non-trivial extension of 	 by itself. We prove the
following stronger statement.

Proposition 3.8. We have

Ext1
C (	,	) = 0.

Proof. If a non-trivial extension exists, it is mapped to the image of the class of
Z/4Z in Ext1

C (Z/2Z,	) and to the image of μ4 in Ext1
C (	,μ2). This means that

the group G(F) of a non-trivial extension

0 −→ 	 −→ G −→ 	 −→ 0,
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is of type 4 × 4. It follows that 	(F) is precisely equal to 2G(F). Proposition 3.7
implies that the natural map Ext1

C (	,	) −→ Ext1(Z/2Z, μ2) is zero. Therefore
Corollary 3.3 and its Cartier dual show that we have an extension of the form

0 −→ Z/4Z −→ G −→ μ4 −→ 0

The Galois group acts on the points of G via matrices of the form
(

1 a
0 ω4

)

where ω4 is the character that gives the action on the group μ4 of 4th roots of unity
and a : Gal(F/F) −→ Z/4Z is a 1-cocycle with the property that the restriction
of a to the absolute Galois group of F(i) is a character satisfying 2a = ω3. In
particular, a has order 4 and the field K generated by the points of G contains F(i)
and has degree 8 over F .

Since the extension 0 → Z/4Z → G → μ4 → 0 is split over the comple-
tion of OF at 2, the prime 1 + i of F(i) is split in K . In particular, the extension
F(i) ⊂ K is unramified outside 3. Since F(i) admits no non-trivial everywhere
unramified extensions, class field theory implies that Gal(K/F(i)) is a quotient of
the multiplicative group (OF(i)/3OF(i))

∗ by the subgroup generated by O∗
F(i) and

by the generator 1 + i of the prime lying over 2. There are two primes lying over 3,
each with residue field F9. One checks that the quotient of F∗

9 × F∗
9 by the global

unit η and the element 1 + i , has order 2 rather than 4. It follows that [K : F] �= 8
and we obtain a contradiction.

It follows that Ext1
C (	,	) is trivial, as required.

Proof. Proof of Theorem 1.2. Let A be a semistable abelian variety over F =
Q(

√
5) with good reduction outside 3. A result by Grothendieck [9, Cor. 3.5.2]

implies that for any σ in an inertia group of a prime lying over 3, the endomor-
phism (σ − id)2 acts as zero on the 2n-torsion subgroup schemes A[2n] for n ≥ 1.
Therefore the latter are objects of the category C . Proposition 3.6 implies that each
A[2n] admits a filtration of the form

0 ⊂︸ ︷︷ ︸
μ2

′s

Mn ⊂︸ ︷︷ ︸
	′s

Nn ⊂︸ ︷︷ ︸
Z/2Z′s

A[2n]

where Mn is filtered by copies of μ2, the quotient Nn/Mn is filtered by copies of
	 and A[2n]/Nn is filtered by copies of Z/2Z.

By Corollary 3.4 the étale group schemes M∨
n and A[2n]/Nn become constant

over the ring Z[η, ζ3,
1
3 ]. Choose a residue field Fq of this ring. The groups of points

of A[2n]/Nn and M∨
n map injectively to the group of Fq -rational points of the abe-

lian varieties A/Nn and Adual/N ′
n respectively. Here N ′

n = ker(A[2n]∨ → M∨
n ).

The abelian varieties A/Nn and Adual/N ′
n are all isogenous to A. Therefore they

have the same number of points as A over Fq . It follows that #Mn and #(A[2n]/Nn)

are at most #A(Fq). In particular, they remain bounded as n grows. By Proposition
3.8 the group schemes Nn/Mn are killed by 2. Therefore A[2n] is killed by some
positive integer that does not depend on n. This is impossible unless A = 0.

This proves Theorem 1.2.
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4. Proof of Theorem 1.3

Let B be the category of finite flat commutative 2-power order group schemes over
Z[ 1

15 ] on which (σ − id)2 = 0 for all σ in the inertia subgroup of Gal(Q/Q) of
any of the primes lying over 3 or 5. We write S for the set of primes {3, 5}. The
category B enjoys the same stability properties as the category C of the previous
section.

The following group theoretical fact is used in the proof of Prop. 4.2. We only
apply it for n = 3.

Lemma 4.1. Let n ≥ 3. Then the symmetric group Sn is not the commutator sub-
group of any group.

Proof. Let G be a group and let G ′ be its commutator subgroup. Conjugation gives
rise to a homomorphism G −→ Aut(G ′). On the one hand this homomorphism
maps G ′ to the commutator subgroup of Aut(G ′). On the other hand its image is
the group Inn(G ′) of inner automorphisms of G ′. Therefore, if a group H is the
commutator subgroup of some group, we must have Inn(H) ⊂ Aut(H)′.

This condition is not satisfied for H = Sn when n ≥ 3. We leave the verification
to the reader.

Proposition 4.2. The only simple objects in the category B are Z/2Z and μ2.

Proof. Let G be a simple object. As in the proof of Prop. 3.1, let G ′ be the product
of G with the group schemes Gε of Sect. 2, where ε runs through the group Z[ 1

15 ]∗
modulo squares. Then G ′ is killed by 2. Let K be the field generated by the points
of G ′. Put � = Gal(K/Q). The square roots of −1, 3 and 5 are contained in K .
The field K is tamely ramified at 3 and 5 with ramification index at most 2. By the
results of Abrashkin [3, p. 38] and Fontaine [8, Cor. 3.3.2] the root discriminant
of K is therefore strictly smaller than 4

√
15 = 15.49 . . . Odlyzko’s discriminant

bounds [10] imply [K : Q] < 76. We have the inclusions

Q
8

⊂ k
≤9

⊂ K .

where k = Q(
√

5,
√−3, i). The extension k ⊂ K is unramified outside 2. There-

fore, by the Kronecker–Weber Theorem any larger extension inside K that is abe-
lian over Q, necessarily contains Q(ζ8). Since the root discriminant of Q(ζ8) is
equal to 4, this is impossible. Therefore k is the maximal abelian extension of Q
inside K and Gal(K/k) is equal to the commutator subgroup �′. This group is
solvable and we study �′/�′′. We already saw in the proof of Proposition 3.7 that
k admits no non-trivial unramified extensions. In k there are two primes lying over
2. Writing η = (1 + √

5)/2, one prime contains ζ3 + η while the other contains
ζ−1

3 +η. Their product is (1+ i). Since the global units ζ3 and η generate the group
(Ok/(1 + i)Ok)

∗ ∼= F∗
4 × F∗

4, class field theory implies that [�′ : �′′] is a power of
2.

If [�′ : �′′] = 1, 4 or 8, it is immediate that � is a 2-group. If [�′ : �′′] = 2,
we have #�′′ ≤ 4. If #�′′ = 3, we have �′ ∼= S3 which is impossible by Lemma
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4.1. Therefore #�′′ is necessarily a power of 2 and � is a 2-group. The subfield
K ′ ⊂ K generated by the points of the group scheme G is a Galois extension of
Q. Therefore the Galois group Gal(K ′/Q) is also a 2-group. So � has non-zero
fixed points in the irreducible 2-power order Galois module G(F). It follows that
G has order 2. By the Oort–Tate Theorem [13] the group scheme G is isomorphic
to Z/2Z or μ2 as required.

Since the Galois extension Q ⊂ Q(ζ15) is not cyclic, the same is true for the
maximal 2-power degree unramified Galois extension of Z[ 1

15 ]. As a consequence
the group Ext1

B(Z/2Z,Z/2Z) = Ext1
Z[ 1

15 ](Z/2Z,Z/2Z) is relatively large. It has

order 8. This affects the size of other extension groups, in particular the ones involv-
ing the group scheme 	 of Sect. 2. A computation similar to the one performed
in the proof of Prop. 3.8 shows that Ext1

B(	,	) has dimension 2 over F2. It is
generated by the 4-torsion of the Jacobian of the modular curve X0(15) and by an
unramified quadratic twist of the product 	×	.

Since it is essential for our method that Ext1
B(	,	) be 1-dimensional, this is a

problem. We avoid it by making a base change. We move over to the ring Z[ζ3,
1
15 ]

and modify the category B accordingly. Put E = Q(ζ3) and let S denote the set of
Z[ζ3]-primes {√−3, 5}.
Definition. Let D be the category of commutative finite flat 2-power order group
schemes over Z[ζ3,

1
15 ] with the property that (σ − id)2 = 0 on G(Q) for all σ

contained in the inertia subgroup of Gal(E/E) of any of the primes lying over
primes in S.

The category D has the same stability properties as the category C of the previ-
ous section. The group schemes	 and Gε for ε ∈ Z[ζ3,

1
15 ]∗ of Sect. 2 are objects

of D.

Proposition 4.3. Let R denote the ring of integers of the ray class field of con-
ductor 5

√−3 of E = Q(ζ3). Then the ring R[ 1
15 ] is an unramified cyclic degree

8 extension of Z[ζ3,
1

15 ]. It does itself not admit any non-trivial 2-power degree
unramified Galois extension.

Proof. Let π denote the Galois group of the maximal unramified 2-power degree
extension of Z[ζ3,

1
15 ]. Then π/π ′ is isomorphic to the ray class group of E of con-

ductor 5
√−3. This shows that R[ 1

15 ] is the maximal unramified abelian 2-power
degree extension of Z[ζ3,

1
15 ]. This ray class group is isomorphic to F∗

3 ×F∗
25 mod-

ulo the global unit −ζ3. Therefore it is cyclic and group theory implies then that π
itself is also cyclic. It follows that R[ 1

15 ] does not admit any non-trivial 2-power
degree unramified Galois extension, as required.

Corollary 4.4. The F2-vector space Ext1(Z/2Z,Z/2Z) of extensions of Z/2Z by
Z/2Z over Z[ζ3,

1
15 ] has dimension 2. It is generated by Z/4Z and an extension

killed by 2 on which the Galois group acts via matrices of the form
(

1 χ5
0 1

)
.
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Here χ5 : Gal(E/E) −→ F2 is the restriction of the unique quadratic Dirichlet
character of conductor 5. It corresponds to the extension E ⊂ E(

√
5).

Proof. It suffices to observe that E(
√

5) is the unique quadratic extension of E that
is unramified outside S. Now apply Proposition 4.3.

Corollary 4.5. Any extension of group schemes Z/2Z over Z[ζ3,
1
15 ] is constant

over R[ 1
15 ]. Similarly, any extension of group schemes μ2 over Z[ζ3,

1
15 ] is diago-

nalizable over R[ 1
15 ].

Proof. This follows from Proposition 4.3 and Cartier duality.
Let 	 denote the group scheme over Z[ζ3,

1
5 ] that was introduced in Remark

2.5. It is a self-dual object of the category D. The action of Gal(E/E) on the
points of 	 is through the character χ5. The following proposition is analogous to
Proposition 3.6.

Proposition 4.6. We have

Ext1
D(	,Z/2Z) = Ext1

D(μ2,	) = 0.

Proof. By Cartier duality it suffices to show that the left hand side group vanishes.
Consider an extension in the category D

0 −→ Z/2Z −→ G −→ 	 −→ 0.

The kernel C of the morphism G −→ 	 −→ μ2 is an extension of Z/2Z by Z/2Z.
We have an exact sequence

0 −→ C −→ G −→ μ2 −→ 0.

If C(E) were cyclic, then any automorphism of G(E) necessarily acts trivially on
the quotient of G(E) by the subgroup 2C(E). Since the Galois action on 	(E)
is non-trivial, this cannot happen. Therefore C and hence, by the connected-étale
sequence, the group scheme G itself is killed by 2. So the Galois group acts through
matrices of the form

⎛

⎝
1 ψ a
0 1 χ5
0 0 1

⎞

⎠

Here ψ is a character of Gal(E/E). Since C is étale, ψ is unramified outside
√−3

and 5. We apply Lemma 3.5 with � equal to a decomposition group of a prime over
5 and N its inertia subgroup. Note that #N ≤ 2 because G is an object of D. We
find that � ⊂ kerψ so that ψ is unramified outside

√−3. Since the ray class field
of conductor

√−3 of E = Q(ζ3) is trivial, we have ψ = 0.
Consider the exact sequence

Hom(Z/2Z,Z/2Z)
g−→ Ext1(μ2,Z/2Z) −→ Ext1(	,Z/2Z)

h−→ Ext1(Z/2Z,Z/2Z).
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The map h sends the class of G to the class of the extension determined by ψ . By
Remark 2.5 the map g is an isomorphism of two groups of order 2. It follows that
h is injective. Now the proposition follows.

The following proposition is analogous to Proposition 3.7. The group scheme
G−1 was discussed in Sect. 2. See the example there.

Proposition 4.7. The images of both natural maps

Ext1
D(Z/2Z,	) −→ Ext1(Z/2Z, μ2),

Ext1
D(	,μ2) −→ Ext1(Z/2Z, μ2)

are contained in the subgroup generated by the class [G−1].
Proof. By Cartier duality it suffices to give a proof for the first map. Since the
Galois covariants of Homab(	(E),Z/2Z) have order 2, Lemma 2.1 implies that
Ext1

D(Z/2Z,	) is generated by the extensions that are killed by 2 and by the image
of the class of Z/4Z. The latter is mapped to zero because the sequence

Ext1(Z/2Z,Z/2Z) −→ Ext1
D(Z/2Z,	) −→ Ext1(Z/2Z, μ2)

is exact. Therefore it suffices to show that any extension in D of the form

0 −→ 	 −→ G −→ Z/2Z −→ 0,

that is killed by 2, is mapped to the subgroup generated by [G−1] in Ext1
D(Z/2Z, μ2).

The Galois group acts on the points of G via matrices of the form
⎛

⎝
1 χ5 a
0 1 ψ

0 0 1

⎞

⎠ .

The extension G is mapped to the class of Gε in Ext1(Z/2Z, μ2), where ε is a
unit in Z[ζ3,

1
15 ]∗ = 〈−1,

√−3, 5〉 and the corresponding quadratic character is

ψ . Since G is an object of D, the inertia subgroup of any prime lying over
√

5 has
order ≤ 2 and Lemma 3.5 applies to the decomposition group. As χ5 is ramified,
we deduce that the prime

√
5 splits in the field cut out by ψ . Since ε = ±√−3 are

not squares in the residue field F25, we have ε = ±1. The class in Ext1(Z/2Z, μ2)

associated to ε = −1 is precisely [G−1].
This proves the proposition.

Remark 4.8. If there were no group scheme H in Ext1(Z/2Z,	) that maps to the
class [G−1] in Ext1

D(Z/2Z, μ2), then a proof of Prop. 4.11 could be given along
the lines of the arguments of Sect. 3. However, such a group scheme does exist
and therefore our proof is more complicated in this case. The group scheme H is
unique. The Galois group acts on its points through matrices of the form

⎛

⎝
1 χ5 a
0 1 ω2
0 0 1

⎞

⎠ ,
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where ω2 : Gal(E/E) −→ F2 is the character corresponding to the field E(i). It
follows from the proof of Proposition 4.7 that the field K generated by the points
of H is a quadratic extension of E(i,

√
5), unramified outside the primes lying over

3. There is only one such field: K is the ray class field of conductor
√−3 of the

field E(
√−5) = Q(ζ3,

√−5).
Next we compute the long exact sequences that we obtain by applying the bi-

functor HomD(−,−), in both arguments, to the exact sequence 0 −→ Z/2Z −→
	 −→ μ2 −→ 0. As a consequence of the previous propositions, we have the
following commutative diagram with exact rows and columns

0⏐⏐�
0 −→ F2⏐⏐�

⏐⏐�
0 −→ Ext1

D(	,	) −→ Ext1
D(Z/2Z,	)⏐⏐

�
⏐⏐
�

⏐⏐
�

0 −→ F2 −→ Ext1
D(	,μ2) −→ F2

Here the “F2” in the upper right corner denotes the extension of Z/2Z by	 that is
the image of the class of Z/4Z in Ext1(Z/2Z,Z/2Z). It is also the unique non-split
extension of Z/4Z by μ2. Similarly, the “F2” in the lower left corner denotes the
extension of	 by μ2 that is the image of the class of μ4 in Ext1(μ2, μ2). It is also
the unique non-split extension of Z/2Z by μ4. The “F2” in the lower right corner
is the extension [G−1] in Ext1(Z/2Z, μ2).

It follows that the F2-dimension of Ext1
D(	,	) is at most 2. On the other hand

the dimension is at least 1, because the 4-torsion of the elliptic curve Y 2+XY +Y =
X3 + X2 of Sect. 2, is a non-trivial extension of 	 by 	 in D. We now proceed to
show that Ext1

D(	,	) has dimension exactly 1.

Lemma 4.9. Let G be an extension of	 by	. Then the underlying group structure
of G(E) is not of type 4 × 2 × 2.

Proof. Suppose it is. Let e1 ∈ G(E) be a point of order 4. Choose e2 of order 2 so
that 2e1 and e2 are a basis for the group of points of the subspace 	(E) of G(E).
Finally, choose e3 ∈ G(E) of order 2 so that the images of e1, e3 are a basis for
the group G(E)/	(E). Every point in the	(E)-coset of e3 has order 2, while the
points in the cosets of e1 and e1 + e3 all have order 4. This implies that Gal(E/E)
preserves the coset of e3 and switches those of e1 and e1 + e3. Since 	(E) is gen-
erated by 2e1 and e2, it follows that Gal(E/E) fixes 2e1 and hence switches e2 and
2e1 + e2.

Over Z2 the group scheme 	 is a split extension of μ2 by Z/2Z and the group
scheme G/	 ∼= 	 admits a unique morphism onto its maximal étale quotient Z/2Z.
Let N denote the quotient of the kernel of the composition G → G/	 → Z/2Z
by the connected component of the subgroup scheme 	 of G. Let E2 be the com-
pletion of E at 2. For any embedding E ↪→ E2, either e1 or e1 + e3 is contained in
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N (E2). In the first case the natural map 〈e1〉 → N (E2) is an isomorphism. In the
second case the map 〈e1 + e3〉 → N (E2) is an isomorphism. This shows that the
group N (E2) is cyclic of order 4. On the other hand, there is an exact sequence of
Z2-group schemes

0 −→ Z/2Z −→ N −→ μ2 −→ 0.

Since this sequence is split over Z2, the group scheme N is killed by 2. Contradic-
tion.

This proves the lemma.

Corollary 4.10. The group Ext1
D(	,	) is generated by the subgroup of extensions

that are killed by 2 and by the extension of 	 by 	 realized by the 4-torsion of the
elliptic curve with Weierstrass equation Y 2 + XY + Y = X3 + X2.

Proof. The index “[2]” indicates the subgroup of extensions that are killed by 2.
The square

Ext1
D,[2](	,	) ↪→ Ext1

D,[2](Z/2Z,	)⏐⏐�⊂
⏐⏐�⊂

Ext1
D(	,	) ↪→ Ext1

D(Z/2Z,	)

is Cartesian. This follows from Lemma 4.9 and the fact that extensions in Ext1
D(	,

	) with underlying group of type 4 × 4, map to extensions in Ext1
D(Z/2Z,	) that

are not killed by 2. It follows that the induced map between the cokernels of the
vertical maps is injective. We already saw in the proof Proposition 4.7 that Lemma
2.1 implies that the cokernel of the rightmost arrow has order 2. This proves the
corollary

Proposition 4.11. We have

dimF2 Ext1
D(	,	)= 1.

Proof. By Lemma 4.9 and Corollary 4.10 it suffices to show that extensions in D
of the form

0 −→ 	 −→ G −→ 	 −→ 0,

that are killed by 2 are necessarily split.
Let G be such an extension. The map Ext1

D(	,	) −→ Ext1
D(Z/2Z,	) sends

G to the kernel of the composed morphism G → 	 → μ2. The 2-dimen-
sional F2-vector space Ext1

D(Z/2Z,	) is generated by the class of the group
scheme H of Remark 4.8 and by the image of Z/4Z under the natural map
Ext1(Z/2Z,Z/2Z) −→ Ext1

D(Z/2Z,	). The only non-trivial extension class

Ext1
D(Z/2Z,	) that is killed by 2, is the one represented by H . It follows that the

class of G maps to the class of H . Similarly, the map Ext1
D(	,	) −→ Ext1

D(	,μ2)

sends G to the quotient by the subgroup scheme Z/2Z of its subgroup scheme 	.
The class of G maps to the class of the Cartier dual H∨ in Ext1

D(	,μ2).
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Let {e1, e2, e3} be a basis of H∨(E) with the property that {e1} and {e1, e2} are
bases of its unique 1- and 2-dimensional sub-Galois modules respectively. Then
the Galois group acts on H∨(E) through matrices of the form

⎛

⎝
1 ω2 a + μω2 + λχ5 + χ5ω2
0 1 χ5
0 0 1

⎞

⎠ , for certain λ,μ ∈ F2.

This follows from a short computation using the 3 × 3 matrix that describes the
Galois action on H(E) given in Remark 4.8. It follows that the Galois group acts
on G(E) through matrices of the form

⎛

⎜⎜
⎝

1 χ5 a b
0 1 ω2 a + μω2 + λχ5 + χ5ω2
0 0 1 χ5
0 0 0 1

⎞

⎟⎟
⎠ .

We recall that λ,μ ∈ F2 are fixed constants that depend on the F2-basis of H∨(E)
that we use. On the other hand, ω2, χ5, a and b are functions Gal(E/E) −→ F2.
Let L be the field generated by the points of G. It contains the field K generated
by the points of H (or equivalently of H∨).

Claim. We have L = K .
Since G is an object of the category D that is killed by 2, the ramification indices
over E of the primes of L lying over

√−3 and 5 are at most 2. Let O2 be the com-
pletion of Z[ζ3] at 2. Over O2 the group scheme	 is isomorphic to Z/2Z×μ2. This
implies that the ramification indices of the primes in L lying over 2 are at most and
hence equal to 2. It follows that E(

√
5, i) ⊂ L is an abelian exponent 2 extension

that is unramified outside the primes lying over 3. We saw already in the proof of
Proposition 3.7 that E(

√
5, i) = Q(

√−3,
√

5, i) admits no non-trivial unramified
extensions. The two primes of E(

√
5, i) lying over 3 have residue fields isomorphic

to F9. Since the quotient of F∗
9 × F∗

9 by the global unit η = (1 + √
5)/2 is cyclic,

class field theory implies that L is a cyclic extension of E(
√

5, i). It follows that L
has degree 2 over E(

√
5, i) and hence L = K as required.

Abusing notation, we see that as a consequence the map
⎛

⎜
⎜
⎝

1 χ5 a b
0 1 ω2 a + μω2 + λχ5 + χ5ω2
0 0 1 χ5
0 0 0 1

⎞

⎟
⎟
⎠ 	→

⎛

⎝
1 χ5 a
0 1 ω2
0 0 1

⎞

⎠

is an isomorphism of groups. The fact that the 3 × 3-matrices with ω2 = 0 have
order 2 implies the same for the 4 × 4-matrices and this easily implies that λ = 0.
The subgroup Gal(K/E(

√
5)) of Gal(K/E) consists of automorphisms whose

corresponding matrices have χ5 = 0. These are the four matrices
⎛

⎜⎜
⎝

1 0
0 1

M

0 0
0 0

1 0
0 1

⎞

⎟⎟
⎠
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with

M =
(

0 0
0 0

)
,

(
1 μ+ 1
0 1

)
,

(
0 β

1 μ

)
,

(
1 β + μ+ 1
1 μ+ 1

)
.

for some β ∈ F2. Indeed, the second matrix comes from the square of the 4 × 4-
matrix that is mapped to any of the 3 × 3-matrices with χ5 = 1 and ω2 = 1. The
third comes from the 4 × 4-matrix that is mapped to the 3 × 3-matrix with χ5 = 0,
ω2 = 1 and a = 1. The fourth matrix is the sum of the second and the third.

Since the rightmost two matrices have the same determinant, we see that the
number of automorphisms σ ∈ Gal(K/E(

√
5)) for which the rank of the 4 × 4-

matrix corresponding to σ − id is equal to 2, is odd.
Let � = Gal(K/E). Recall that � is isomorphic to the dihedral group of order

8.

Claim. The decomposition subgroup �2 ⊂ � of any prime lying over 2 has order
2.

Proof. Proof of the claim. Since 2 splits in E(
√

5) and is ramified in K , the group
�2 has order 2 or 4. Suppose that #�2 = 4. Then �2 = Gal(K/E(

√
5)) and as we

have seen above, the number of automorphisms σ ∈ �2 for which the rank of the
4 × 4-matrix corresponding to σ − id is equal to 2, is odd.

On the other hand, let O2 denote the completion of Z[ζ3] at 2. Over O2 we have
	 ∼= Z/2Z × μ2. Therefore Gal(E2/E2) acts via �2 on the points of G through
matrices of the form

⎛

⎜⎜
⎝

1 0 γ 0
0 1 ω2 γ

′
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ .

Here γ and γ ′ are unramified characters. If one of γ, γ ′ is trivial, then all σ ∈
Gal(L/E(

√
5)) have the property that the rank of the matrix corresponding to

σ − id is at most 1. This is a contradiction. If both γ , γ ′ are non-trivial, then they
are equal and �2 acts through matrices of the form

⎛

⎜⎜
⎝

1 0
0 1

M

0 0
0 0

1 0
0 1

⎞

⎟⎟
⎠

with

M =
(

0 0
0 0

)
,

(
0 0
1 0

)
,

(
1 0
0 1

)
,

(
1 0
1 1

)
.

Since exactly two of these matrices are invertible, exactly two σ ∈ �2 have the
property that the rank of the 4 × 4-matrix corresponding to σ − id is equal to 2.
Contradiction. So we have #�2 = 2 and the claim follows.
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The second claim implies that the two primes over 2 in E(i,
√

5) split in the
quadratic extension K . But they don’t. Indeed, consider the element

√−3 + √−5
of the subfield E(

√−5). Since its norm to E is −2, it generates one of the prime
ideals over 2. The other prime over 2 is generated by

√−3 − √−5. Since both
primes are principal ideals, they split in the Hilbert class field E(

√
5, i) of E(

√−5).
If the two primes were splitting completely in K , then both would admit generators
that are congruent to 1 (mod

√−3). This follows from Remark 4.8: the field K
is the ray class field of conductor

√−3 of the field E(
√−5). In other words, we

would have u(
√−3 + √−5) ≡ 1 (mod

√−3) for some unit u in E(
√−5). Since

the unit group of E(
√−5) is generated by −1 and 4 + √

15 = 4 + √−3
√−5, this

implies that

±(4 + √−3
√−5)m(

√−3 + √−5) ≡ 1 (mod
√−3), for some m ∈ Z.

However, the left hand side is congruent to ±√−5 modulo
√−3, so that this is

impossible for any m ∈ Z.
This proves the proposition.

Proof. Proof of Theorem 1.3. Let A be a semistable abelian variety over Q with
good reduction outside 15. By Grothendieck [9, Cor. 3.5.2], for every n ≥ 1 the
2n-torsion subgroup schemes A[2n] are objects of the category B over the ring
Z[ 1

15 ]. Proposition 4.2 implies then that for every n ≥ 1, the subgroup scheme
A[2n] admits a filtration with simple subquotients isomorphic to Z/2Z or μ2. We
now make a base change to the ring Z[ζ3,

1
15 ]. The group schemes A[2n] are objects

of the category D. By Remark 2.5 and Proposition 4.7 we obtain for any n ≥ 1
over Z[ζ3,

1
15 ] a filtration of A[2n] as follows:

0 ⊂︸ ︷︷ ︸
μ2

′s

Mn ⊂︸ ︷︷ ︸
	′s

Nn ⊂︸ ︷︷ ︸
Z/2Z′s

A[2n],

where Mn is filtered by copies of μ2, the quotient Nn/Mn is filtered by copies of
the group scheme 	 and A[2n]/Nn is filtered by copies of Z/2Z.

By Corollary 4.5 the étale group schemes M∨
n and A[2n]/Nn become constant

over the ring R[ 1
15 ]. Here R denotes the ring of integers of the ray class field of

conductor 5
√−3 of E = Q(ζ3). Therefore, for every residue field Fq of R[ 1

15 ], the
groups of points of M∨

n and A[2n]/Nn map injectively to the group of Fq -rational
points of the abelian varieties A/Nn and Adual/N ′

n . Here N ′
n = ker(A[2n]∨ →

M∨
n ). As in the proof of Theorem 1.2 it follows that #Mn and #(A[2n]/Nn) remain

bounded as n grows.
Let J denote the elliptic curve given by the Weierstrass equation Y 2+XY +Y =

X3 + X2. Then the group scheme J [2] is isomorphic to	 and J [4] is a non-trivial
extension in D of	 by	. It is unique by Proposition 4.11. Since End(	) is isomor-
phic to the finite field F2, one proves by induction [12, Sect. 8] that any object in D
that admits a filtration with flat closed subgroup schemes with successive quotients
isomorphic to 	, is isomorphic to

t⊕
i=1

J [2mi ],
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for certain integers mi > 0. We apply this to the subquotients Nn/Mn of A[2n].
For every n ≥ 0 the underlying group of A[2n] is isomorphic to (Z/2nZ)2g where
g = dim A. This implies that for all n ≥ 0 there are morphisms of group schemes

A[2n] fn−→ J [2n]g

whose kernels and cokernels are bounded as n grows. The morphisms fn are not
necessarily compatible, but there is a cofinal compatible system. Taking the limit
we obtain an exact sequence of 2-divisible groups

0 −→ H −→ Adiv −→ J g
div −→ 0,

where H is a finite 2-power order subgroup scheme of A. By Faltings’ theorem
[7] the abelian varieties A and J g are isogenous over E . Lemmas 4.12 and 4.13
below imply that A and J g are also isogenous over Q. Since J is isogenous to the
Jacobian of the modular curve X0(15), Theorem 1.3 follows.

Lemma 4.12. Let � be a group and let M and N be Z-torsion free Z[�]-modules.
Let H be a subgroup of � of finite index and let I ⊂ � be a subset for which

• for every σ ∈ I the element (σ − 1)2 annihilates M and N;
• the group � is generated by H and I .

Then every H-linear morphism f : M −→ N is actually �-linear.

Proof. Let f : M −→ N be H -linear. Let σ ∈ I . Then σ k ∈ H for some positive
integer k. We have

σ k = (1 + (σ − 1))k ≡ 1 + k(σ − 1) (mod (σ − 1)2), in the ring Z[�].
Let f : M −→ N be H -linear and let m ∈ M . We have f ((1−k)m) = (1−k) f (m)
and f (σ km) = σ k f (m). Since (σ − 1)2 kills both M and N , it follows that
k f (σm) = kσ f (m). Since N is torsion-free, it follows that f (σm) = σ f (m). This
implies that f is �-linear, as required.

Proposition 4.13. Let F be a number field and let A, B be two semi-stable abelian
varieties. Let K be a finite extension of F that does not contain any proper subex-
tension that is unramified outside the set S of primes of bad reduction of A and B.
Then A and B are isogenous over K if and only if they are isogenous over F.

Proof. Pick a prime l. Any K -isogeny A −→ B induces a Galois isomorphism
between the Tate modules. More precisely, it gives rise to an isomorphism f :
Vl(A) −→ Vl(B) of Ql [H ]-modules. Here H denotes Gal(F/K ). By assumption,
the union I of the inertia groups in G = Gal(F/F) of any of the primes lying
over S has the property that I and H generate G. Since A and B are semi-stable
abelian varieties, Grothendieck’s result [9, Cor. 3.5.2] implies that the conditions
of Lemma 4.12 are both satisfied. Therefore f : Vl(A) −→ Vl(B) is G-linear.
Faltings’ theorem implies then that A and B are isogenous over F .
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