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A smooth, projective, absolutely irreducible curve of genus 19 over F, admitting 
an infinite S-class held tower is presented. Here S is a set of four F,-rational points 
on the curve. This is shown to imply that A(2)=limsup #X(F,)/g(X)> 
4/( 19 - 1) x 0.222. Here the limit is taken over curves X over F, of genus 
km + a. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let q be a power of a prime p and let F, denote a field with q elements. 
Andre Weil [lS] showed that for a smooth projective absolutely 
irreducible curve X of genus g over F, the cardinality of the set X(F,) 
satisfies 

I#-VF,)-(q+ 111 W,h 

When the genus g of X is small with respect to q, this inequality says that 
the number of F,-rational points of X is approximately q + 1, the number 
of F,-rational points on a projective line, with an error of the order &. 
When g is very large, however, the situation is quite different [7]. In this 
case the interesting part of the inequality is 

#W’,)<q+ 1 +%,/ii 

where, this time, the 2g & term dominates. Following Ihara [6] we define 

A(q) = lim;up #WLJ , 
gx 

where the limit is taken over smooth, projective, absolutely irreducible 
curves X of genus g, tending to co. Weil’s result implies that 

4w&. 
6 
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Using Weil’s estimate for finite extensions of F, as well, Drinfeld and 
Vladut [3, I23 showed that one has, in fact, the stronger estimate 

For q= 2 this new bound is approximately 0.414, which is a dramatic 
improvement over 2 ,/z 2.82 which follows from Weil’s estimate. 

The situation is not so satisfactory for lower bounds for A(q). It was 
shown by Ihara [6] and Zink et al. [14] that the bound is sharp when q 
is a square: 

A(q)=& 1 for q a square. 

Later Zink [16] showed that 

A(p3) 2 
2(P2-1) 

P+2 
for p prime. 

Both these estimates were obtained by exhibiting a suitable family of 
“modular” curves. Using the modular interpretation one can count the 
rational points on the curves and establish a lower bound for A(q). 

Another method was employed by Serre [ 1 l-131. He used infinite class 
field towers and showed that there exists a positive constant c for which 

A(q) 2 c log q for all q. 

Using the same method Perret [S] obtained better lower bounds for A(q’) 
when q’ is a proper power of q. He showed, for instance, that for prime I 
and q = 1 (mod I) one has that 

A(q’) > ,/‘(q - l) - 21 
z-1 . 

In this paper we study the case q = 2. This case is especially interesting 
because of the connections between algebraic curves over F, and binary 
error-correcting codes. We already remarked that we have the upper bound 
A(2) < fi - 1 x 0.414. The main result of this paper is the following lower 
bound. 

THEOREM 1.1. One has 

The bound $ z 0.222 is slightly better than the bound =& which appears 
in [ 111. The present bound will also be established using an infinite class 
field tower of a suitable curve over F,. After I found this example I learned 
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that Serre had found in 1985 that A(2) > $. He had done so by means of 
an infinite class field tower as well. His example is different from mine. 

In Section 2 we discuss infinite class field towers and show how they can 
be used to obtain lower bounds for A(q). In Section 3 we exhibit one 
special tower by means of which Theorem 1.1 will be proved. For the 
cohomology theory and class field theory of curves that we will use we refer 
the reader to [l, 2,9, lo]. 

2. INFINITE CLASS FIELD TOWERS 

In this section we discuss class field towers of function lields of curves 
over finite fields. The main result is Theorem 2.3: a sufficient criterion for 
a function field to have an infinite (I, S)-class field tower. The principal 
ingredients are class field theory and the following group theoretical result 
due to Golod and Shafarevic [4; 2, Chap. 93. 

THEOREM 2.1. Let 1 be a prime and let G be a non-trivial finite l-group 
that can be presented by means of d independent generators and r relations. 
Then one has that 

We recall that the number of independent generators d and the number 
of independent relations r of an Z-group G can be given as dimensions of 
certain homology groups [2, Chap. 91, 

d=dim., H,(G, Z/fZ), 

r = dim,, H,(G, ZfiZ). 
(1) 

In order to explain how Theorem 2.1 is employed we introduce some nota- 
tion. Let q be a power of a prime p and let F, be a field with q elements. 
Let X be a smooth, projective, absolutely irreducible curve or “curve,” for 
short, over F,. By K we denote its function field and by A, its addle ring. 
The idble class group AX/K* is denoted by CK. 

Let S denote a non-empty set of places of X. Note that a “place” is not 
quite a point. It is a Galois conjugacy class of points. A place is called 
rational if it consists of one point only. This point is then necessarily 
defined over F,. For any S we let U, denote the group of idbles that are 
units at all the places outside S. By means of the valuation maps at the 
places outside S we obtain an exact sequence 
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Here Ones Z is called the S-diuisor group. By 0, we denote the subring 
of functions of K that have no poles outisde S. The intersection of Us and 
K* is precisely 0:; it is called the group of S-units. By Dirichlet’s Unit 
Theorem we have the following isomorphism of groups: 

0; z F; x Z#‘- ‘. 

Finally, we introduce the S-diuisor class group Cl,. It is the quotient of the 
S-divisor group by its subgroup P, of principal divisors, i.e., by the sub- 
group of divisors of functions in K *. All the groups we have defined so far 
lit into the following commutative diagram with exact rows and columns: 

O- -K*- P, -0 

o- us -Az----+@Z-0 (2) 

Let R denote a fixed separable closure of K. The S-Hilbert class field H, 
of K is defined to be the maximal abelian unramified extension of K inside 
R in which all places in S are totally split. It is known that Hs is a finite 
extension of K, its Galois group being isomorphic to the S-divisor class 
group Cl, of X. One can now repeat this construction: put K, = H, and S, 
the collection of places of K, that lie over places in S. Let K2 be the 
S, -Hilbert class field of K, , etcetera. In this way we obtain a sequence of 
fields 

K=KOcK,cKZc . . . . 

which is called the S-ciass tield tower of K. The class field tower is called 
finite if the sequence stabilizes, i.e., when there is an index i such that 
K,, = Ki for all n 2 i and infinite otherwise. 

To each field Ki in the tower there corresponds a smooth projective 
absolutely irreducible curve Xi over F, with function field Ki and an 
unramified morphism Xi -+X. We will say that the curve X admits an 
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infinite S-class field tower when its function field K has an infinite S-class 
field tower. 

We recall that A(q) = limsup, #X(F,)/g,, where the limit is taken over 
curves X over F, with genus g, tending to 00. One can exploit infinite class 
field towers to obtain lower bounds for A(q) as follows: 

PROPOSITION 2.2. Let X be a curve of genus g > 1 over F, and let S be 
a non-empty set of rational places of X. If X admits an infinite S-class field 
tower, then 

#S 
A(q g-1’ 

Proof: Consider a curve Xi corresponding to a field Ki in the class field 
tower of the function field K of X. Since Xi is unramified over X the 
Hurwitz-Zeuthen formula [S, p. 3011 for its genus g, gives that 

2g,-2= [K,: K](2g-2). 

On the other hand, since all places are rational and totally split in Xi, we 
have that 

#Xi(F,)> #Si=[K,: K] #S. 

Since the tower is infinite, we conclude that 

A(q)alim #si #’ -=- 
gi g-l’ 

as required. 
Similarly, we consider for every prime 1 the (1, S)-class field tower of K. 

It is defined in an analogous way: The (I, S)-Hilbert class field 29, I of K is 
defined to be the maximal abelian unramified I-extension of K inside R in 
which all places in S are totally split. One can repeat this process as before 
and we obtain a sequence of fields 

K=&,, , c K, ,c K,.,c . . . . 

which we call the (1, S)-class held tower of K. The tower is called finite if 
the sequence stabilizes. In this case the Galois group of Ui K,, over K is a 
finite l-group. It is easy to see that K admits an infinite S-class field tower 
once it admits an infinite (1, S)-class field tower for some prime 1. The next 
theorem gives a sufficient condition for a curve to have an infinite 
(1, S)-class field tower. 

For any abelian group A we denote by d,A the I-rank of A, the 
F,-dimension of A @ Z/Z. 
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THEOREM 2.3. Let X be a curve over F, and let S be a set of places oj 
X. Let 1 be a prime. If 

d,Cls B 2 + 2 Jd,O: + 1 

then X admits an infinite (1, S)-class field tower. 

ProoJ: Suppose that the function field K of X has a finite (1, S)-class 
field tower. Let L denote the union of the fields in the tower; it is a Galois 
extension of K with Galois group G a finite l-group. Let d and r denote the 
minimal number of generators and relations, respectively, of G. From the 
long G-homology sequence of the exact sequence 

and (1) and (2) above we deduce that d=d,H,(G, Z) and r-d= 
WAG, Z). 

Since Hi(G, Z) is isomorphic to the maximal abelian quotient G/[G, G] 
of G, we conclude that 

d=d,Cl,. (3) 

To compute the group H,(G, Z) we will use some class field theory [2]. 
We have 

H,(G, Z) = I?3(G, Z) z I? ‘(G, C,). 

Let T denote the set of places of L lying over S, Since L is unramified over 
K and since all places in S are totally split in L over K the module UT is 
cohomologically trivial. Since L is at the top of the (1, S)-class field tower 
of K one has that Cl, has order prime to 1. Therefore it is a cohomologi- 
tally trivial module as well. Looking at diagram (2) with L and T instead 
of K and S we conclude that 

I?-‘(G, C,) E &‘(G, UT/O;) z Ei’(G, 0;). 

Since fi’(G, OF) is a quotient of the group of S-units O,* we see that 

r-d<d,O$ (4) 

It now follows from (3), (4), and Theorem 2.1 that d,Cl,< 2 + 
2 ,/m and this implies the theorem at once. 

In order to apply Theorem 2.3 it is necessary to have good lower bounds 
for the l-rank d,Cl, of the S-divisor class group of X. These are provided 
by “genus theory.” 
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PROPOSITION 2.4. Let X be a curve over F, and let S be a finite set of 
places of X. Suppose that the function field K of X is a cyclic extension of 
prime degree 1 of afield k and that S is stable under the action of the Galois 
group of K over k. Then 

Here s’ denotes the set of places of k over which S lies and p denotes the 
number of places of k that are ramified in K. 

Proof. Let A = Gal(K/k). From the long A-cohomology sequences 
associated to diagram (2) we obtain 

dtCl,> d,Z?(A, Cl,) 2 d,ri’(A, Us/O:) - d,fi’(A, C,) 

2 d,fi’(A, Us) - d,Ei’(A, 0;) - d,fi’(A, C,). 

By global class field theory I?‘(A, C,) g &*(A, Z) z A is cyclic of order 1. 
By local class field theory dlfio(A, U,) 2 p. From this the result follows 
easily. 

3. AN EXAMPLE 

In this section we exhibit a curve X over F, and a set of rational points S 
on it such that X admits an infinite S-class field tower. As a result we can 
prove Theorem 1.1. 

We start with Pi, the projective line over F2. Its function field is just the 
field of rational functions F*(T). There are three rational points which we 
will, according to the values of the function T, denote by 0, 1, and co. We 
will realize our curve X as a covering of degree 8 of P’. The set S will 
consist of the points of X lying over co. We will proceed in three steps. 

First we consider two quadratic extensions of F*(T): one of conductor 
4( co) in which the points 0 and 1 are split and one of conductor 
2(O) + 2(l) in which the point over cc is split. We will call the corre- 
sponding smooth curves E and E’, respectively. The Existence Theorem of 
class field theory implies that these quadratic extensions actually exist. We 
will discuss the extension of conductor 4( co ) as an example. 

Every abelian extension of F,(T) of conductor dividing 4( co) has a 
Galois group a quotient of a certain group A which sits in an exact 
sequence [ 91 

0 + (F2[u]/u4Fz[u])* -+ A -+ Z + 0, 

where u = T-’ is a uniformizing element at co. An extension in which 
moreover the points 0 and 1 of P’ are split has its Galois group isomorphic 
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to A modulo the two cyclic inertia groups of 0 and 1. Since 
(F,[u J/( 1 + u4F2[u])* g Z/22 x Z/42 it follows that such an extension 
does exist. The genus g, of E can be computed using the conductor- 
discriminant-product formula. One finds that g, is at most 1. Since E has 
live rational points, the genus must be equal to 1 and the quadratic exten- 
sion must have its conductor equal to 4(co). In a similar way it can be 
shown that E’ exists, that is has four rational points, and that it has genus 1 
as well. 

It is actually very easy to give explicit equations for E and E’: the curve 
Ecanbegivenby Y2+Y=T3+1 andE’by Y’+~Y=~~+l,where,as 
above, UT= 1 in F2( T). 

The curve E has the largest possible number of points a curve of genus 1 
over F2 can have. It does not have any points of degree 2 or 3, but it has 
points of higher degree. Let P denote a point of degree 5. We let Y denote 
the quadratic cover of E of conductor 2(P) in which all five rational points 
of E are split. As above, it can be verified that Y exists. It has genus 6 and 
2 .5 = 10 rational points. This is the maximal number of points a curve of 
genus 6 can have [6]. The set S’ of points on Y over cc has cardinality 2. 

Let k denote the function field of Y and let K be the composite of k and 
F,(E’). It is a quadratic extension of k. By X we denote the corresponding 
smooth curve. By construction the points on Y that are in S’ are split in X. 
Therefore the set S of points on X over cc has cardinality 4. The other 
eight rational points of Y are ramified in X. 

Y-X 

I I 
E-Z 

I I 
P’ -EE’ 

Here Z denotes the curve corresponding to the composite of the function 
fields of E and E’. All arrows in the diagram are 2 to 1 mappings. 

Proof of Theorem 1.1. Consider the cover X+ Y and the corre- 
sponding quadratic extension of function fields kc K. We have that 
# S’ = 2 and hence that OS, g Z. All eight points of Y not in S’ are ramified 
in X. It follows therefore from Proposition 2.4 with I= 2 that 

dzClsa8-l-1=6. 

Since #S = 4 we have that dz 0: = 3. We conclude from Theorem 2.3 that 
X admits an infinite (2, S)-class field tower. 

641/41/1-Z 
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The genus g, of X can be computed using the conductor- 
discriminant-product formula: the conductor of X over Y is equal to 
C 2(Q), where the sum runs over all eight points Q over 0 and 1. Since the 
genus of Y is 6 we get that 2g,-2 = 2(2.6-2)+2.8 and hence that 
g,= 19. Since #S= 4 we conclude from Proposition 2.2 that A(2) 3 
4/( 19 - 1) = f , as required. 
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