

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The automorphism group of the non-split Cartan modular curve of level 11

ALGEBRA

Valerio Dose^{a,*}, Julio Fernández^{b,1,*}, Josep González^{b,1,*}, René Schoof^{a,*}

 ^a Dipartimento di Matematica, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
 ^b Departament de Matemàtica Aplicada 4, Universitat Politècnica de Catalunya, EPSEVG, Avinguda Víctor Balaguer 1, 08800 Vilanova i la Geltrú, Spain

ARTICLE INFO

Article history: Received 27 March 2014 Available online xxxx Communicated by Gerhard Hiss

MSC: 14G35 14H37

Keywords: Modular curve Non-split Cartan subgroup

АВЅТ КАСТ

We derive equations for the modular curve $X_{ns}(11)$ associated to a non-split Cartan subgroup of $GL_2(\mathbf{F}_{11})$. This allows us to compute the automorphism group of the curve and show that it is isomorphic to Klein's four group.

@ 2014 Elsevier Inc. All rights reserved.

Introduction

Let p be a prime. The modular curve $X_{ns}(p)$ associated to a non-split Cartan subgroup of $\operatorname{GL}_2(\mathbf{F}_p)$ is an algebraic curve that is defined over \mathbf{Q} . It admits a so-called *modular involution* w, also defined over \mathbf{Q} . One may conjecture that, for large p, the modular

* Corresponding authors.

E-mail addresses: dose@mat.uniroma2.it (V. Dose), julio@ma4.upc.edu (J. Fernández),

josepg@ma4.upc.edu (J. González), schoof@mat.uniroma2.it (R. Schoof).

¹ The second and the third authors are partially supported by DGI grant MTM2012-34611.

involution is the only non-identity automorphism of $X_{ns}(p)$, even over **C**. However, for very small primes p this is not the case. Indeed, for p = 2, 3 and 5 the genus of $X_{ns}(p)$ is 0, while for p = 7 the genus is 1. See [1, Table A.1]. For these primes the curve $X_{ns}(p)$ admits therefore infinitely many automorphisms. The present paper is devoted to p = 11and the genus 4 curve $X_{ns}(11)$. We prove the following.

Theorem. The automorphism group over \mathbf{C} of the modular curve $X_{ns}(11)$ is isomorphic to Klein's four group. It is generated by the modular involution w and the involution ϱ described in Corollary 1.

Our proof for this result is presented in Section 3. It relies on an explicit description of the regular differentials and the Jacobian of $X_{ns}(11)$. These are discussed in Section 2. We make use of equations for the curve $X_{ns}(11)$, which are obtained in Section 1.

1. Equations

In this section we derive equations for the modular curve $X_{ns}(11)$. We do this by exploiting the modular curve $X_{ns}^+(11)$ associated to the normalizer of a non-split Cartan subgroup of level 11.

We recall some definitions [1]. For any prime p, the ring of 2×2 matrices over \mathbf{F}_p contains subfields that are isomorphic to \mathbf{F}_{p^2} . A non-split Cartan subgroup U of $\operatorname{GL}_2(\mathbf{F}_p)$ is by definition the unit group of such a subfield. The modular curve $X_{ns}(p)$ classifies U-isomorphism classes of pairs (E, ϕ) , where E is an elliptic curve and ϕ is an isomorphism from the group of p-torsion points E[p] to $\mathbf{F}_p \times \mathbf{F}_p$. Two such pairs (E, ϕ) and (E', ϕ') are U-isomorphic if there is an isomorphism $f : E \longrightarrow E'$ for which the matrix $\phi' f \phi^{-1}$ is in U.

The group U has index 2 in its normalizer $U^+ \subset \operatorname{GL}_2(\mathbf{F}_p)$. The modular involution w of $X_{ns}(p)$ maps (E, ϕ) to $(E, \alpha \phi)$, where α is any matrix in $U^+ \smallsetminus U$. In a way that is analogous to the moduli description for $X_{ns}(p)$, the modular curve $X_{ns}^+(p)$ classifies U^+ -isomorphism classes of pairs (E, ϕ) . There are natural morphisms

$$X_{ns}(p) \xrightarrow{\pi} X_{ns}^+(p) \xrightarrow{\jmath} X(1).$$

Here X(1) indicates the *j*-line. It parametrizes elliptic curves up to isomorphism. The morphism *j* maps (E, ϕ) to the *j*-invariant of *E*. It has degree $\frac{1}{2}p(p-1)$, while the morphism π has degree 2.

Both curves $X_{ns}(p)$ and $X_{ns}^+(p)$ are defined over \mathbf{Q} . A point of $X_{ns}(p)$ or $X_{ns}^+(p)$ is defined over an extension $\mathbf{Q} \subset K$ if and only if it can be represented by a pair (E, ϕ) , where E is defined over K and, for all $\sigma \in \operatorname{Gal}(\overline{K}/K)$, the matrix $\phi \sigma \phi^{-1}$ is in U or U^+ respectively. This implies that, for p > 2, the curve $X_{ns}(p)$ does not contain any points defined over \mathbf{R} . On the other hand, the curve $X_{ns}^+(p)$ has real and usually also rational points. Indeed, for every imaginary quadratic order R with class number 1 there is a unique elliptic curve E over \mathbf{C} with complex multiplication by R. The *j*-invariant of E is in \mathbf{Q} . Moreover, when p is prime in the ring R, there is a unique rational point (E, ϕ) on $X_{ns}^+(p)$. These points are called *CM points* or *Heegner points*. See [10, Section A.5].

Remark 1. Let us consider an elliptic curve E defined over \mathbf{Q} and a rational point on $X_{ns}^+(p)$ given by a pair of the form (E, ϕ) . Then, the image of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ in $\operatorname{Aut}(E[p])$ is isomorphic through ϕ to a subgroup G of $\operatorname{GL}_2(\mathbf{F}_p)$ which is contained in the normalizer of a non-split Cartan subgroup U. The points of $X_{ns}(p)$ lying above (E, ϕ) are defined over the fixed field of $U \cap G$, which is an imaginary quadratic extension of \mathbf{Q} . In the case of Heegner points, CM theory implies that this extension is isomorphic to the quotient field of the endomorphism ring of E.

Now we turn to the case p = 11. In [8, Proposition 4.3.8.1], Ligozat derived a Weierstrass equation for the genus 1 curve $X_{ns}^+(11)$. It is given by

$$Y^2 + Y = X^3 - X^2 - 7X + 10.$$

By choosing the point at infinity as origin, we can view $X_{ns}^+(11)$ as an elliptic curve and equip it with the usual group law. The rational points of this curve are then an infinite cyclic group generated by the point P = (4, -6). See [3]. The translations by the rational points form an infinite group of automorphisms of the curve. They are all defined over \mathbf{Q} . It follows that there are infinitely many isomorphisms over \mathbf{Q} between $X_{ns}^+(11)$ and the curve given by Ligozat. For a particular choice of such an isomorphism, Halberstadt derived in [6, Section 2.2] an explicit formula for the degree 55 morphism $j: X_{ns}^+(11) \longrightarrow X(1)$. In view of the symmetry phenomenon described at the end of this section, it is convenient to compose his isomorphism with the translation-by-P morphism. Explicitly, our function j(X, Y) is the value of Halberstadt's *j*-function in the point

$$\left(\frac{4X^2 + X - 2 + 11Y}{(X - 4)^2}, \frac{(2X^2 + 17X - 34 + 11Y)(1 - 3X)}{(X - 4)^3}\right)$$

that is,

$$\begin{split} j(X,Y) &= (X+2)(4-X)^5 \\ &\times \left(11 \left(X^2 + 3X - 6\right)(Y-5) \left(X^3 + 4X^2 + X + 22 + (1-3X)Y\right)\right)^3 \\ &\times \frac{((3X^2 - 3X - 14 - (3+2X)Y)(12X^3 + 28X^2 - 41X - 62 + (3X^2 + 20X + 37)Y))^3}{(-7X^2 - 15X + 62 + (X+18)Y)^2(4X^3 + 2X^2 - 21X - 6 + (X^2 + 3X + 5)Y)^{11}}. \end{split}$$

Proposition 1. The modular curve $X_{ns}(11)$ is given by the equations

$$Y^{2} + Y = X^{3} - X^{2} - 7X + 10,$$

$$T^{2} = -(4X^{3} + 7X^{2} - 6X + 19).$$

Proof. We first compute the ramification locus of the morphism $\pi : X_{ns}(11) \longrightarrow X_{ns}^+(11)$. Since π is defined over \mathbb{Q} , this locus is Galois stable. By Proposition 7.10 in [1], the function j(X, Y) - 1728 has exactly seven simple zeroes on $X_{ns}^+(11)$, and six of them are the ramification points of π . All the other zeroes are double. Let us consider the quotient map $X_{ns}^+(11) \longrightarrow \mathbf{P}^1$ induced by the elliptic involution. It corresponds to the quadratic function field extension $\mathbf{Q}(X) \subset \mathbf{Q}(X,Y)$ with non-trivial automorphism given by $Y \longmapsto -1-Y$. One easily checks that the trace and norm of the function j(X,Y)-1728 admit the polynomial $4X^3 + 7X^2 - 6X + 19$ as an irreducible factor of multiplicity 1 and 2 respectively. The function F on $X_{ns}^+(11)$ defined by this cubic polynomial has exactly six simple zeroes. It follows that the zeroes of F are simple zeroes of j(X,Y) - 1728. Therefore they are the ramification points of π .

The function field $\mathbf{Q}(X_{ns}(11))$ is obtained by adjoining a function G to $\mathbf{Q}(X_{ns}^+(11))$ whose square is in $\mathbf{Q}(X_{ns}^+(11))$. The coefficients of the divisor on $X_{ns}^+(11)$ of G^2 are odd at the ramified points and even at the others. Since the same holds for the above function F, the divisor of FG^2 is of the form 2D for some divisor D of $X_{ns}^+(11)$ defined over \mathbf{Q} . The group $\operatorname{Pic}^0(X_{ns}^+(11))$ is naturally isomorphic to the group of rational points of $X_{ns}^+(11)$. Since the latter is isomorphic to \mathbf{Z} , there are no elements of order 2 in $\operatorname{Pic}^0(X_{ns}^+(11))$. It follows that D is principal. This means that there is a function T in $\mathbf{Q}(X_{ns}(11))$ and a non-zero $\lambda \in \mathbf{Q}$ for which $\lambda T^2 = F$. The function field of $X_{ns}(11)$ is then equal to $\mathbf{Q}(X, Y, T)$.

It remains to determine λ , which is unique up to squares. Consider on $X_{ns}^+(11)$ the point Q = (5/4, 7/8). Since j(Q) = 1728, the elliptic curve parametrized by Q admits complex multiplication by the ring $\mathbf{Z}[i]$ of Gaussian integers. By Remark 1, the two points of $X_{ns}(11)$ lying above Q are defined over $\mathbf{Q}(i)$. Since F(Q) = 121/4 is a square, we may take $\lambda = -1$. This proves the proposition. \Box

Corollary 1. In addition to the modular involution w, the curve $X_{ns}(11)$ admits an "exotic" involution ϱ . The modular involution switches (X, Y, T) and (X, Y, -T), while ϱ switches (X, Y, T) and (X, -1 - Y, T). Together, w and ϱ generate a subgroup of Aut $(X_{ns}(11))$ isomorphic to Klein's four group.

Although it is not relevant for the proofs in this paper, let us explain how the "exotic" automorphisms of $X_{ns}(11)$ were first detected. The rational points of $X_{ns}^+(11)$ form an infinite cyclic group generated by the point P = (4, -6). For each $n \in \mathbb{Z}$, the elliptic curve over \mathbb{Q} parametrized by the point [n]P in $X_{ns}^+(11)(\mathbb{Q})$ has the following property: the image G of the Galois representation attached to its p-torsion points is contained in the normalizer of a non-split Cartan subgroup U. By Remark 1, the fixed field of $U \cap G$ is an imaginary quadratic field. In his *tesi di laurea* [5], one of the authors – Valerio Dose – used the methods of [9] to compute this quadratic field K for several values of n. The first few values are given in the table below. There is a striking symmetry: the quadratic fields attached to the points [n]P and [-n]P are always the same. There does not seem to be a "modular reason" for this, as it may happen that the elliptic curve associated

to [n]P has complex multiplication by some quadratic order of discriminant $\Delta < 0$ but the elliptic curve associated to [-n]P has not. In the first case K is the CM field, but in the second case it is not. The phenomenon, which surprised us at first, is explained by the existence of the "exotic" involution ρ .

Points	j	$\mathcal{C}\mathcal{M}$	K
[6]P	$2^3 3^9 5^3 11^3 17^6 29^3 53^3 191^3 / 769^{11}$	_	$\mathbf{Q}(\sqrt{-3\cdot 14327})$
[5]P	$-2^1 83^3 5^3 23^3 29^3$	$\Delta = -163$	$\mathbf{Q}(\sqrt{-163})$
[4]P	0	$\Delta = -3$	$\mathbf{Q}(\sqrt{-3})$
[3]P	$2^{6}3^{3}$	$\Delta = -4$	$\mathbf{Q}(\sqrt{-1})$
[2]P	$-2^{15}3^35^311^3$	$\Delta = -67$	$\mathbf{Q}(\sqrt{-67})$
P	$2^4 3^3 5^3$	$\Delta = -12$	$\mathbf{Q}(\sqrt{-3})$
∞	$2^3 3^3 11^3$	$\Delta = -16$	$\mathbf{Q}(\sqrt{-1})$
[-1]P	$-2^{15}3^{1}5^{3}$	$\Delta = -27$	$\mathbf{Q}(\sqrt{-3})$
[-2]P	$2^8 3^3 5^6 11^3 53^3 / 23^{11}$	_	$\mathbf{Q}(\sqrt{-67})$
[-3]P	$-2^9 3^3 5^3 13^1 71^3 181^3 / 43^{11}$	_	$\mathbf{Q}(\sqrt{-1})$
[-4]P	$2^{18} 3^3 5^3 7^1 11^3 23^3 29^3 103^3 / 67^{11}$	_	$\mathbf{Q}(\sqrt{-3})$
[-5]P	$-2^4 3^3 5^1 17^6 29^3 367^3 2381^3 / 397^{11} \\$	_	$\mathbf{Q}(\sqrt{-163})$
[-6]P	$-2^3 3^1 11^3 17^6 19^1 23^3 41^3 53^3 167^3 2777^3 23431^3 / 80233^{11}$	_	$\mathbf{Q}(\sqrt{-3\cdot 14327})$

2. Differentials

In this section we analyze the space of regular differentials $\Omega^1_{X_{ns}(11)}$ of the curve $X_{ns}(11)$.

By [2, Section 8], the Jacobian $J_{ns}(11)$ of $X_{ns}(11)$ is isogenous over **Q** to the new part of the Jacobian of $X_0(121)$. See [4] for an easy proof of this result. By Cremona's tables [3], there are exactly four **Q**-isogeny classes of elliptic curves of conductor 121, which are represented by

A:
$$y^{2} + xy + y = x^{3} + x^{2} - 30x - 76$$
,
B: $y^{2} + y = x^{3} - x^{2} - 7x + 10$,
C: $y^{2} + xy = x^{3} + x^{2} - 2x - 7$,
D: $y^{2} + y = x^{3} - x^{2} - 40x - 221$.

It follows that $J_{ns}(11)$ is isogenous over \mathbf{Q} to the product of these four elliptic curves. The following proposition describes a low degree morphism from the curve $X_{ns}(11)$ to each of its elliptic quotients, and provides a basis for $\Omega^1_{X_{ns}(11)}$ from the respective pull-backs. We make use of the equations for $X_{ns}(11)$ given in Proposition 1. It is also convenient to introduce the function Z = (2Y + 1)T in $\mathbf{Q}(X_{ns}(11))$.

Proposition 2. The curve $X_{ns}(11)$ admits morphisms defined over \mathbf{Q} of degree 6, 2, 2 and 6 to the elliptic curves A, B, C and D respectively. Moreover, the corresponding pullbacks of the 1-dimensional \mathbf{Q} -vector spaces of regular differentials are the 1-dimensional subspaces of $\Omega^1_{X_{ns}(11)}$ generated by V. Dose et al. / Journal of Algebra 417 (2014) 95-102

$$\omega_A = \frac{dX}{Z}, \qquad \omega_B = \frac{dX}{2Y+1}, \qquad \omega_C = \frac{dX}{T} \quad and \quad \omega_D = \frac{(3X-1)dX}{Z}$$

respectively.

Proof. By Corollary 1, the function field extension $\mathbf{Q}(X) \subset \mathbf{Q}(X, Y, T)$ is Galois, with Galois group isomorphic to Klein's four group. Since the elliptic curve given by the Weierstrass equation $T^2 = -(4X^3 + 7X^2 - 6X + 19)$ is isomorphic to C, we have the following commutative diagram of degree 2 morphisms

Here H is the genus 2 curve given by

$$Z^{2} = -(4X^{3} - 4X^{2} - 28X + 41)(4X^{3} + 7X^{2} - 6X + 19),$$

and the morphisms ϕ_B , ϕ_H and ϕ_C are defined as follows:

$$\phi_B(X,Y,T) = (X,Y), \qquad \phi_H(X,Y,T) = (X,(2Y+1)T), \qquad \phi_C(X,Y,T) = (X,T).$$

In particular, we can take ω_B and ω_C as in the statement.

We now describe degree 6 morphisms from $X_{ns}(11)$ to the curves A and D factoring through ϕ_H . To see that H admits degree 3 morphisms to A and D, we use Goursat's formulas as described in the appendix of [7]. Substituting $X = x + \frac{1}{3}$ and $Z = \frac{44}{3}z$ in the hyperelliptic equation of H, we obtain

$$tz^{2} = (x^{3} + 3ax + 2b)(2dx^{3} + 3cx^{2} + 1)$$

with

$$a = -\frac{22}{9}, \qquad b = \frac{847}{216}, \qquad c = \frac{27}{242}, \qquad d = \frac{9}{44} \quad \text{and} \quad t = -3.$$

Note that the discriminants $\Delta_1 = a^3 + b^2$ and $\Delta_2 = c^3 + d^2$ are both non-zero. Then, the maps $(x, z) \mapsto (u, v)$, with

$$(u,v) = \left(12\Delta_1 \frac{-2dx+c}{x^3+3ax+2b}, z\Delta_1 \frac{16dx^3-12cx^2-1}{(x^3+3ax+2b)^2}\right),$$
$$(u,v) = \left(12\Delta_2 \frac{x^2(ax-2b)}{2dx^3+3cx^2+1}, z\Delta_2 \frac{x^3+12ax-16b}{(2dx^3+3cx^2+1)^2}\right),$$

100

are degree 3 morphisms from H to the genus 1 curves given by the equations

$$tv^{2} = u^{3} + 12(2a^{2}d - bc)u^{2} + 12\Delta_{1}(16ad^{2} + 3c^{2})u + 512\Delta_{1}^{2}d^{3},$$

$$tv^{2} = u^{3} + 12(2bc^{2} - ad)u^{2} + 12\Delta_{2}(16b^{2}c + 3a^{2})u + 512\Delta_{2}^{2}b^{3}$$

respectively. Moreover, the pull-back of the differential du/v of the first curve to Ω_H^1 is a rational multiple of dx/z and hence of dX/Z, while the pull-back of the differential du/v of the second curve is a rational multiple of xdx/z and hence of (3X - 1)dX/Z.

Finally, for the above values of a, b, c, d and t, the two genus 1 curves can be checked to be isomorphic over \mathbf{Q} to the elliptic curves A and D respectively. This proves the proposition. \Box

Remark 2. Since the Jacobian of H is isogenous to $A \times D$, we know that there do exist non-constant morphisms from H to the curves A and D, but we know of no a priori reason why there should exist morphisms of degree 3. In fact, this was only established by a numerical computation involving the period lattices of the curves H, A and D. Another reason for suspecting that there exist such morphisms is the fact that the Fourier coefficients of the weight 2 eigenforms associated to the elliptic curves A and Dare congruent modulo 3.

3. Automorphisms

In this section we prove the theorem. We use the notations of Proposition 1 and Proposition 2.

Let σ be an automorphism of the curve $X_{ns}(11)$. Then σ induces an automorphism of the Jacobian $J_{ns}(11)$. We recall that this Jacobian is isogenous over \mathbf{Q} to the product of the elliptic curves A, B, C and D introduced in Section 2.

Let us analyze the isogeny relations over $\overline{\mathbf{Q}}$ among these four elliptic curves. The curve D cannot be isogenous over $\overline{\mathbf{Q}}$ to A, B or C because it is the only one whose j-invariant is not integral. The curve B has complex multiplication by the quadratic order of discriminant -11, so it cannot be isogenous over $\overline{\mathbf{Q}}$ to A, C or D because none of these three curves admits complex multiplication. Lastly, there is a degree 2 isogeny between A and C defined over $\mathbf{Q}(\sqrt{-11})$.

Therefore, all endomorphisms of $J_{ns}(11)$ are defined over $\mathbf{Q}(\sqrt{-11})$. Furthermore, the action of σ on $\Omega^1_{X_{ns}(11)}$ with respect to the basis $\omega_B, \omega_D, \omega_A, \omega_C$ is given by multiplication by a matrix of the form

$$\begin{pmatrix} \pm 1 & 0 & 0 & 0 \\ 0 & \pm 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{pmatrix}$$
(3.1)

for certain $a, b, c, d \in \mathbf{Q}(\sqrt{-11})$. Note that the eigenvalues corresponding to ω_B and ω_D must be roots of unity in this quadratic field, namely ± 1 , because σ has finite order.

Let us now consider the functions $x = \omega_D/\omega_A = 3X - 1$ and $y = \omega_C/\omega_A = 2Y + 1$ on the elliptic curve *B*. They satisfy the equation

$$\frac{1}{4}y^2 = \frac{1}{27}x^3 - \frac{22}{9}x + \frac{847}{108}.$$

Then the action of σ on $\Omega^1_{X_{ns}(11)}$ yields

$$\sigma(x) = \frac{\pm x}{a + cy}$$
 and $\sigma(y) = \frac{b + dy}{a + cy}$.

In other words, σ induces an automorphism of the curve B which, in projective coordinates, is given by

$$(x:y:z)\longmapsto (\pm x:bz+dy:az+cy).$$

In particular, σ maps the origin (0:1:0) of the elliptic curve *B* to the point (0:d:c). This implies c = 0. Otherwise, the above equation would entail $(d/c)^2 = 847/27$ with $d/c \in \mathbf{Q}(\sqrt{-11})$, which is impossible. Since the only automorphisms of *B* fixing the origin are the identity and the elliptic involution, it follows $\sigma(x) = x$ and $\sigma(y) = \pm y$. Thus, $\sigma(X) = X$ whereas $\sigma(Y)$ must be either *Y* or 1 - Y. The equations given for $X_{ns}(11)$ in Proposition 1 imply then $\sigma(T) = \pm T$. This proves the theorem.

References

- B. Baran, Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem, J. Number Theory 130 (2010) 2753–2772.
- [2] I. Chen, The Jacobians of non-split Cartan modular curves, Proc. Lond. Math. Soc. 77 (1998) 1–38.
- [3] J. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, Cambridge, 1997.
- [4] B. De Smit, B. Edixhoven, Sur un résultat d'Imin Chen, Math. Res. Lett. 7 (2000) 147–154.
- [5] V. Dose, Serre's theorem on Galois representations attached to elliptic curves, Tesi di Laurea Specialistica in Matematica, Università degli Studi di Roma Tor Vergata, Roma, 2010.
- [6] E. Halberstadt, Sur la courbe modulaire $X_{ndep}(11)$, Experiment. Math. 7 (1998) 163–174.
- [7] R. Bröker, E. Howe, K. Lauter, P. Stevenhagen, Genus-2 curves and Jacobians with a given number of points, available at http://arxiv.org/abs/1403.6911.
- [8] G. Ligozat, Courbes modulaires de niveau 11, in: Modular Functions of One Variable, V, Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976, in: Lecture Notes in Math., vol. 601, Springer-Verlag, Berlin, 1977, pp. 149–237.
- [9] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972) 259–331.
- [10] J.-P. Serre, Lectures on the Mordell–Weil Theorem, Aspects Math., vol. E15, Springer Vieweg, Braunschweig/Wiesbaden, 1989.