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that it is isomorphic to Klein’s four group.
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Introduction

Let p be a prime. The modular curve Xns(p) associated to a non-split Cartan subgroup 
of GL2(Fp) is an algebraic curve that is defined over Q. It admits a so-called modular 
involution w, also defined over Q. One may conjecture that, for large p, the modular 
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involution is the only non-identity automorphism of Xns(p), even over C. However, for 
very small primes p this is not the case. Indeed, for p = 2, 3 and 5 the genus of Xns(p)
is 0, while for p = 7 the genus is 1. See [1, Table A.1]. For these primes the curve Xns(p)
admits therefore infinitely many automorphisms. The present paper is devoted to p = 11
and the genus 4 curve Xns(11). We prove the following.

Theorem. The automorphism group over C of the modular curve Xns(11) is isomorphic 
to Klein’s four group. It is generated by the modular involution w and the involution �
described in Corollary 1.

Our proof for this result is presented in Section 3. It relies on an explicit description 
of the regular differentials and the Jacobian of Xns(11). These are discussed in Section 2. 
We make use of equations for the curve Xns(11), which are obtained in Section 1.

1. Equations

In this section we derive equations for the modular curve Xns(11). We do this by 
exploiting the modular curve X+

ns(11) associated to the normalizer of a non-split Cartan 
subgroup of level 11.

We recall some definitions [1]. For any prime p, the ring of 2 ×2 matrices over Fp con-
tains subfields that are isomorphic to Fp2 . A non-split Cartan subgroup U of GL2(Fp)
is by definition the unit group of such a subfield. The modular curve Xns(p) classifies 
U -isomorphism classes of pairs (E, φ), where E is an elliptic curve and φ is an isomor-
phism from the group of p-torsion points E[p] to Fp × Fp. Two such pairs (E, φ) and 
(E′, φ′) are U -isomorphic if there is an isomorphism f : E −→ E′ for which the matrix 
φ′fφ−1 is in U .

The group U has index 2 in its normalizer U+ ⊂ GL2(Fp). The modular involution w

of Xns(p) maps (E, φ) to (E, αφ), where α is any matrix in U+ � U . In a way that 
is analogous to the moduli description for Xns(p), the modular curve X+

ns(p) classifies 
U+-isomorphism classes of pairs (E, φ). There are natural morphisms

Xns(p) π−→ X+
ns(p)

j−→ X(1).

Here X(1) indicates the j-line. It parametrizes elliptic curves up to isomorphism. The 
morphism j maps (E, φ) to the j-invariant of E. It has degree 1

2p(p − 1), while the 
morphism π has degree 2.

Both curves Xns(p) and X+
ns(p) are defined over Q. A point of Xns(p) or X+

ns(p) is 
defined over an extension Q ⊂ K if and only if it can be represented by a pair (E, φ), 
where E is defined over K and, for all σ ∈ Gal(K/K), the matrix φσφ−1 is in U or U+

respectively. This implies that, for p > 2, the curve Xns(p) does not contain any points 
defined over R. On the other hand, the curve X+

ns(p) has real and usually also rational 
points. Indeed, for every imaginary quadratic order R with class number 1 there is 
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a unique elliptic curve E over C with complex multiplication by R. The j-invariant of E
is in Q. Moreover, when p is prime in the ring R, there is a unique rational point (E, φ)
on X+

ns(p). These points are called CM points or Heegner points. See [10, Section A.5].

Remark 1. Let us consider an elliptic curve E defined over Q and a rational point on 
X+

ns(p) given by a pair of the form (E, φ). Then, the image of Gal(Q/Q) in Aut(E[p]) is 
isomorphic through φ to a subgroup G of GL2(Fp) which is contained in the normalizer 
of a non-split Cartan subgroup U . The points of Xns(p) lying above (E, φ) are defined 
over the fixed field of U ∩G, which is an imaginary quadratic extension of Q. In the case 
of Heegner points, CM theory implies that this extension is isomorphic to the quotient 
field of the endomorphism ring of E.

Now we turn to the case p = 11. In [8, Proposition 4.3.8.1], Ligozat derived a Weier-
strass equation for the genus 1 curve X+

ns(11). It is given by

Y 2 + Y = X3 −X2 − 7X + 10.

By choosing the point at infinity as origin, we can view X+
ns(11) as an elliptic curve 

and equip it with the usual group law. The rational points of this curve are then an in-
finite cyclic group generated by the point P = (4, −6). See [3]. The translations by 
the rational points form an infinite group of automorphisms of the curve. They are all 
defined over Q. It follows that there are infinitely many isomorphisms over Q between 
X+

ns(11) and the curve given by Ligozat. For a particular choice of such an isomorphism, 
Halberstadt derived in [6, Section 2.2] an explicit formula for the degree 55 morphism 
j : X+

ns(11) −→ X(1). In view of the symmetry phenomenon described at the end of 
this section, it is convenient to compose his isomorphism with the translation-by-P mor-
phism. Explicitly, our function j(X, Y ) is the value of Halberstadt’s j-function in the 
point

(
4X2 + X − 2 + 11Y

(X − 4)2 ,
(2X2 + 17X − 34 + 11Y )(1 − 3X)

(X − 4)3

)
,

that is,

j(X,Y ) = (X + 2)(4 −X)5

×
(
11

(
X2 + 3X − 6

)
(Y − 5)

(
X3 + 4X2 + X + 22 + (1 − 3X)Y

))3
× ((3X2 − 3X − 14 − (3 + 2X)Y )(12X3 + 28X2 − 41X − 62 + (3X2 + 20X + 37)Y ))3

(−7X2 − 15X + 62 + (X + 18)Y )2(4X3 + 2X2 − 21X − 6 + (X2 + 3X + 5)Y )11 .

Proposition 1. The modular curve Xns(11) is given by the equations

Y 2 + Y = X3 −X2 − 7X + 10,

T 2 = −
(
4X3 + 7X2 − 6X + 19

)
.
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Proof. We first compute the ramification locus of the morphism π : Xns(11) −→ X+
ns(11). 

Since π is defined over Q, this locus is Galois stable. By Proposition 7.10 in [1], the 
function j(X, Y ) − 1728 has exactly seven simple zeroes on X+

ns(11), and six of them 
are the ramification points of π. All the other zeroes are double. Let us consider the 
quotient map X+

ns(11) −→ P1 induced by the elliptic involution. It corresponds to the 
quadratic function field extension Q(X) ⊂ Q(X, Y ) with non-trivial automorphism given 
by Y �−→ −1 −Y . One easily checks that the trace and norm of the function j(X, Y ) −1728
admit the polynomial 4X3+7X2−6X+19 as an irreducible factor of multiplicity 1 and 2
respectively. The function F on X+

ns(11) defined by this cubic polynomial has exactly 
six simple zeroes. It follows that the zeroes of F are simple zeroes of j(X, Y ) − 1728. 
Therefore they are the ramification points of π.

The function field Q(Xns(11)) is obtained by adjoining a function G to Q(X+
ns(11))

whose square is in Q(X+
ns(11)). The coefficients of the divisor on X+

ns(11) of G2 are odd at 
the ramified points and even at the others. Since the same holds for the above function F , 
the divisor of FG2 is of the form 2D for some divisor D of X+

ns(11) defined over Q. The 
group Pic0(X+

ns(11)) is naturally isomorphic to the group of rational points of X+
ns(11). 

Since the latter is isomorphic to Z, there are no elements of order 2 in Pic0(X+
ns(11)). 

It follows that D is principal. This means that there is a function T in Q(Xns(11))
and a non-zero λ ∈ Q for which λT 2 = F . The function field of Xns(11) is then equal 
to Q(X, Y, T ).

It remains to determine λ, which is unique up to squares. Consider on X+
ns(11) the 

point Q = (5/4, 7/8). Since j(Q) = 1728, the elliptic curve parametrized by Q admits 
complex multiplication by the ring Z[i] of Gaussian integers. By Remark 1, the two 
points of Xns(11) lying above Q are defined over Q(i). Since F (Q) = 121/4 is a square, 
we may take λ = −1. This proves the proposition. �
Corollary 1. In addition to the modular involution w, the curve Xns(11) admits an 
“exotic” involution �. The modular involution switches (X, Y, T ) and (X, Y, −T ), while 
� switches (X, Y, T ) and (X, −1 − Y, T ). Together, w and � generate a subgroup 
of Aut(Xns(11)) isomorphic to Klein’s four group.

Although it is not relevant for the proofs in this paper, let us explain how the “exotic” 
automorphisms of Xns(11) were first detected. The rational points of X+

ns(11) form an 
infinite cyclic group generated by the point P = (4, −6). For each n ∈ Z, the elliptic 
curve over Q parametrized by the point [n]P in X+

ns(11)(Q) has the following property: 
the image G of the Galois representation attached to its p-torsion points is contained in 
the normalizer of a non-split Cartan subgroup U . By Remark 1, the fixed field of U∩G is 
an imaginary quadratic field. In his tesi di laurea [5], one of the authors – Valerio Dose – 
used the methods of [9] to compute this quadratic field K for several values of n. The 
first few values are given in the table below. There is a striking symmetry: the quadratic 
fields attached to the points [n]P and [−n]P are always the same. There does not seem 
to be a “modular reason” for this, as it may happen that the elliptic curve associated 
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to [n]P has complex multiplication by some quadratic order of discriminant Δ < 0 but 
the elliptic curve associated to [−n]P has not. In the first case K is the CM field, but in 
the second case it is not. The phenomenon, which surprised us at first, is explained by 
the existence of the “exotic” involution �.

Points j CM K

[6]P 2339531131762935331913/76911 – Q(
√
−3 · 14 327 )

[5]P −2183353233293 Δ = −163 Q(
√
−163 )

[4]P 0 Δ = −3 Q(
√
−3 )

[3]P 2633 Δ = −4 Q(
√
−1 )

[2]P −2153353113 Δ = −67 Q(
√
−67 )

P 243353 Δ = −12 Q(
√
−3 )

∞ 2333113 Δ = −16 Q(
√
−1 )

[−1]P −2153153 Δ = −27 Q(
√
−3 )

[−2]P 283356113533/2311 – Q(
√
−67 )

[−3]P −2933531317131813/4311 – Q(
√
−1 )

[−4]P 2183353711132332931033/6711 – Q(
√
−3 )

[−5]P −243351176293367323813/39711 – Q(
√
−163 )

[−6]P −233111317619123341353316732777323 4313/80 23311 – Q(
√
−3 · 14 327 )

2. Differentials

In this section we analyze the space of regular differentials Ω1
Xns(11) of the curve 

Xns(11).
By [2, Section 8], the Jacobian Jns(11) of Xns(11) is isogenous over Q to the new 

part of the Jacobian of X0(121). See [4] for an easy proof of this result. By Cremona’s 
tables [3], there are exactly four Q-isogeny classes of elliptic curves of conductor 121, 
which are represented by

A: y2 + xy + y = x3 + x2 − 30x− 76,

B: y2 + y = x3 − x2 − 7x + 10,

C: y2 + xy = x3 + x2 − 2x− 7,

D: y2 + y = x3 − x2 − 40x− 221.

It follows that Jns(11) is isogenous over Q to the product of these four elliptic curves. The 
following proposition describes a low degree morphism from the curve Xns(11) to each 
of its elliptic quotients, and provides a basis for Ω1

Xns(11) from the respective pull-backs. 
We make use of the equations for Xns(11) given in Proposition 1. It is also convenient 
to introduce the function Z = (2Y + 1)T in Q(Xns(11)).

Proposition 2. The curve Xns(11) admits morphisms defined over Q of degree 6, 2, 2
and 6 to the elliptic curves A, B, C and D respectively. Moreover, the corresponding pull-
backs of the 1-dimensional Q-vector spaces of regular differentials are the 1-dimensional 
subspaces of Ω1 generated by
Xns(11)
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ωA = dX

Z
, ωB = dX

2Y + 1 , ωC = dX

T
and ωD = (3X − 1)dX

Z

respectively.

Proof. By Corollary 1, the function field extension Q(X) ⊂ Q(X, Y, T ) is Galois, with 
Galois group isomorphic to Klein’s four group. Since the elliptic curve given by the 
Weierstrass equation T 2 = −(4X3 + 7X2 − 6X + 19) is isomorphic to C, we have the 
following commutative diagram of degree 2 morphisms

Xns(11)
φB

φH

φC

B H C

P1

Here H is the genus 2 curve given by

Z2 = −
(
4X3 − 4X2 − 28X + 41

)(
4X3 + 7X2 − 6X + 19

)
,

and the morphisms φB, φH and φC are defined as follows:

φB(X,Y, T ) = (X,Y ), φH(X,Y, T ) =
(
X, (2Y + 1)T

)
, φC(X,Y, T ) = (X,T ).

In particular, we can take ωB and ωC as in the statement.
We now describe degree 6 morphisms from Xns(11) to the curves A and D factoring 

through φH . To see that H admits degree 3 morphisms to A and D, we use Goursat’s 
formulas as described in the appendix of [7]. Substituting X = x + 1

3 and Z = 44
3 z in 

the hyperelliptic equation of H, we obtain

tz2 =
(
x3 + 3ax + 2b

)(
2dx3 + 3cx2 + 1

)

with

a = −22
9 , b = 847

216 , c = 27
242 , d = 9

44 and t = −3.

Note that the discriminants Δ1 = a3 + b2 and Δ2 = c3 + d2 are both non-zero. Then, 
the maps (x, z) �−→ (u, v), with

(u, v) =
(

12Δ1
−2dx + c

x3 + 3ax + 2b , zΔ1
16dx3 − 12cx2 − 1
(x3 + 3ax + 2b)2

)
,

(u, v) =
(

12Δ2
x2(ax− 2b)

3 2 , zΔ2
x3 + 12ax− 16b

3 2 2

)
,
2dx + 3cx + 1 (2dx + 3cx + 1)
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are degree 3 morphisms from H to the genus 1 curves given by the equations

tv2 = u3 + 12
(
2a2d− bc

)
u2 + 12Δ1

(
16ad2 + 3c2

)
u + 512Δ2

1d
3,

tv2 = u3 + 12
(
2bc2 − ad

)
u2 + 12Δ2

(
16b2c + 3a2)u + 512Δ2

2b
3

respectively. Moreover, the pull-back of the differential du/v of the first curve to Ω1
H is 

a rational multiple of dx/z and hence of dX/Z, while the pull-back of the differential 
du/v of the second curve is a rational multiple of xdx/z and hence of (3X − 1)dX/Z.

Finally, for the above values of a, b, c, d and t, the two genus 1 curves can be checked 
to be isomorphic over Q to the elliptic curves A and D respectively. This proves the 
proposition. �
Remark 2. Since the Jacobian of H is isogenous to A ×D, we know that there do exist 
non-constant morphisms from H to the curves A and D, but we know of no a priori 
reason why there should exist morphisms of degree 3. In fact, this was only established 
by a numerical computation involving the period lattices of the curves H, A and D. 
Another reason for suspecting that there exist such morphisms is the fact that the 
Fourier coefficients of the weight 2 eigenforms associated to the elliptic curves A and D
are congruent modulo 3.

3. Automorphisms

In this section we prove the theorem. We use the notations of Proposition 1 and 
Proposition 2.

Let σ be an automorphism of the curve Xns(11). Then σ induces an automorphism 
of the Jacobian Jns(11). We recall that this Jacobian is isogenous over Q to the product 
of the elliptic curves A, B, C and D introduced in Section 2.

Let us analyze the isogeny relations over Q among these four elliptic curves. The 
curve D cannot be isogenous over Q to A, B or C because it is the only one whose 
j-invariant is not integral. The curve B has complex multiplication by the quadratic 
order of discriminant −11, so it cannot be isogenous over Q to A, C or D because none 
of these three curves admits complex multiplication. Lastly, there is a degree 2 isogeny 
between A and C defined over Q(

√
−11 ).

Therefore, all endomorphisms of Jns(11) are defined over Q(
√
−11 ). Furthermore, the 

action of σ on Ω1
Xns(11) with respect to the basis ωB, ωD, ωA, ωC is given by multiplication 

by a matrix of the form
⎛
⎜⎜⎝

±1 0 0 0
0 ±1 0 0
0 0 a b

0 0 c d

⎞
⎟⎟⎠ (3.1)

for certain a, b, c, d ∈ Q(
√
−11 ). Note that the eigenvalues corresponding to ωB and ωD

must be roots of unity in this quadratic field, namely ±1, because σ has finite order.



102 V. Dose et al. / Journal of Algebra 417 (2014) 95–102
Let us now consider the functions x = ωD/ωA = 3X − 1 and y = ωC/ωA = 2Y + 1 on 
the elliptic curve B. They satisfy the equation

1
4y

2 = 1
27x

3 − 22
9 x + 847

108 .

Then the action of σ on Ω1
Xns(11) yields

σ(x) = ±x

a + cy
and σ(y) = b + dy

a + cy
.

In other words, σ induces an automorphism of the curve B which, in projective coordi-
nates, is given by

(x : y : z) �−→ (±x : bz + dy : az + cy).

In particular, σ maps the origin (0 : 1 : 0) of the elliptic curve B to the point (0 : d : c). 
This implies c = 0. Otherwise, the above equation would entail (d/c)2 = 847/27 with 
d/c ∈ Q(

√
−11 ), which is impossible. Since the only automorphisms of B fixing the 

origin are the identity and the elliptic involution, it follows σ(x) = x and σ(y) = ±y. 
Thus, σ(X) = X whereas σ(Y ) must be either Y or 1 − Y . The equations given for 
Xns(11) in Proposition 1 imply then σ(T ) = ±T . This proves the theorem.
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