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Computing Arakelov class groups
RENÉ SCHOOF

ABSTRACT. Shanks’s infrastructure algorithm and Buchmann’s algorithm for
computing class groups and unit groups of rings of integers of algebraic num-
ber fields are most naturally viewed as computations inside Arakelov class
groups. In this paper we discuss the basic properties of Arakelov class groups
and of the set of reduced Arakelov divisors. As an application we describe
Buchmann’s algorithm in this context.
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1. Introduction

Daniel Shanks [1972] observed that the forms in the principal cycle of re-
duced binary quadratic forms of positive discriminant exhibit a group-like be-
havior. This was a surprising phenomenon, because the principal cycle itself
constitutes the trivial class of the class group. Shanks called this group-like
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structure ‘inside’ the neutral element of the class group the infrastructure. He
exploited it by designing an efficient algorithm to compute the regulator of a
real quadratic number field. Later, H. W. Lenstra [1982] (see also [Schoof
1982]) made Shanks’ observations more precise, introducing a certain topolog-
ical group and providing a satisfactory framework for Shanks’s algorithm. Both
Shanks [1976, Section 1; 1979, 4.4], and Lenstra [1982, section 15] indicated
that the infrastructure ideas could be generalized to arbitrary number fields. This
was done first by H. Williams and his students [Williams et al. 1983] for complex
cubic fields, then by J. Buchmann [1987a; 1987b; 1987c] and by Buchmann
and Williams [1989]. Finally Buchmann [1990; 1991] described an algorithm
for computing the class group and regulator of an arbitrary number field that,
under reasonable assumptions, has a subexponential running time. It has been
implemented in the computer algebra packages LiDIA, MAGMA and PARI.

In these expository notes we present a natural setting for the infrastructure
phenomenon and for Buchmann’s algorithm. It is provided by Arakelov theory
[Szpiro 1985, 1987; Van der Geer and Schoof 2000]. We show that Buchmann’s
algorithm for computing the class number and regulator of a number field F has
a natural description in terms of the Arakelov class group Pic0

F of F and the set
RedF of reduced Arakelov divisors. We show that Lenstra’s topological group
is essentially equal to the Arakelov class group of a real quadratic field. We also
introduce the oriented Arakelov class group fPic0

F
. This is a natural generaliza-

tion of Pic0
F , useful for analyzing Buchmann’s algorithm and for computing the

units of the ring of integers OF themselves rather than just the regulator.
The main result of this paper is formulated in Theorems 7.4 and 7.7. It says

that the finite set RedF of reduced Arakelov divisors is, in a precise sense,
regularly distributed in the compact Arakelov class groups Pic0

F and fPic0
F

.
In Section 2 we introduce the Arakelov class group of a number field F . In

Section 3 we study the étale R-algebra F ˝Q R. In Section 4 we discuss the
relations between Arakelov divisors, Hermitian line bundles and ideal lattices.
In Section 5 we define the oriented Arakelov class group and in Section 6 we give
both Arakelov class groups a natural translation invariant Riemannian structure.
The rest of the notes is devoted to computational issues. Section 7 contains the
main results. Here we introduce reduced Arakelov divisors and describe their
basic properties. In Section 8, we work out the details for quadratic number
fields. In Section 9 we present explicit examples illustrating various properties
of reduced divisors. In Section 10 we discuss the computational aspects of
reduced Arakelov divisors. In Section 11 we present a deterministic algorithm
to compute the Arakelov class group. Finally, in Section 12 we present Buch-
mann’s algorithm from the point of view of Arakelov theory. See [Marcus 1977]
for the basic properties of algebraic number fields.
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2. The Arakelov class group

In this section we introduce the Arakelov class group of a number field F .
This group is analogous to the degree zero subgroup of the Picard group of a
complete algebraic curve. In order to have a good analogy with the geometric
situation, we formally ‘complete’ the spectrum of the ring of integers OF by
adjoining primes at infinity. An infinite prime of F is a field homomorphism
� W F � C, considered up to complex conjugation. An infinite prime � is
called real when �.F / � R and complex otherwise. We let r1 and r2 denote the
number of real and complex infinite primes, respectively. We have r1 C2r2 D n

where n D ŒF W Q�.
An Arakelov divisor is a formal finite sum D D

P
p npp C

P
� x�� , where

p runs over the nonzero prime ideals of OF and � runs over the infinite primes
of F . The coefficients np are in Z but the x� can be any number in R. The
Arakelov divisors form an additive group, the Arakelov divisor group DivF . It
is isomorphic to

L
p Z �

L
� R. The principal Arakelov divisor associated to

an element f 2 F� is the divisor .f / D
P

p nppC
P

� x�� with np D ordp.f /

and x� .f / D � log j�.f /j. The principal Arakelov divisors form a subgroup
of DivF .

Since it is analogous to the Picard group of an algebraic curve, the quotient
of DivF by its subgroup of principal Arakelov divisors is denoted by PicF . A
principal Arakelov divisor .f / is trivial if and only if f is a unit of OF all of
whose conjugates have absolute value equal to 1. It follows that .f / is trivial if
and only if f is contained in the group of roots of unity �F . Therefore there is
an exact sequence

0 � �F � F�
� DivF � PicF � 0:

We call I D
Q

p p�np the ideal associated to an Arakelov divisor D D
P

p nppCP
� x�� . The ideal associated to the zero Arakelov divisor is the ring of inte-

gers OF . The ideal associated to a principal Arakelov divisor .f / is the principal
ideal f �1OF . Here and in the rest of the paper we often call fractional ideals
simply ‘ideals’. If we want to emphasize that an ideal is integral, we call it an
OF -ideal.

The map that sends a divisor D to its associated ideal I is a homomor-
phism from DivF to the group of fractional ideals IdF of F . Its kernel is the
group

L
� R of divisors supported in the infinite primes. We have the commu-

tative diagram at the top of the next page, the rows and columns of which are
exact. In the diagram, PidF denotes the group of principal ideals of F . The
map F�=�F � DivF induces a homomorphism from O�

F
=�F to

L
� R. This

homomorphism is given by "‘ .� log j�."/j/� and its cokernel is denoted by T .
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0 0 0??y ??y ??y
0 � O�

F
=�F � F�=�F � PidF � 0??y ??y ??y

0 �
L
�

R � DivF � IdF � 0??y ??y ??y
0 � T � PicF � ClF � 0??y ??y ??y

0 0 0

The norm N.p/ of a nonzero prime ideal p of OF is the order of its residue
field OF =p. The degree deg.p/ of p is defined as log N.p/. The degree of an
infinite prime � is equal to 1 or 2 depending on whether � is real or complex.
The degree extends by linearity to a surjective homomorphism deg WDivF � R.
The norm N.D/ of a divisor D is defined as N.D/ D edeg.D/. The divisors of
degree 0 form a subgroup Div0

F of DivF . By the product formula, Div0
F contains

the principal Arakelov divisors.

DEFINITION 2.1. Let F be a number field. The Arakelov class group Pic0
F of F

is the quotient of Div0
F by its subgroup of principal divisors.

The degree map deg W DivF � R factors through PicF and the Arakelov class
group is the kernel of the induced homomorphism deg W PicF � R. We let
.
L

� R/0 denote the subgroup of divisors in
L

� R that have degree zero and
T 0 the cokernel of the homomorphism O�

F
� .

L
� R/0. In other words, T 0

is the quotient of the vector space
˚
.v� /� 2

L
� R W

P
� deg.�/v� D 0

	
by the

group of vectors f.logj�."/j/� W " 2 O�
F

g. By Dirichlet’s unit theorem, T 0 is a
compact real torus.

PROPOSITION 2.2. There is a natural exact sequence

0 � T 0
� Pic0

F � ClF � 0:

PROOF. Since F has at least one infinite prime, the composite map Div0
F Œ

DivF � IdF is still surjective. The result now follows by replacing the groups
DivF , PicF , T and

L
� R in the diagram above by their degree 0 subgroups. �

The group T 0 is the connected component of the identity of the topological
group Pic0

F . It follows that Pic0
F , being an extension of the finite class group

by T 0, is a compact real Lie group of dimension r1 C r2 � 1.
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DEFINITION 2.3. The natural homomorphism Div0
F � IdF admits a section

d W IdF � Div0
F :

It is given by d.I/ D D where D D
P

p nppC
P

� x�� is the Arakelov divisor
for which I D

Q
p p�np and x� D .1=n/ log N.I/ for every infinite prime � .

PROPOSITION 2.4. Let Nd W IdF � Pic0
F denote the homomorphism that maps

I to the class of the divisor d.I/. Then the sequence

0 � ff 2 F�
W all j�.f /j are equalg=�F � IdF

Nd
� Pic0

F

is exact. Moreover, the image of Nd is dense in Pic0
F .

This proposition is not used in the rest of the paper. We do not prove it, because
it follows immediately from Proposition 6.4 below. The kernel of Nd is not a very
convenient group to work with. This is one of the reasons for introducing the
oriented Arakelov divisors in Section 5.

Finally we remark that there is a natural surjective continuous homomorphism
A�

F � DivF from the idèle group A�
F

to the Arakelov divisor group. It follows
that PicF is a quotient of the idèle class group. We do not make any use of this
fact in the rest of the paper.

3. Étale R-algebras

Let F be a number field of degree n. In this section we study the R-algebra
FR D F ˝Q R.

For any infinite prime � of F , we write F� for R or C depending on whether
� is real or complex. The natural map F �

Q
� F� sending f 2F to the vector

.�.f //� induces an isomorphism FR D F ˝Q R Š
Q

� F� of R-algebras. Let
u ‘ Nu denote the canonical conjugation of the étale algebra FR . In terms of
the isomorphism FR Š

Q
� F� , it is simply the morphism that maps a vector

u D .u� /� to Nu D . Nu� /� . In these terms it is also easy to describe the set of
invariants of the canonical conjugation. It is the subalgebra

Q
� R of

Q
� F� .

For any u 2 FR , we define the norm N.u/ and trace Tr.u/ of u as the de-
terminant and trace of an n � n-matrix (with respect to any R-basis) of the
R-linear map FR � FR given by multiplication by u. In terms of coordi-
nates, we have for u D .u� /� 2

Q
� F� that Tr.u/ D

P
� deg.�/Re.u� / while

N.u/ D
Q

� u
deg.�/
� .

Being an étale R-algebra, FR admits a canonical Euclidean structure; see for
instance [Groenewegen 2001]. It is given by the scalar product

hu; vi D Tr.u Nv/ for u; v 2 FR :
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This scalar product has the ‘Hermitian’ property h�u; vi D hu; N�vi for u; v; � 2

FR . In terms of coordinates, we have for u D .u� /� and v D .v� /� in FR ŠQ
� F� that

hu; vi D

X
�

deg.�/Re.u� Nv� /:

We write kuk D hu; ui1=2 for the length of u 2 FR . For the element 1 2 F � FR

we have k1kD
p

n. For every u2FR , all coordinates of the product u Nu2
Q

� F�

are nonnegative real numbers. We define juj to be the vector

juj D .ju� j/�

in the group
Q

� R�
C � F�

R . Here we let R�
C D fx 2 R�

W x > 0g. We have
juj2 D uu. The map u ‘ juj is a homomorphism. It is a section of the inclusion
map

Q
� R�

C � F�
R .

PROPOSITION 3.1. Let F be a number field of degree n. For every u 2 FR ,

.i/ N.u Nu/1=n
�

1
n

Tr.u Nu/I

.ii/ jN.u/j � n�n=2
kuk

n:

In either case, equality holds if and only if u is contained in the subalgebra R

of FR .

PROOF. Since all coordinates of u Nu are nonnegative, (i) is just the arithmetic-
geometric mean inequality. The second inequality follows from (i) and the fact
that N. Nu/ D N.u/. �

4. Hermitian line bundles and ideal lattices

In this section we introduce the Hermitian line bundles and ideal lattices as-
sociated to Arakelov divisors and study some of their properties.

Let F be a number field of degree n and let D D
P

p npp C
P

� x�� be
an Arakelov divisor. By I D

Q
p p�np we denote the ideal associated to D in

Section 2 and by u the unit .exp.�x� //� 2
Q

� R�
C � F�

R . This leads to the
following definition.

DEFINITION 4.1. Let F be a number field. A Hermitian line bundle is a pair
.I; u/ where I is a fractional F -ideal and u a unit of the algebra FR Š

Q
� F�

all of whose coordinates are positive real numbers.

As we explained above, to every Arakelov divisor D there corresponds a Hermit-
ian line bundle .I; u/. This correspondence is bijective and we often identify
the two notions. The zero Arakelov divisor corresponds to the trivial bundle
.OF ; 1/. A principal Arakelov divisor .f / corresponds to the Hermitian line
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bundle .f �1OF ; jf j/ and the divisor d.I/ associated to a fractional ideal I at
the end of Section 2, corresponds to the pair .I; N.I/�1=n/. Note that N.I/�1=n

is contained in the ‘diagonal’ subgroup R�
C of

Q
� R�

C. It follows from the
formulas for N.u/ given in the previous section that the degree of an Arakelov
divisor D D .I; u/ is equal to � log.jN.u/jN.I//.

DEFINITION 4.2. Let F be a number field. An ideal lattice of F is a projective
OF -module L of rank 1 equipped with a real-valued positive definite scalar
product on L˝Z R satisfying h�x; yi D hx; N�yi for x; y 2 L˝Z R and � 2 FR .
Two ideal lattices L, L0 are called isometric if there is an OF -isomorphism
L Š L0 that is compatible with the scalar products on L ˝Z R and L0 ˝Z R.

Here � ‘ N� is the canonical algebra involution of the étale R-algebra FR intro-
duced in Section 3. Note that it need not preserve F . Note also that L˝Z R has
the structure of an FR-module. See [Bayer-Fluckiger 1999; Groenewegen 2001]
for more on ideal lattices. There is a natural way to associate an ideal lattice to
an Arakelov divisor D. It is most naturally expressed in terms of the Hermitian
line bundle .I; u/ associated to D. The OF -module I is projective and of rank 1.
Multiplication by u gives an OF -isomorphism with uI Dfux Wx 2Ig�FR . The
canonical scalar product on FR introduced in Section 3 gives uI the structure
of an ideal lattice. Alternatively, putting

kf kD D kuf k; for f 2 I ;

we obtain a scalar product on I itself that we extend by linearity to I ˝Z R.
In additive notation, if f 2 I and u 2 F�

R is equal to exp..�x� /� /, then uf

is equal to the vector .�.f /e�x� /� 2 FR and we have kf k2
D

D kuf k2 DP
� deg.�/j�.f /e�x� j2 for f 2 I .
The ideal lattice corresponding to the zero Arakelov divisor, i.e. to the triv-

ial bundle .OF ; 1/, is the ring of integers OF viewed as a subset of F � FR

equipped with its canonical Euclidean structure. The covolume of this lattice is
equal to

p
j�F j, where �F denotes the discriminant of the number field F . The

covolume of the lattice associated to an arbitrary divisor D D .I; u/ is equal to

covol.D/ D
p

j�F j N.I/jN.u/j D
p

j�F j=N.D/ D
p

j�F je�deg.D/:

For any ideal I , the lattice associated to the Arakelov divisor

d.I/ D .I; N.I/�1=n/

can be thought of as the lattice I � F � FR equipped with the canonical scalar
product of FR , but scaled with a factor N.I/�1=n so that its covolume is equal
to

p
j�F j.

PROPOSITION 4.3. Let F be a number field of discriminant �F .
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(i) The map that associates the ideal lattice uI to an Arakelov divisor D D

.I; u/, induces a bijection between the group PicF and the set of isometry
classes of ideal lattices.

(ii) The same map induces a bijection between the group Pic0
F and the set of

isometry classes of ideal lattices of covolume
p

j�F j.

PROOF. Let D D .I; u/ be an Arakelov divisor and let D0 D D C .g/ for
some g 2 F�. Then D0 D .g�1I; ujgj/ and multiplication by g induces an
isomorphism g�1I Š I of OF -modules. This map is also an isometry between
the associated lattices since

kg�1f kD0 D kujgjg�1f k D kuf k D kf kD

for all f 2 I ˝Z R. Here we have used the fact that v D jgjg�1 satisfies
v Nv D 1 and that therefore kvhk D Tr.vh Nv Nh/ D Tr.h Nh/ D khk for all h 2 I ˝Z R.
We conclude that the map that sends an Arakelov divisor to its associated ideal
lattice induces a well defined map from PicF to the set of isometry classes of
ideal lattices. This map is injective. Indeed, if D D .I; u/ and D0 D .I 0; u0/

give rise to isometric lattices, then there exists g 2 F� so that I 0 D gI and
kgf kD0 D kf kD for all f 2 I ˝Z R. This means that ku0gf k D kuf k for all
f 2 I ˝Z R D FR . For any infinite prime � , we let e� 2 FR be the idempotent
for which �.e� / D 1 while � 0.e� / D 0 for all � 0 6D � . Substituting f D e� , we
find that j�.g/u0

� j D ju� j for every � . It follows that jgj D u=u0, implying that
D0 D D C .g/ as required.

To see that the map is surjective, consider an ideal lattice L with Hermitian
scalar product hh�; �ii on L˝Z R D FR . We may assume that L is actually an
OF -ideal. The idempotent elements e� in FR Š

Q
� F� are invariant under the

canonical involution. This implies that the e� are pairwise orthogonal because
hhe� ; e� 0ii D hhe2

� ; e� 0ii D hhe� ; e�e� 0ii D 0. Therefore the real numbers u� D

hhe� ; e� ii1=2 determine the metric on I ˝Z R. The Arakelov divisor .L; u/ with
u D .u� /� 2

Q
� R�

C is then mapped to the isometry class of L.
This proves (i). Part (ii) follows immediately from this. �

The following proposition deals with the lengths of the shortest nonzero vectors
in the lattices associated to Arakelov divisors.

PROPOSITION 4.4. Let F be a number field of degree n and let D D .I; u/ be
an Arakelov divisor.

(i) For every nonzero f in I we have

kf kD �
p

ne� 1
n

deg D :
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Moreover, equality holds if and only if D D .fOF ; �jf j�1/ for some �>0. In
other words, if and only if D is equal to the principal Arakelov divisor �.f /,
scaled by a positive actor �.

(ii) There exists a nonzero f 2 I such that ju��.f /j < .2=�/r2=n covol.D/1=n

for every � and hence

kf kD �
p

n � .2=�/r2=ncovol.D/1=n:

Here r2 is the number of complex primes of F .

PROOF. (i) Take f 2 I . By Proposition 3.1 we have

kf k
2
D D kuf k

2
� njN.uf /j2=n:

Since jN.f /j � N.I/ we find that

kf k
2
D � njN.u/N.I/j2=n

D ne�.2=n/ deg.D/:

The last inequality follows from the fact that deg.D/ D � log jN.u/N.I/j. This
proves the first statement. By Proposition 3.1, equality holds if and only if all
ju��.f /j are equal to some � > 0 and if I is the principal ideal generated by f .
This implies that D is of the form .f �1OF ; jf j�1�/ as required.

(ii) Consider the set V Df.y� /� 2FR W jy� j� .2=�/r2=n covol.D/1=n for all �g.
This is a bounded symmetric convex set of volume

2r1.2�/r2 .2=�/r2 covol.D/ D 2ncovol.D/:

By Minkowski’s Convex Body Theorem there exists a nonzero element f 2 I

for which .u��.f //� 2 uI � FR is in V . This implies (ii). �

We mention the following special case of the proposition.

COROLLARY 4.5. Let D D .I; u/ be an Arakelov divisor of degree 0. Then any
nonzero f 2 I has the property that kf kD �

p
n, with equality if and only if

D D �.f /. On the other hand, there exists a nonzero f 2 I with

kf kD �
p

n .2=�/r2=n
p

j�F j
1=n

:

Proposition 4.4(i) says that the lattices uI associated to Arakelov divisors D D

.I:u/ are rather ‘nice’. They are not very skew in the sense that they do not con-
tain any nonzero vectors that are extremely short with respect to covol.D/1=n.
This property can be expressed by means of the Hermite constant  .D/ D

 .uI/. The latter is defined as the square of the length of the shortest nonzero
vector in the lattice uI associated to D divided by covol.D/2=n. The skewer
the lattice, the smaller is its Hermite constant. The constant  .D/ only depends
on the class of D in PicF .
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COROLLARY 4.6. Let F be a number field of degree n and let D D .I; u/ be an
Arakelov divisor. Then

n

j�F j1=n
�  .D/ � n

�
2

�

�2r2=n
:

The lower bound is attained if and only if D is a principal divisor scaled by
some � > 0 as in Proposition 4.4(i).

The function h0.D/ D log
�P

f 2I exp.��kf k2
D

/
�

introduced in [Van der Geer
and Schoof 2000] and briefly discussed in Section 10 is related to the Hermite
constant  .D/. Indeed, for most Arakelov divisors D D .I; u/ the shortest
nonzero vectors in the associated lattice are equal to products of a root of
unity by one fixed shortest vector. Moreover, for most D the contributions
of the zero vector and these vectors contribute the bulk to the infinite sumP

f 2I exp.��kf k2
D

/. Therefore, for most Arakelov divisors D the quantity
.h0.D/ � 1/=wF is close to exp.��.D/covol.D/2=n/. Here wF denotes the
number of roots of unity in the field F .

5. The oriented Arakelov class group

In this section we introduce the oriented Arakelov divisor group fPicF asso-
ciated to a number field F .

In Section 4 we have associated to an Arakelov divisor D a Hermitain line
bundle .I; u/. Here I is an ideal and u is a unit in the subgroup F�

R;C D
Q

� R�
C

of F�
R . An oriented Hermitian line bundle is a pair .I; u/ where I is an ideal and

u is an arbitrary unit in F�
R Š

Q
� F�

� . The corresponding oriented Arakelov
divisors are formal sums

P
p npp C

P
� x�� with np 2 Z and x� 2 F�

� . They
form a group eDivF and we have

eDivF Š IdF � F�
R Š

M
p

Z �

Y
�

F�
� :

The principal oriented Arakelov divisor associated to f 2 F� is simply the
oriented divisor corresponding to the oriented Hermitian bundle .f �1OF ; f /,
where the second coordinate f is viewed as an element of F�

R . The cokernel of
the injective homomorphism F� � eDivF is denoted by fPicF . The inclusion
DivF � eDivF admits the natural section eDivF � DivF given by .I; u/ ‘

.I; juj/. The degree deg.D/ of an oriented Arakelov divisor D D .I; u/ is by
definition the degree of the ‘ordinary’ Arakelov divisor .I; juj/. In this way
principal oriented Arakelov divisors have degree 0.
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DEFINITION 5.1. The quotient of the group eDiv0
F

of oriented Arakelov divisors
of degree 0 by the subgroup of principal divisors is called the oriented Arakelov
class group. It is denoted by fPic0

F
.

The commutative diagram below has exact rows and columns. The bottom row
relates the groups fPic0

F
and Pic0

F to one another.

0 0 0??y ??y ??y
0 � �F � F� � F�=�F � 0??y ??y ??y
0 �

Q
� K� � eDiv0

F
� Div0

F � 0??y ??y ??y
0 � .

Q
� K� /=�F � fPic0

F
� Pic0

F � 0??y ??y ??y
0 0 0

Here K� denotes the maximal compact subgroup of F�
� . In other words K� D

f1; �1g if � is real, while K� D fz 2 C�
W jzj D 1g if � is complex. Since Pic0

F

and the groups K� are compact, it follows from the exactness of the bottom row
of the diagram that fPic0

F
is compact as well.

In order to see the topological structure of fPic0
F

better, we construct a second
exact sequence. Let F�

R; conn denote the connected component of 1 2 F�
R . It is

isomorphic to a product of copies of R�
C for the real primes and F�

� D C� for
the complex ones. It is precisely the kernel of the homomorphism

eDivF � IdF �

Y
� real

f˙1g;

given by mapping D D .I; u/ to .I; sign.u//. Here sign.u/ denotes the vec-
tor .sign.u� //� real.

DEFINITION 5.2. By zT we denote the quotient of the group F�
R; conn by its sub-

group O�
F;C

D f" 2 O�
F

W �."/ > 0 for all real �g. Taking degree zero subgroups,
we put

.F�
R; conn/0

D fu 2 F�
R; conn W N.u/ D 1g and zT 0

D .F�
R; conn/0=O�

F;C:

The map zT � fPicF given by v ‘ .OF ; v/ is a well defined homomorphism.
So is the map fPicF � ClF;C that sends the class of the divisor .I; u/ to the
narrow ideal class of gI where g 2 F� is any element for which sign.g/ D
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sign.u/. Here the narrow ideal class group ClF;C is defined as the group of
ideals modulo the principal ideals that are generated by f 2 F�

C D ff 2 F� W

�.f / > 0 for all real �g. It is a finite group.
The following proposition says that the groups zT and zT 0 are the connected

components of identity of fPicF and fPic0
F

respectively. It provides an analogue
to Proposition 2.2.

PROPOSITION 5.3. . Let F be a number field of degree n.

(i) The natural sequences

0 � zT � fPicF � ClF;C � 0

and
0 � zT 0

� fPic0
F � ClF;C � 0

are exact.
(ii) The groups zT and zT 0 are the connected components of identity of fPicF andfPic0

F
respectively. The group zT has dimension n while zT 0 is a compact torus

of dimension n � 1.

PROOF. (i) Let ePidF denote the image of the map

F�
� eDivF � IdF �

Y
� real

f˙1g:

This leads to a commutative diagram with exact rows:

0 � O�
F;C

� F� � ePidF � 0??y ??y ??y
0 � F�

R; conn � eDivF � IdF �
Q

� realf˙1g � 0;

where the vertical maps are all injective. An application of the snake lemma
shows the sequence of cokernels to be exact: this is the first exact sequence of (i).
Indeed, the kernel of the surjective homomorphism IdF �

Q
� realf˙1g ! ClF;C

given by mapping a pair .I; s/ to the narrow ideal class of gI , where g 2 F�

is any element for which sign.g/ D sign.s/, is precisely equal to ePidF . The
second exact sequence is obtained by taking degree-zero parts.

(ii) Since ClF;C is finite and both groups zT and zT 0 are connected, the first
statement is clear. Since the Lie group F�

R; conn has dimension n, so do the groups
zT and fPicF . It follows that the groups zT 0 and fPic0

F
have dimension n � 1. �

The classes of two extended Arakelov divisors .I; u/ and .J; v/ are on the same
connected component of fPic0

F
if and only if J D gI for some g 2 F� for which

u�v��.g/ > 0 for each real � .
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DEFINITION 5.4. An embedded ideal lattice is an ideal lattice L together with
an OF -linear isometric embedding LŒFR . To every oriented Arakelov divisor

D D .I; u/ we associate the ideal lattice uI together with the embedding uI �

FR . Two embedded ideal lattices are called isometric if there is an isometry
of ideal lattices that commutes with the embeddings. We have the following
analogue of Proposition 4.3.

PROPOSITION 5.5. Let F be a number field of discriminant �F .

(i) The map that associates to an oriented Arakelov divisor D D .I; u/ its
associated embedded ideal lattice, induces a bijection between the oriented
Arakelov class group fPicF and the set of isometry classes of embedded ideal
lattices.

(ii) The same map induces a bijection between fPic0
F

and the set of isometry
classes of embedded ideal lattices of covolume

p
j�F j.

PROOF. If two oriented Arakelov divisors D D .I; u/ and D0 D .I 0; u0/ differ by
a principal divisor .f �1OF ; f /, then multiplication by f induces an isometry
between the embedded lattices uI and u0I 0. Therefore the map in (i) is well
defined. If the embedded lattices uI and u0I 0 are isometric, then this isometry
is given by multiplication by some x 2F�

R . Then f Du�1xu0 is contained in F�

and we have D�D0 D .f �1OF ; f /. This shows that the map is injective. To see
that the map is surjective, let I be a fractional ideal and let � W I Œ FR be an OF -
linear embedding. Tensoring I with R, we obtain an FR-linear isomorphism
FR Š I ˝Z R � FR , which is necessarily multiplication by some u 2 F�

R .
Therefore �.I/ D uI and the oriented divisor .I; u/ maps to the embedded ideal
lattice � W I Œ FR . �

We will not use this in the rest of the paper, but note that there is a natural
surjective continuous homomorphism from the idèle group A�

F
to the oriented

Arakelov divisor group eDivF . It follows that the group fPicF is a quotient of the
idèle class group.

6. Metrics on Arakelov class groups

Let F be a number field. In this section we provide the Arakelov class groups
PicF and fPicF with translation invariant Riemannian structures.

By the diagram in Section 2, the connected component T of the group PicF is
isomorphic to

L
� R modulo the closed discrete subgroup � D f.log j�."/j/� W

" 2 O�
F

g. Therefore the tangent space at 0 is isomorphic to
L

� R. Identifying
this vector space with the subalgebra

Q
� R of FR D

Q
� F� , it inherits the

canonical scalar product from FR . Since this R-valued scalar product is positive
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definite, both groups T and PicF are in this way equipped with a translation
invariant Riemannian structure.

For u 2
Q

� R�
C � F�

R we let log u denote the element .log �.u//� 2
Q

� R �

FR . We have

klog uk
2

D

X
�

deg.�/
ˇ̌
log �.u/

ˇ̌2
:

DEFINITION 6.1. For u 2 T we put

kukPic D min
u02F �

R;C

u0�u .mod �/

klog u0
k D min

"2O�
F

klog.j"ju/k:

Every divisor class in T is represented by a divisor of the form D D .OF ; u/

for some u 2
L

� R�
C. Here u is unique up to multiplication by units " 2 O�

F
.

For such a divisor class in T we define

kDkPic D kukPic:

The function kukPic on T satisfies the triangle inequality. It gives rise to a
distance function that induces the natural topology of PicF . The distance is only
defined for divisor classes D and D0 that lie on the same connected component.
By Proposition 2.2, the class of the difference D � D0 is then equal to .OF ; u/

for some unique u 2 T and we define the distance kD � D0kPic between D and
D0 as kukPic. The closed subgroups T 0 and Pic0

F inherit Riemannian structures
from PicF .

The Euclidean structures of the ideal lattices corresponding to Arakelov divisors
and the metric on PicF are not unrelated. The following proposition says that
the difference between the Euclidean structures of two Arakelov divisors D; D0

is bounded in terms of kD � D0kPic.

PROPOSITION 6.2. Let F be a number field and let D D .I; u/ and D0 D .I; u0/

be two Arakelov divisors. Then there exists a unit " 2 O�
F

for which the divisor
D00 D .I; u0j"j/ satisfies

e�kD�D00kPic �
kxkD

kxkD00

� ekD�D00kPic ; for every x 2 I .

The classes of D0 and D00 in PicF are the same, so kD �D0kPic D kD �D00kPic.

PROOF. Let "2O�
F

be such that the expression
P

� deg.�/
ˇ̌
log.j�."/ju0

�=u� /
ˇ̌2

is minimal. Let D00 D .I; j"ju0/. Putting v D u0j"j=u we have as a consequence

kD � D00
k

2
Pic D

X
�

deg.�/ jlog v� j
2:
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For any x 2 I we have

kxk
2
D00 D ku0"xk

2
D kvuxk

2
D

X
�

deg.�/ju�v��.x/j2

� max
�

jv� j
2

X
�

deg.�/ju��.x/j2 D

�
max

�
jv� j

�2
kxk

2
D :

Since

log max
�

jv� j D max
�

log jv� j � max
�

jlog jv� jj � kD � D00
kPic;

the first inequality follows. The second follows by symmetry. The last line of
the proposition is clear. �

We now define a similar metric on the oriented Arakelov class group. By Propo-
sition 5.3, the connected component of fPicF is zT D F�

R; conn=O�
F;C

. We recall
that F�

R; conn is the connected component of identity of the group F�
R . It is iso-

morphic to a product of copies of R�
C, one for each real prime, and of C�, one

for each complex prime. The group O�
F;C

is the subgroup of " 2 O�
F

for which
�."/ > 0 for every real infinite prime � .

The exponential homomorphism exp W FR � F�
R is defined in terms of

the usual exponential function by exp.u/ D .exp.u� //� for u D .u� / 2 FR ŠQ
� F� . The image of the exponential function is precisely the group F�

R; conn.
The counterimage of O�

F;C
is a discrete closed subgroup � of FR . We have a

natural isomorphism of Lie groups

exp W FR=�
Š

� F�
R; conn=O�

F;C D zT :

Therefore the tangent space of zT at 0 is isomorphic to FR . The canonical scalar
product on FR provides both groups zT and fPic with a translation invariant Rie-
mannian structure.

DEFINITION 6.3. For u 2 zT we put

kukePic D min
y2FR

exp.y/�u .mod O�
F;C

/

kyk

Explicitly, for u 2 F�
R D

Q
� F�

� we let log u denote the element .log.�.u//� 2Q
� F� � FR . Here we use the principal branch of the complex logarithm. We

have

kuk
2ePic

D min
"2O�

F;C

klog."u/k2
D min

"2O�
F;C

X
�

deg.�/
ˇ̌
log �."u/

ˇ̌2
:
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Every divisor class in zT can be represented by a divisor of the form D D .OF ; u/

for some u 2 F�
R; conn. Here u is unique up to multiplication by units " 2 O�

F;C
.

For any divisor D of the form .OF ; u/ with u 2 zT we define

kDkePic D kukePic:

The function kukePic
on eT satisfies the triangle inequality and this gives rise to a

distance function that induces the natural topology on fPicF . The distance is only
defined for divisor classes D and D0 that lie on the same connected component.
By Proposition 5.3, the class of the difference D � D0 is then equal to .OF ; u/

for some unique u 2 zT and we define the distance kD � D0kePic between D and
D0 as kukePic

.

The closed subgroups zT 0 and fPic0
F

inherit Riemannian structures from PicF .
We leave to the reader the task of proving an “oriented” version of Proposi-
tion 6.2.

The morphism d W IdF � eDiv0
F

given by d.I/ D .I; N.I/�1=n/ is a section of
the natural map eDiv0

F
� IdF . The embedded ideal lattice associated to d.I/

is the ideal lattice I � FR scaled by a factor N.I/�1=n. This lattice has covol-
ume

p
j�F j.

Next we prove an oriented version of Proposition 2.4. It says that the classes
of the divisors of the form d.I/ are dense in fPic0

F
and it implies Proposition 2.4.

The exactness of the first sequence of [Lenstra 1982, Section 9] is a special case.

PROPOSITION 6.4. Let F be a number field of degree n. Let Nd W IdF � fPic0
F

be the map that sends I to the class of the oriented Arakelov divisor d.I/ infPic0
F

. Then the sequence

0 � IdQ � IdF

Nd
� fPic0

F

is exact. The image of the map Nd is dense in fPic0
F

.

PROOF. Every ideal in IdQ is generated by some f 2 Q�
>0. Let f 2 Q�

>0.
Then Nd maps the F -ideal fOF to the class of the oriented Arakelov divisor
.fOF ; jN.f /j�1=n/. Since jN.f /jD jf jn, this divisor is equal to .fOF ; f �1/.
Therefore its image in fPic0

F
is trivial.

Conversely, suppose that a fractional ideal I has the property that the class of
.I; N.I/�1=n/ is trivial in fPic0

F
. This means that I DfOF for some f 2F� and

that f D N.I/1=n. In other words, �.f / D N.I/1=n for all infinite primes � .
Thus all conjugates of f are equal, so that f 2 Q�. This shows that the sequence
is exact.
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To show that the image of Nd is dense, we let 0 < " < 1 and pick D D .I; u/ 2

eDiv0
F

. Note that N.I/jN.u/j D 1. Consider the set

B D f.v� /� 2 FR W jv� � u� j < "ju� j for all �g:

Then B is a an open subset of F�
R and all v 2 B have the same signature as u.

Since F is dense in FR , there is an element f 2 B \ F .
The difference between d.f I/ and the divisor D is equal to

.fOF ; N.f I/�1=nu�1/:

Since N.u/N.I/ D 1, this is equivalent to the Arakelov divisor .O
F

; v/, where

v D N.f=u/�1=nu�1f 2 F�
R :

Therefore the distance between D and Nd.f / is at most kvkePic
. Sinceˇ̌̌�.f /

u�
� 1

ˇ̌̌
< ";

it follows from the Taylor series expansion of the principal branch of the loga-
rithm that ˇ̌̌

log
�.f /

u�

ˇ̌̌
<

"

1 � "

for all � and hence
1

n

ˇ̌̌
log

N.f /

N.u/

ˇ̌̌
<

"

1 � "
:

It follows that

kvkePic
�

p
n max

�
jlog.N.f=u/�1=nu�1

� �.f //j

�
p

n

�
1

n

ˇ̌̌
log

N.f /

N.u/

ˇ̌̌
C max

�

ˇ̌̌
log

�.f /

u�

ˇ̌̌�
<

2"
p

n

1 � "
:

This implies that the image of Nd is dense, as required. �

Finally we compute the volumes of the compact Riemannian manifolds Pic0
F

and fPic0
F

.

PROPOSITION 6.5. Let F be a number field of degree n and discriminant �F .
Then:

.i/ vol.Pic0
F / D

wF

p
n

2r1.2�
p

2/r2

� j�F j
1=2

� Res
sD1

�F .s/:

.ii/ vol. fPic0
F / D

p
n � j�F j

1=2
� Res

sD1
�F .s/:
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Here r1 is the number of real primes and r2 is the number of complex primes
of F . By wF we denote the number of roots of unity and by �F .s/ the Dedekind
zeta function of F .

PROOF. (i) The subspace .
L

� R/0 of divisors of degree 0 is the orthogonal
complement of 1 in the subalgebra

Q
� R of FR . Using the fact that k1k D

p
n,

one checks that the volume of Pic0
F is equal to

p
n 2�r2=2RF where RF is the

regulator of F . It follows from the exact sequence of Proposition 2.2 that the
compact group Pic0

F has volume
p

n 2�r2=2hF RF where hF D#ClF is the class
number of F . The formula [Marcus 1977] for the residue of the zeta function
at s D 1 now easily implies (i).

(ii) Since the natural volume of the group K� is 2 or 2�
p

2 depending on
whether � is real or complex, it follows from the commutative diagram following
Definition 5.1 that vol. fPic0

F
/ is equal to 2r1.2�

p
2/r2=wF times the volume

of Pic0
F . This implies (ii). �

7. Reduced Arakelov divisors

Let F be a number field of degree n. In this section we introduce reduced
Arakelov divisors associated to F . These form a finite subset of Div0

F . The
main result of this section is that the image of this set in the groups Pic0

F andfPic0
F

is in a certain precise sense regularly distributed.
The results of this section extend work by Lenstra [1982] and Buchmann and

Williams [1988] and make certain statements by Buchmann [1987b; 1990; 1991]
more precise. In particular, Theorems 7.4 and 7.6 and Corollary 7.9 extend
[Buchmann 1987b, Section 2; 1988, Proposition 2.7; 1990, Section 3.3]. Note
that in deducing the Corollaries below we did not make any particular effort to
obtain the best possible estimates. They can most certainly be improved upon.

Let I be a fractional ideal. A nonzero element f 2 I is called minimal if it is
nonzero and if the only element g 2 I for which j�.g/j < j�.f /j for all infinite
primes � , is g D 0. If f 2 I is minimal, then for every h 2 F�, the element hf

is minimal in the ideal hI . In particular, if h 2 O�
F

, the element hf is minimal
in the same ideal I . Therefore there are, in general, infinitely many minimal
elements in I .

If D D .I; u/ is an Arakelov divisor, the minimal elements f 2I are precisely
the ones for which the open boxes f.y� /� 2 FR W jy� j < ju��.f /j for all �g

contain only the point 0 of the lattice uI . Note, however, that the notion of
minimality depends only on I and is independent of the metric induced by
the element u. Shortest elements f 2 I are the elements for which kf kD D

minfkgkD W g 2 I � f0gg. This notion depends on the divisor D D .I; u/ and
hence on the lattice uI . It does not merely depend on I . Since kgkD D kugk for
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each g 2 I , the vector uf for any shortest f 2 I is a shortest nonzero vector of
the lattice uI associated to D. The number of shortest elements in I is always
finite. Shortest vectors are clearly minimal, but the converse is not true. It may
even happen that a minimal element f 2 I is not a shortest element of the lattice
D D .I; u/ for any choice of u. See Section 9 for an explicit example.

DEFINITION. An Arakelov divisor or oriented Arakelov divisor D in DivF is
called reduced if it is of the form D D d.I/ D .I; N.I/�1=n/ for some fractional
ideal I , and if 1 is a minimal element of I . The set of reduced Arakelov divisors
is denoted by RedF .

Since reduced Arakelov divisors have degree zero, the covolume of the lattices
associated to reduced Arakelov divisors is

p
j�F j. With respect to the natural

metric, 1 2 OF is a shortest and hence minimal element. Therefore the trivial
Arakelov divisor .OF ; 1/ is reduced. In general, if D D d.I/ is reduced, the
element 1 2 I is merely minimal and need not be a shortest element. However,
the next proposition shows that it is not too far away from being so.

PROPOSITION 7.1. Let F be a number field of degree n and let D D d.I/ D

.I; N.I/�1=n/ be a reduced Arakelov divisor. Then

k1kD �
p

nkxkD for all nonzero x 2 I .

In particular, the element 1 2 I is at most
p

n times as long as the shortest
element in I .

PROOF. We have k1kD D
p

nN.I/�1=n. Since 1 2 I is minimal, every nonzero
x 2 I satisfies j�.x/j � 1 for some embedding � W F � C. Therefore kxkD �

N.I/�1=nj�.x/j � N.I/�1=n. �

If D D .I; u/ is an Arakelov divisor and f 2I is minimal, then 12f �1I is again
minimal and the divisor d.f �1I/ D .f �1I; N.f I�1/1=n/ is reduced. In par-
ticular, if f 2 I is a shortest element, the divisor d.f �1I/ is reduced. However,
even though the element 1 2 f �1I is minimal, it need not be a shortest element.
Indeed, even if 1 is a shortest vector of the lattice associated to .f �1I; jf j�1u/,
it may not be a shortest vector of the lattice d.f �1I/ D .f �1I; N.f u�1/1=n/,
which has a different metric. In Section 9 we present an example of this phe-
nomenon.

It is not so easy to say in terms of the associated ideal lattice uI precisely what
it means for a divisor D D.I; u/ to be reduced. We make the following imprecise
observation. When 1 2 I is not merely minimal, but happens to be a shortest
element in I , then all roots of unity in F are also shortest elements in I . Usually,
these are the only shortest elements in I . In that case the arithmetic-geometric
mean inequality implies that  .D/ D  .uI/, viewed as a function on Pic0

F ,
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attains a local minimum at D D .I; N.I/�1=n/. So, the lattice corresponding to
a reduced divisor is the “skewest” OF -lattice in a small neighborhood in Pic0

F .
But this is just a rule of thumb; it is not always true.

DEFINITION. Let F be a number field. Let �F denote its discriminant and r2

its number of complex infinite primes. Then we put

@F D

�
2

�

�r2p
j�F j:

PROPOSITION 7.2. Let F be a number field of degree n.

(i) Let I be a fractional ideal. If d.I/ D .I; N.I/�1=n/ is a reduced Arakelov
divisor, the inverse I�1 of I is an OF -ideal of norm at most @F .

(ii) The set RedF of reduced Arakelov divisors is finite.
(iii) The natural map RedF � fPic0

F
is injective.

PROOF. Since 1 2 I , the ideal I�1 is contained in OF . By Proposition 4.4(ii)
there exists a nonzero f 2 I for which jN.I/�1=n�.f /j < @

1=n
F

for each � .
Therefore, if N.I�1/ > @F , we have j�.f /j < 1 for each � , contradicting the
minimality of 1 2 I . This proves (i). Part (ii) follows at once from (i) and the
fact that there are only finitely many OF -ideals of bounded norm.

To prove (iii), suppose that the reduced Arakelov divisors D Dd.I/ and D0 D

d.I 0/ have the same image in fPic0
F

. Then there exists f 2 F� so that I 0 D f I

and N.I 0/1=n DN.I/1=nf . As in the proof of Proposition 6.4, it follows that all
conjugates of f are equal and hence that f 2 Q�. Since both I and I 0 contain
1 as a minimal vector, this implies that f D ˙1. Since f D N.I 0I�1/1=n > 0,
we have f D 1 and hence D D D0 as required. �

Part (iii) of Proposition 7.2 does not hold when we replace fPic0
F

by Pic0
F . See

Example 9.3 for an example. Incidentally, Theorem 7.7 below strengthens the
statement considerably.

Before we begin our discussion of the distribution of the reduced divisors in
the Arakelov class groups, we characterize them ‘geometrically’. This charac-
terization plays no role in the sequel. For every fractional ideal I with 1 2 I

consider the following set of divisors of degree zero:

˙I D f.I; v/ 2 Div0
F W log v� � .1=n/ log @F for all �

	
:

The set ˙I is not empty if and only if N.I�1/ � @F . Indeed, under this con-
dition ˙I contains the divisor .I; N.I/�1=n/ and its elements have the form
.I; N.I/�1=n/ C .OF ; w/ with w running over the exponentials of the vectors
y 2

�L
� R

�0 satisfying

y� �
1

n
.log @F C log N.I// for every � .
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Since
P

� deg.�/y� D 0, the set ˙I is a bounded simplex.
The following proposition says what it means for a divisor

d.I/ D .I; N.I/�1=n/

to be reduced in terms of its simplex ˙I .

PROPOSITION 7.3. Let I be a fractional ideal with 1 2 I . The Arakelov divisor
D D d.I/ D .I; N.I/�1=n/ is reduced if and only if it has the property that for
every fractional ideal I 0 with 1 2 I 0 for which ˙I � ˙I 0 C.f / for some f 2 F�,
we necessarily have f I D I 0 and j�.f /j D 1 for all � .

PROOF. Suppose that D D .I; N.I/�1=n/ is reduced. Let I 0 be a fractional
ideal with 1 2 I 0 and f 2 F�. Suppose that for some f 2 F� the simplex ˙I is
contained in the translated simplex ˙I 0 C .f / D f.I 0; v/ C .f / W .I 0; v/ 2 ˙I 0g.
This implies I 0 D f I . In addition, we have log.v�=j�.f /j/ � .1=n/ log @F

whenever log v� � .1=n/ log @F . It follows that j�.f /j � 1 for all � . Since
1 2 I is minimal, so is f 2 I 0. Since 1 2 I 0, this implies j�.f /j D 1 for every � .

Conversely, suppose that D D .I; N.I/�1=n/ has the property described in
the proposition. We want to show that 1 2 I is minimal. Let therefore g 2 I

such that j�.g/j � 1 for all � . Consider the OF -ideal I 0 D g�1I . Then we have
1 2 I 0 and ˙I � ˙I 0 C.g�1/. Indeed, if .I; v/ 2 ˙I , then log v� � .1=n/ log @F

and hence log.v� j�.g/j/ � .1=n/ log @F . This means precisely that .I; v/ is
contained in ˙I 0 C .g�1/. We conclude that j�.g/j D 1 for every � . It follows
that 1 2 I is minimal, as required. �

When F is totally real, we necessarily have f D ˙1 and hence I D I 0 in
Proposition 7.3. The proposition says therefore that, in a certain sense, the
image in Pic0

F of ˙I is not contained in the image of any other simplex. When
F is not totally real, this is still true for most I .

In the rest of this section we study the distribution of the image of the set
RedF in the compact groups Pic0

F and fPic0
F

and estimate its size. First we look
at the image of the set RedF in Pic0

F . Theorem 7.4 says that RedF is rather
dense in Pic0

F .

THEOREM 7.4. Let F be a number field of degree n admitting r2 complex
infinite primes.

(i) For any Arakelov divisor D D .I; u/ of degree 0 there is a reduced divisor
D0 and an element f 2 F� so that

D � D0
D .f / C .OF ; v/

with

log jv� j �
1

n
log @F for each �:
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In particular,
kD � D0

kPic � log @F :

(ii) The natural map [
D

˙I � Pic0
F

is surjective. Here the union runs over the reduced Arakelov divisors D D

.I; N.I/�1=n/.

PROOF. By Minkowski’s Theorem (Proposition 4.4(ii)), there is a nonzero ele-
ment f 2 I satisfying

ju��.f /j � @
1=n
F

for every � .

Then there is also a shortest and hence a minimal such element f . The divisor
D0 D d.f �1I/ is then reduced. It lies on the same component of Pic0

F as D.
We have

D � D0
C .f / D .OF ; v/;

where v is the vector .v� /� 2
Q

� R�
C with v� D u� j�.f /jN.f �1I/1=n and

hence log jv� j D log ju��.f /j C .1=n/ log.N.f �1I// for every � . Because
N.f �1I/ � 1, this implies that log jv� j � log ju��.f /j which by assumption
is at most 1

n
log @F , as required.

Since
P

� deg.�/ log v� D 0, Lemma 7.5 below implies that

kD � D0
k

2
Pic D kvk

2
Pic � n.n � 1/

�
1

n
log @F

�2
:

This proves (i). Part (ii) is merely a reformulation of part (i). �

LEMMA 7.5. Let xi 2 R for i D 1; : : : ; n. Suppose that
Pn

iD1 xi D 0 and
that x 2 R has the property that xi � x for all i D 1; : : : ; n. Then

Pn
iD1 x2

i �

n.n � 1/x2.

We leave the proof of the lemma to the reader. The theorem says that Pic0
F can

be covered with simplices ˙I centered in the reduced divisors D. We use the
theorem to estimate the volume of the Arakelov class group Pic0

F in terms of
the number of reduced divisors.

COROLLARY 7.6. Let F be a number field of degree n with r1 real and r2

complex infinite primes. We have

vol.Pic0
F / �

2�r2=2n�1=2

.r1 C r2 � 1/!
.log @F /r1Cr2#RedF

� .log j�F j/n#RedF :
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PROOF. Let D D d.I/ D .I; N.I/�1=n/ be a reduced divisor. The set ˙I is
given byn

.I; N.I/�1=n/ C .OF ; v/ W log v� �
1

n

�
log @F C log N.I/

�o
:

By Proposition 7.2(i) we have N.I�1/ � @F . This implies that the set ˙I is a
nonempty simplex of volume

�
1
n

log.@F N.I//
�r1Cr2 times the volume of the

standard simplex˚
.y� / 2

L
� R W

P
� y� D 0 and y� � 1 for each �

	
;

which one checks to be equal to 2�r2=2nr1Cr2�1=2=.r1 C r2 �1/!. This leads to
the inequality

vol.Pic0
F / �

2�r2=2nr1Cr2�1=2

.r1 C r2 � 1/!

X
D

�
1

n
log.@F N.I//

�r1Cr2

:

Here the sum runs over the reduced divisors D D .I; N.I/�1=n/ of F .
Since N.I/ � 1, the first estimate follows. The second inequality follows by

a rather crude estimate from the first one. �

Next we prove a kind of converse to Theorem 7.4. The following theorem and its
corollary say that the image of the set RedF is rather sparse in the group fPic0

F
.

Recall that F�
C D fx 2 F� W �.x/ > 0 for all real �g.

THEOREM 7.7. Let F be a number field.

(i) Let D and D0 be two reduced divisors in eDiv0
F

. If there exists an element
f 2 F�

C for which

D � D0
C .f / D .OF ; v/;

with jlog v� j < log 4
3

for each � , then D D D0 in eDiv0
F

. Similarly, if kvkePic
<

log 4
3

, we have D D D0 in eDiv0
F

.

(ii) The natural map fromS
D02RedF

fD0 C .OF ; v/ W v 2 .F�
R; conn/0 and jlog v� j < 1

2
log 4

3
for each �g

to fPic0
F

is injective.

PROOF. Suppose that D D d.I/ and D0 D d.I 0/ are two reduced divisors with
the property that D �D0 C .f / D .OF ; v/ with f 2 F� for which �.f / > 0 for
all real � . By Proposition 5.3, the images of D and D0 in fPic0

F lie on the same
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1

�
f

�

� 0

1

�
f

�

� 0

1

�
f

f � 1

�

� 0

Figure 1. Top left: Since f is in the box of �, it is in the box of 1. Top
right: Since f is in the box of �, 1 is in the box of f . Bottom: Since f

is in the box of �, f � 1 is in the box of 1.

connected component of fPic0
F

. We put � D N.I=I 0/1=n. Then �.f /=� D v� .
Since jlog v� j < log 4

3
, we haveˇ̌̌

�.f /

�
�1

ˇ̌̌
D jv� �1j

D jexp.log v� /�1j � expjlog.v� /j�1 < exp.log 4
3
/�1 D

1
3
;

and hence

j�.f / � �j < 1
3
� for every � .

Since D and D0 are reduced, the element 1 is minimal in both I and I 0. There-
fore both 1 and f are minimal in f I 0 D I .
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If � is small, i.e., if 0 < � < 1
2

, we have j�.f /j � j�.f / � �j C j�j <
1
3
� C � < 4

3
�

1
2

< 1 for each � . In other words, j�.f /j < j�.1/j for all � ,
contradicting the fact that 1 2 I is minimal. If � is large, i.e., if � > 3

2
, we have

that j�.f /j � j�j� j�.f /��j � ��
1
3
� > 2

3
�

3
2

D 1 for each � . In other words,
j�.1/j < j�.f /j for all � , contradicting the fact that f 2 I is a minimal vector.

Therefore 1
2

� � �
3
2

. This implies that the element f �1 2 I satisfies

j�.f �1/j � j�.f /��j C j��1j < 1
3
� C j��1j �

1
3

�
3
2

C
1
2

D 1 D j�.1/j

for all � . Since 1 2 I is a minimal vector, this implies that f �1 D 0. Therefore
I D I 0 and hence D D D0. This proves the first statement.

If that kvkePic
< log 4

3
, there is a totally positive unit " with jlog.�."/v� /j <

log 4
3

for each � . Replacing f by "f if necessary, we may then assume that
jlog.v� /j < log 4

3
for each � and we are back in the earlier situation. This

proves (i).
Part (ii) follows, because (i) implies that the sets˚

D0
C .OF ; v/ W v 2 .F�

R; conn/0 and jlog.v� /j < 1
2

log 4
3

for each �
	

map injectively to fPic0
F

and that their images are mutually disjoint. This proves
the theorem. �

COROLLARY 7.8. There is a constant c > 0, so that for every number field F of
degree n, the number of reduced divisors contained in a ball of radius 1 in Pic0

F

is at most .cn/n=2.

PROOF. The reduced divisors whose images in Pic0
F are contained in a ball of

radius 1 lie in a subset S of fPic0
F

of volume 2r1.2�
p

2/r2=wF times the volume
of a unit ball in Pic0

F . By Theorem 7.7, the balls of radius 1
2

log
�

4
3

�
centered

at reduced divisors are mutually disjoint in fPic0
F

. Comparing the volume of the
union of the disjoint balls with the volume of S leads to the estimate. �

COROLLARY 7.9. Let F be a number field of degree n. Then

#RedF � vol. fPic0
F / � 6n:

PROOF. Theorem 7.7(ii) implies that the volume of fPic0
F

is at least #RedF times
the volume of the simplex fv 2 ..F�

R; conn/0 W jlog.v� /j < 1
2

log 4
3

for each �g,
which is equal to

2�r2=2nr1Cr2�1=2

.r1 C r2 � 1/!

�
1
2

log 4
3

�r1Cr2 :

Since this is at least 6�n, the result follows. �
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COROLLARY 7.10. Let F be a number field. Then

.log j�F j/�n
�

#RedF

vol.Pic0
F /

� 18n:

PROOF. The volume of fPic0
F

is 2r1.2�
p

2/r2=wF times the volume of Pic0
F .

Since 2r1.2�
p

2/r2=wF � .2�
p

2/n=2, the inequalities follow from Corollar-
ies 7.6 and 7.9 respectively. �

We recall the following estimates for the volume of Pic0
F . They say that in a

sense the volume of Pic0
F is approximately equal to

p
j�F j.

PROPOSITION 7.11. Let n � 1. For every number field F of degree n we have:

.i/ vol.Pic0
F / �

p
j�F j .log j�F j/n�1

I

(ii) (GRH) there exists a constant c > 0 only depending on the degree n so that

vol.Pic0
F / � c

p
j�F j= log log j�F j:

PROOF. Part (i) follows from Corollary 7.7, the fact that for every reduced
divisor d.I/ the ideal I�1 is integral and has norm at most .2=�/r2

p
j�F j and

the estimate for the number of OF -ideals of bounded norm provided in [Lenstra
1992, Theorem 6.5]. Under assumption of the generalized Riemann Hypothesis
(GRH) for the zeta function of the normal closure of F , Buchmann and Williams
[1989, (3.2)] obtained the estimate in (ii). �

8. Quadratic fields

Since the class group of Q is trivial and Z�
D f˙1g, the group Pic0

Q is trivial
and the degree map induces an isomorphism PicQ Š R. The narrow class group
of Q is also trivial and it follows from Proposition 5.1 that fPic0

Q
D 0 and thatfPic

Q
is isomorphic to R�.

This is the whole story as far as Q is concerned. We now briefly work out the
theory of the previous sections for quadratic number fields. For these fields the
language of binary quadratic forms is often used [Lenstra 1982; Shanks 1972].

EXAMPLE 8.1. For complex quadratic fields F , the torus T 0 of Section 2 is triv-
ial, so that the group Pic0

F is canonically isomorphic to the class group ClF of F .
The group fPic0

F
is an extension of ClF by a circle group of length 2�

p
2=wF .

Here wF D 2 except when F D Q.i/ or Q..1C
p

�3/=2/, in which case wF D 4

or 6 respectively.
We describe the reduced Arakelov divisors of F . Let D D .I; N.I/�1=2/ be

reduced. The fact that 1 is a minimal element of I simply means that it is a
shortest vector in the corresponding lattice in FR Š C. We write I D Z C f Z
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for some f in the upper half-plane fz 2 C W Im.z/ > 0g. Since OF � I � I , we
have f D .b C

p
�F /=.2a/ for certain a; b 2 Z, a > 0 and b2 � 4ac D �F for

some c 2 Z. The OF -ideal I�1 is generated by a and .b C
p

�F /=2 and has
norm a. For complex quadratic fields the simplices ˙I introduced in Section 6
are simply points.

Since f is unique up to addition of an integer, the SL2.Z/-equivalence class
of the binary quadratic form N.X C f Y /=N.I/ D aX 2 C bXY C cY 2 is
well defined. The form has discriminant �F . If we choose f to lie in the
usual fundamental domain for the action of SL2.Z/ on the upper half-plane, the
corresponding quadratic form is reduced in the sense of Gauss. There is a slight
ambiguity here. If jf j D 1, the reduced Arakelov divisors d.ZCf Z/ and d.ZC

Nf Z/ give rise to the quadratic forms aX 2CbXY CaY 2 and aX 2�bXY CaY 2

respectively. If f is not a root of unity, the Arakelov divisors are distinct, but
the two quadratic forms are SL2.Z/-equivalent and only one of them is reduced.
Apart from this ambiguity, the map that associates to a reduced Arakelov divisor
its associated reduced quadratic form, is a bijection.

EXAMPLE 8.2. Any real quadratic field F can be written as Q.
p

�F /, where
�F denotes its discriminant. The group Pic0

F is an extension of the class group
by a circle group and the group fPic0

F
is an extension of the narrow class group

by a circle group. We describe the reduced Arakelov divisors of F . Let �

and � 0 denote the two infinite primes of F . To be definite, we let � denote
the embedding that maps

p
�F to the positive square root of �F in R. Let

D D d.I/ D .I; N.I/�1=2/ be reduced. The fact that 1 2 I is minimal implies
that we can write I D Z C f Z for a unique f satisfying �.f / > 1 and �1 <

� 0.f / < 0. The fact that OF � I � I implies that f D .b C
p

�F /=.2a/ where
�F D b2 � 4ac for some c 2 Z. The conditions on �.f / and � 0.f / say that
a > 0 and j

p
�F � 2aj < b <

p
�F . The OF -ideal I�1 is generated by a

and .b C
p

�F /=2. Its norm is a. The simplex ˙I of Section 6 is an interval of
length

p
2 log.

p
�F =a/ centered in D.

The map that associates the quadratic form aX 2CbXY CcY 2 to the reduced
divisor D D .I; N.I/�1=2/, is a bijection between the set of reduced Arakelov
divisors of F and the set of reduced binary quadratic forms of discriminant �F

with a > 0.
The element 1 2 I is a shortest vector precisely when both kf k and kf �1k

are at least k1k D
p

2. This condition is not always satisfied. Drawing a picture,
one sees that it is if �.f / � � 0.f / � 2, or equivalently if a < 1

2

p
�F , but this

is not a necessary condition.
When D D d.I/ and I D Z C f Z as above, the vector f is a minimal

element of I . Therefore D0 D d.f �1I/ is a reduced Arakelov divisor. We
have D D D0 C .f / C .OF ; v/, where v 2 F�

R Š R�
� R� is the vector
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.j� 0.f /=�.f /j1=2; �j�.f /=� 0.f /j1=2/. The distance between the images of
D and D0 in Pic0

F is equal to kvkPic. Since f D .b C
p

�/=.2a/, we have
kvkPic D 2�3=2 log

ˇ̌
.bC

p
�F /=.b�

p
�F /

ˇ̌
. In this way we recover Lenstra’s

distance formula [Lenstra 1982, (11.1)]. The divisor D0 is the ‘successor’ of D

in its component, in the sense that there are no reduced divisors on the circle
between D and D0. In order to obtain D’s ‘predecessor’, take g the shortest
minimum such that j�.g/j < j� 0.g/j. Then the Arakelov divisor d.g�1I/ is the
predecessor of D.

Lenstra’s group F, or rather its topological completion F, is closely related
to the oriented Arakelov class group of the real quadratic field F , and several
of the results in [Lenstra 1982] are special cases of the ones in this paper. The
group F is not quite equal to fPic0

F
but it admits a degree 2 cover onto it. More

generally, for a number field F we let PicC

F
denote the group eDiv0

F
modulo its

subgroup ˙F�
C. When F is totally complex, i.e., when r1 D 0, this is simplyfPic0

F
. When r1 > 0 however, there is an exact sequence

0 � f˙1g
r1=f˙1g � PicC

F
� fPic0

F � 0:

Let .F�
R /0 D fu 2 FR W jN.u/j D 1g. The topological structure of PicC

F
can be

seen from the exact sequence

0 � .F�
R /0= ˙ O�

F;C � PicC

F
� ClF;C � 0;

realizing PicC

F
as an extension of the narrow class group ClF;C by a 2r1�1-

component Lie group. When F is real quadratic, the group PicC

F
is equal to

Lenstra’s group F.

9. Reduced Arakelov divisors; examples and counterexamples

Let F be a number field of degree n and discriminant �F . Theorems 7.4
and 7.7 say that the image of the set RedF of reduced Arakelov divisors is, in a
precise sense, rather regularly distributed in the groups Pic0

F and fPic0
F

. In this
section we discuss these results and we consider variations in the definition of
the set of reduced divisors.

Theorem 7.4 says that the image of RedF is rather ‘dense’ in Pic0
F . After a

first draft of this paper was written, a similar result was obtained for the larger
group fPic0

F
.

PROPOSITION 9.1 (BUHLER ET AL.1). Let L � Rn be a lattice and suppose
that all nonzero vectors of L have all their coordinates different from zero. Then
there exists a minimal vector .xi/ 2 L with xi > 0 for all i .

1Personal communication from Joe Buhler describing discussions between Buhler, Randy Dougherty,
Chris Freiling, Dan Mauldin, Nghi Nguyen, Peter Ostapenko, and Ken Zeger.
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PROOF. Let x 2 Rn be an extreme point of the convex hull of the set

S D f.xi/ 2 L W xi > 0 for all ig:

This means that no open line segment inside the convex hull of S contains x.
It follows that x is contained in L. If x were not a minimal vector of L, there
would be a non-zero vector y D .yi/ in L for which �xi < yi < xi for all i ,
so that both vectors x � y and x C y are in S . Since x is contained in the
line segment connecting x � y and x C y , this contradicts the fact that x is an
extreme point. It follows that x is minimal. �

This result easily implies that all components of the oriented Arakelov class
group fPic0

F
contain reduced Arakelov divisors. In addition, Joe Buhler and his

collaborators obtain a bound for the length of the shortest vector .xi/ 2 L with
xi >0 for all i . It leads to an analogue of Theorem 7.4 for fPic0

F
. The dependence

on n is a little worse. I do not know how to compute these vectors efficiently.
In the other direction, Theorem 7.7 implies that the image of RedF in fPic0

F
is

rather ‘sparse’. When we replace fPic0
F

by Pic0
F , the theorem is no longer true.

First of all the map RedF � PicF is in general not injective. In addition, it may
happen that distinct reduced divisors have images in Pic0

F that are much closer to
one another than the bound log

�
4
3

�
of Theorem 7.7. However, by Corollary 7.9,

the number of reduced divisors in a ball in Pic0
F of radius 1 is bounded by a

constant depending only on the degree of F .

LEMMA 9.2. Let F be a number field of degree n, let D D .I; u/ be an Arakelov
divisor and suppose f 2 I .

(i) d.f �1I/ D d.I/ in Div0
F if and only if f is a unit of OF .

(ii) The classes of d.f �1I/ and d.I/ in Pic0
F are equal if and only if f is the

product of a unit and an element g 2 F� all of whose absolute values j�.g/j

are equal.
(iii) kd.I/ � d.f �1I/kPic < 2

p
n max�

ˇ̌
log j�.f /j

ˇ̌
.

PROOF. Part (i) follows from the fact that I D f �1I if and only if f 2 O�
F

.
Since

d.f �1I/ � d.I/ D .fOF ; jN.f /j1=n/;

the class of this divisor is trivial in Pic0
F if and only if there is g 2 F� for which

f D "g for some unit " 2 O�
F

and j�.g/j�1 D jN.f /j�1=n for all � . Since
jN.g/j D jN.f /j, the second relation is equivalent to the fact that the j�.g/j

are all equal. This proves (ii).
To prove (iii) we note that

kd.I/ � d.f �1I/kPic �
p

n max�

ˇ̌
log j�.f /=N.f /1=n

j
ˇ̌
;
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which is at most
p

n times max�

ˇ̌
logj�.f /j

ˇ̌
C

1
n

P
� deg.�/ log j�.f /j. The

estimate follows easily.
This implies that f is a root of unity. �

Proposition 7.2(iii) says that the natural map from the set of reduced divisors
RedF to the oriented Arakelov class group fPic0

F
is injective. The following

example shows that, in general, the map RedF � Pic0
F is not.

EXAMPLE 9.3. Let a > b � 1 and put � D b2 � 4a2. Suppose that � is
squarefree and let F denote the complex quadratic number field Q.

p
�/. Let I

denote the fractional OF -ideal ZCf Z, where f D .b C
p

�/=.2a/. Then 1 2 I

is minimal. Let � W F � C denote the unique infinite prime. Since �.f / has
absolute value 1, the element f is also minimal. Since f is not a unit of OF ,
Lemma 9.2 implies that the reduced divisors d.I/ and d.f �1I/ are distinct,
but that their classes in Pic0

F are equal.

Theorem 7.7 says that the distance between the images of the reduced divisors
in fPic0

F
is bounded from below by an absolute constant. The following example

shows that this is false for the Arakelov class group Pic0
F .

EXAMPLE 9.4. Let n be a large even integer such that � D n2 C1 is squarefree
and consider the field F D Q.

p
�/. Let f D .1 C

p
�/=n 2 F . Then 1 is a

minimal element in I D Z C f Z. The conjugates �.f / are close to 1 and �1

respectively. Indeed, we have
ˇ̌
logj�.f /j

ˇ̌
� ��1=2 for each infinite prime � . It

follows from Lemma 9.2(iii) that the classes of the reduced divisors d.I/ and
d.f �1I/ are at distance at most 2

p
2 ��1=2 in Pic0

F .

The definition of the set RedF is rather delicate, as we’ll see now by considering
slight variations of it. We let Red0

F denote the set of divisors d.I/ for which
1 2 I is a shortest rather than a minimal vector and write Red00

F for the set of
divisors d.I/ for which we have N.I�1/ � @F D .2=�/r2

p
j�F j and for which

1 2 I is merely primitive, i.e., not divisible by an integer d � 2. Since shortest
implies minimal and minimal implies primitive, we have the inclusions

Red0
F � RedF � Red00

F

of finite sets. Theorem 7.4 says that the set RedF is rather ‘dense’ in the
Arakelov divisor class group. It is not clear whether the set Red0

F has the same
property. The proof of Theorem 7.4, showing that every D D .I; u/ of degree 0
is close to a reduced divisor D0 2RedF , does not work for Red0

F . Indeed, tracing
the steps of the proof of Theorem 7.4, we see that if f 2 I is a shortest vector,
it is also minimal and hence the element 1 2 f �1I is minimal. It follows that
the divisor d.f �1I/ is in RedF . However, 1 need not be a shortest vector in
f �1I so that d.f �1I/ may not be contained in Red0

F .
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The following example shows that this phenomenon actually occurs. It shows
that the set Red0

F is, at least in this sense, too small.

EXAMPLE 9.5. We present examples of reduced Arakelov divisors D D d.I/

with the property that the element 1 2 I is not a shortest vector of the lattice I

associated to .I; u/ for any u 2 F�
R . This implies that D is not equal to d.f �1J /

for any divisor D0 D .J; v/ and a shortest element f 2 J . Indeed, if that were
the case, 1 would be shortest vector in the lattice associated to the Arakelov
divisor .I; f �1v/.

Let F be a real quadratic number field of discriminant �. Then F D Q.
p

�/.
Suppose that d.I/ is a reduced Arakelov divisor. We write I D Z C f Z where
f > 0 and �1 < Nf < 0. Here we identify F with its image in R through one of
its embeddings and we write f ‘ Nf for the other embedding.

CLAIM. If N.f �
1
2
/>�

3
4

, then 1 is not a shortest element of I for any Arakelov
divisor .I; u/ of degree zero.

PROOF. Suppose that D D .I; u/ has degree 0. Then we have

u D

�
�p

N.I/
;

��1p
N.I/

�
for some � 2 R�

>0. Suppose that 12I is a shortest vector in the lattice associated
to D. This implies in particular that k1k

D
� kf k

D
and k1k

D
� kf � 1k

D
.

This means that ��2 C �2 � ��2f 2 C �2 Nf 2 and that ��2 C �2 � ��2.f �

1/2 C �2. Nf � 1/2. In other words we have that �4 � .f 2 � 1/=.1 � Nf 2/ and
�4 � .2f � f 2/=. Nf 2 � 2 Nf / respectively. Therefore, if the upper bound for �4

is smaller than the lower bound, there cannot exist such an � . This happens
precisely when .f � Nf /.2f Nf � f � Nf C 2/ > 0. Since f � Nf is positive, this
means that 2f Nf � f � Nf C 2 > 0 which is equivalent to N.f �

1
2
/ > �

3
4

. This
proves the claim. �

When f D .b C
p

�/=.2a/ as in Section 8, a sufficient condition for the in-
equality of the claim to hold is that a �

p
�=3. As an explicit example, take

the field Q.
p

21/ and the reduced divisor d.I/ associated to I D Z Cf Z, with
f D .3 C

p
21/=6.

In the other direction, it may happen that the image of Red00
F is very dense

in fPic0
F

, so that an analogue of Theorem 7.7 does not hold for this set. We
present two examples, due to H. W. Lenstra, showing that for some number fields
certain small open balls in fPic0

F
contain the images of very many D 2 Red00

F .
Both examples exploit the existence of certain ‘very small’ elements in F . In
the first example these are contained in a proper subfield, but this is not the case
in the second example.
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EXAMPLE 9.6. Let F be a number field of degree n containing Q.i/. Let
m; m0 2 Z satisfy 1

2
j�F j1=2n < m; m0 < j�F j1=2n � 1. Let I and I 0 denote

the inverses of the OF -ideals generated by m � i and m0 � i respectively. Then
1 is primitive in both I and I 0 and the norms of I�1 and I 0�1 do not exceed
@F D .2=�/r2 j�F j1=2. It follows that d.I/ and d.I 0/ are in Red00

F . If the images
of d.I/ and d.I 0/ in fPic0

F
are equal, Proposition 6.4 implies that I D mI 0 for

some m2 Q�. Since 1 is primitive in both I and I 0, it follows that mD˙1. This
implies that I D I 0 and hence that N.I/ D m2 C1 is equal to N.I 0/ D m02 C1,
so that m D m0. Therefore d.I/ and d.I 0/ are distinct in fPic0

F
, whenever m and

m0 are.
Assume in addition that jm � m0j < j�F j1=3n and that j�F j > 46n. Then

the distance between m and m0 is much smaller than m and m0 themselves.
The distance between the Arakelov divisors d.I/ and d.I 0/ in fPic0

F
is at most

p
n jlog..m � i/=.m0 � i//j. This does not exceed
p

njm � m0
j=.jm�i j � jm�m0

j/ �
p

nj�F j
1=3n=

�
1
2
j�F j

1=2n
� j�F j

1=3n
�

� 4
p

nj�F j
�1=6n:

In this way we obtain j�F j1=3n elements of Red00
F whose images in fPic0

F
are

distinct, but are as close as 4
p

nj�F j�1=6n to one another. By varying F over
degree n=2 extensions of Q.i/, we can make j�F j as large as we like. One may
replace Q.i/ by any number field and proceed similarly.

EXAMPLE 9.7. Let n � 4 and a 2 Z be such that the polynomial X n � a is
irreducible over Q. Let ˛ denote a zero and put F D Q.˛/. Suppose that the ring
of integers of F is equal to ZŒ˛�. There are infinitely many such integers a. Then
j�F j D nnjajn�1 and j�.˛/j D jaj1=n for every infinite prime � . Let m; m0 2 Z

satisfy 1
2

jaj1=2�1=2n C jaj1=n < m; m0 < jaj1=2�1=2n and jm � m0j � jaj1=4.
Consider two Arakelov divisors d.I/ and d.J / given by I�1 D .m�˛/OF and
J �1 D .m0 � ˛/OF . The norms of I�1 and J �1 are at most @F . Since both
I and J contain 1 as a primitive element, we have d.I/; d.J / 2 Red00

F . The
argument used in Example 9.6 shows that the images of d.I/ and d.J / in fPic0

F

are distinct when m 6D m0. The difference between d.I/ and d.J / is equal to
.IJ �1; N.IJ �1/1=n/, which is equivalent to .OF ; v/, where

v D
m��.˛/

m0��.˛/

ˇ̌̌̌
N

�
m0�˛

m�˛

�ˇ̌̌̌1=n

:

It follows that kd.I/ � d.J /kePic is at most

2
p

n max�

ˇ̌̌̌
log

�
m��.˛/

m0��.˛/

�ˇ̌̌̌
:
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Since .m � �.˛//=.m0 � �.˛// D 1 C .m � m0/=.m0 � �.˛// and since jm0 �

�.˛/j � m0 � j�.˛/j �
1
2
jaj1=2�1=2n, the absolute value of the logarithm of

.m��.˛//=.m0 ��.˛// is at most 4jm�m0j=jaj1=2�1=2n for each � . It follows
that kd.I/ � d.J /kePic

is at most 4
p

njaj�1=4C1=2n, which becomes arbitrarily
small as jaj grows.

10. Computations with reduced Arakelov divisors

In this section we discuss the set of reduced Arakelov divisors from a com-
putational point of view. Our presentation is informal; in particular, we do not
say much about the accuracy of the approximations required to perform the
computations with the real and complex numbers involved. (See [Thiel 1995]
for a more rigorous approach.) Since Arakelov divisors can be represented as
lattices in the Euclidean space FR , lattice reduction algorithms play an important
role. When the degree n of the number field is large, the celebrated Lenstra–
Lenstra–Lovász (LLL) reduction algorithm [Lenstra et al. 1982; Lenstra 2008]
is an important tool.

We suppose that the number field F is given as Q.˛/, where ˛ is the zero of
some irreducible monic polynomial '.X / 2 ZŒX �. We assume that we have al-
ready computed an LLL-reduced basis f!1; : : : ; !ng for the ring of integers OF

embedded in FR . In other words, we have an explicit lattice

OF D !1Z C : : : C !nZ � FR ;

with, say, an LLL-reduced basis f!1; : : : ; !ng. Such a basis can be computed as
explained in [Lenstra 1992, Section 4] or [Cohen 1993, Section 6.1] combined
with a basis reduction algorithm. We have also computed a multiplication table
i.e., coefficients �ijk 2 Z for which !i!j D

P
k �ijk!k . The discriminant

�F of F is the integer given by �F D det.Tr.!i!j //. By [Lenstra 1992, Sec-
tion 2.10] we have �ijk D j�F jO.n/. We view the degree n of F as fixed and
estimate the running times of the algorithms in terms of j�F j.

An Arakelov divisor or oriented Arakelov divisor D D .I; u/ is determined
by its associated ideal I and the vector u 2 F�

R Š
Q

� F�
� . It can be repre-

sented by an n � n matrix �ij having the property that the vectors
P

ij �ij !j

form an LLL-reduced basis for the lattice I � FR , together with a sufficiently
accurate approximation of the vector u D .u� /� . We have �ij D O.N.I// (see
[Thiel 1995]). In practice, one might want to take logarithms and work with the
vectors .log u� /� . There are efficient algorithms to multiply ideals, to compute
inverses and to test for equality. See [Cohen 1993, sections 4.6–4.8]. Using
these one can compute efficiently in the group DivF . The algorithms have been
implemented in LiDIA, MAGMA and PARI.
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Rather than the Arakelov divisor group, we are interested in computing in
the Arakelov class group Pic0

F . We do calculations in this group by means
of the set RedF of reduced divisors in Div0

F . By Theorems 7.4 and 7.7, the
image of the finite set RedF is in a certain sense regularly distributed in the
compact groups Pic0

F and fPic0
F

. Reduced divisors have one further property
that is important for our application: a reduced divisor D is of the form D D

d.I/ D .I; N.I/�1=n/ where I�1 is and integral ideal of norm at most @F D

.2=�/r2 j�F j1=2. Therefore D can be represented using only .log j�F j/O.n/

bits.
Before describing the algorithms, we formulate a lemma concerning the LLL

algorithm.

LEMMA 10.1. Let b1; : : : ; bn be an LLL-reduced basis of a real vector space V .
Then for every vector x D

Pn
iD1 mibi of V we have

jmi jkb�
i k �

�
3

p
2

�n�i
kxk for 1 � i � n.

Here b�
1
; : : : ; b�

n denotes the Gram–Schmidt orthogonalization of the basis b1;

: : : ; bn.

For the proof, see [Lenstra 2008].

COROLLARY 10.2. Let b1; : : : ; bn be an LLL-reduced basis of a real vector
space V . Then we have for any vector x D

Pn
iD1 mibi in V that

jmi j � 2.i�1/=2
�

3
p

2

�n�i kxk

kb1k
for 1 � i � n.

PROOF. The LLL conditions imply that kb�
1
k � 2.i�1/=2kb�

i k for every i D 1; 2;

: : : ; n. Since b1 D b�
1

, the result follows from Lemma 10.1. �

We have the following basic algorithms at our disposal. For number fields of
fixed degree n, each runs in time polynomial in log j�F j.

ALGORITHM 10.3 (REDUCTION ALGORITHM). Given an Arakelov divisor
D D .I; u/ 2 Div0

F ,

– check whether it is reduced or not;
– compute a reduced divisor D0 that is close to D in Pic0

F .

Description. We compute an LLL-reduced basis b1; : : : ; bn of the lattice uI �

FR . Then we compute a shortest vector x in uI as follows. Any shortest vector
x D

Pn
iD1 mibi in the lattice satisfies kxk=kb1k � 1. Therefore Corollary 10.2

implies that the coordinates mi 2 Z are bounded independent of the discriminant
of F . To compute a shortest vector in the lattice in time polynomial in log j�F j,
we may therefore just try all possible mi .
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To find a reduced divisor D0 that is close to D in Pic0
F , we compute a shortest

vector f in the lattice I associated to D. The divisor D0 D d.f �1I/ is then
reduced. Moreover, by Theorem 7.4 or rather its proof, the divisor D0 has the
property that kD � D0kPic � log @F , so that D0 is close to D.

In a similar way one can check that a given divisor D D .I; u/ is reduced.
First of all we must have that u D N.I/�1=n. Then we check that 1 is contained
in I . To see whether 1 is a minimal element of I , we need to make sure that the
box

B D f.y� / 2 FR W jy� j < 1 for all � .g:

contains no nonzero points of the lattice I � FR . The box B contains all vectors
of length at most 1. On the other hand, every vector in B has length at most

p
n.

If the first vector b1 of the LLL-reduced basis has length less than 1, it is
contained in B and the element 1 2 I is not minimal. In this case we are done.
Suppose therefore that we have kb1k � 1. It suffices now to compute all vectors
x in the lattice that have length less than

p
n and see whether they are in the box

B or not. By Corollary 10.2, the vectors x D
Pn

iD1 mibi of length at most
p

n

have the property that

jmi j � 2.i�1/=2

�
3

p
2

�n�i
kxk

kb1k
� 2.n�1/=2

�
3

2

�n�i p
n:

So, the number of vectors to be checked is bounded independently of the dis-
criminant of F . This completes the description of the algorithm. Both algo-
rithms run in time polynomial in log j�F j, log kuk and the logarithmic height
of N.I/.

ALGORITHM 10.4 (COMPOSITION ALGORITHM). Given two reduced Arak-
elov divisors D D d.I/ and D0 D d.J /, compute a reduced divisor that is close
to the sum D C D0 in Pic0

F .

Description. One first adds D and D0 as divisors. Since N.I�1/; N.J �1/�@F ,
the result .IJ; N.IJ /�1=n/ can be computed in time polynomial in log j�F j.
Then one reduces the result by means of Algorithm 10.3. The resulting reduced
divisor is then close to D C D0. Since N.IJ /�1 � @2

F
, the running time of this

second step is also polynomial in log j�F j.

ALGORITHM 10.5 (INVERSION ALGORITHM). Given a reduced Arakelov di-
visor D D d.I/, compute a reduced divisor that is close to �D in Pic0

F .

Description. One just computes the inverse ideal I�1 and reduces the divisor
d.I�1/ by means of Algorithm 10.3. Since N.I�1/ � @F , the running time of
this algorithm is also polynomial in log j�F j.

I owe the next algorithm to Hendrik Lenstra. See [Buchmann 1987a; 1987c;
Thiel 1995] for a different approach. We first prove a lemma.
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LEMMA 10.6. Let D D .I; u/ be an Arakelov divisor of degree 0 and let " > 0.
Then every reduced divisor at distance at most " from D is of the form d.I��1/

where � is a minimal element of I satisfying

k�kD <
p

n e2"
kykD for all nonzero y 2 I .

In particular, the inequality holds for a nonzero y 2 I that is shortest with
respect to the metric of D.

PROOF. Let D0 be a reduced divisor for which we have kD � D0kPic < ". Then
we have D0 D d.I��1/ for some minimal element � 2 I . By Proposition 6.2
there is a unit � so that for D00 D D C .�/ C .OF ; j�j/ we have

e�kD0�D00kPic �
kxkD0

kxkD00

� ekD0�D00kPic for every x 2 I��1.

We multiply � by �. Then � remains a minimal element of I and the divisor
D0 does not change. But now D00 is equal to D C .�/. Since kD � D0kPic D

kD0 � D00kPic, the inequality above and Proposition 7.1 imply that

k�kD D k1kDC.�/ � e"
k1kD0

� e"
p

nkxkD0 � e2"
p

nkxkDC.�/ D e2"
p

nkx�kD ;

for any nonzero x 2 I��1. Hence k�kD �
p

ne2"kykD for all non-zero y 2 I .
�

ALGORITHM 10.7 (SCAN ALGORITHM). Let D D .I; u/ be an Arakelov divisor
of degree 0. Compute all reduced Arakelov divisors in a ball in the Arakelov
class group Pic0

F of radius 1 and center D in time polynomial in log j�F j.

Description. Choose "; "0 2 R such that 0 < "0 < " < 1. Inside the open ball of
divisors in Pic0

F having distance at most 1 C " from D, we compute a web of
regularly distributed points. The points P in the web are at most " and at least "0

apart. By Theorem 7.4 every P is the class of a divisor of the form D0C.OF ; v/

for some reduced divisor D0 D d.J / and a totally positive v 2 F�
R satisfying

kvkPic < log @F . Therefore an LLL-reduced basis for the lattice associated to
each P can be computed in time polynomial in log j�F j.

By Lemma 10.6, the reduced divisors we are looking for are among the divi-
sors of the form d.J��1/ where D0 D d.J / is reduced, P D D0 C .OF ; v/ is
in the web and � 2 J is a minimal element for which k�kP is at most e2"

p
n

times the length of a nonzero element y 2 J that is shortest with respect to the
metric induced by P . So, it suffices to compute the elements � for all P in the
web. For a given P , Corollary 10.2 says that the number of vectors � 2 J of
length at most e2"

p
n times the length of the shortest nonzero vector, is bounded

independently of P and even of the discriminant of F . They can be computed
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in time polynomial in log j�F j. Minimality of the elements � can be tested by
means of Algorithm 10.3. Finally, since the divisors P are at least "0 apart, the
number of points in the web is proportional to the volume of the ball.

ALGORITHM 10.8 (JUMP ALGORITHM). Given a divisor

D D
P
p

npp C
P
�

x��

of degree 0, compute a reduced Arakelov divisor whose image in Pic0
F has

distance less than log @F from D.

Description. We assume that at most O.log j�F j/ coefficients of D are non-
zero, that the coefficients themselves have size j�F jO.1/ and that N.p/ has size
j�F jO.1/ for the prime ideals p with np 6D 0. Directly applying the reduction
algorithm to D D .I; v/ with I D

Q
p pnp and v D exp.x� /� , is not a very good

idea, since the LLL-algorithm and therefore the reduction algorithm run in time
polynomial in the coefficients jx� j, which is exponential in terms of log j�F j.
Therefore we proceed differently.

We have D D .I; 1/ C .OF ; v/. We compute reduced divisors close to .I; 1/

and to .OF ; v/. Adding these as in Algorithm 10.4, we may then compute a
reduced divisor close to D, in the sense that its distance to D is at most log @F .
For each prime ideal p with np 6D 0 we use Algorithm 10.3 to compute a reduced
divisor Dp close to .p; 1/. We compute a reduced divisor close to

P
p npDp by

composing and reducing as in Algorithm 10.4. The result is a reduced divisor
close to .I; 1/.

Next we explain how to compute efficiently a reduced divisor close to the
divisor .OF ; v/. Let t � 0 be the smallest integer for which the vector y D .y� /�

given by y� D 2�tx� satisfies njy� j < log @F for all � . Then t 2 O.log j�F j/.
Put w D exp.y� /� . We have w2t

D v. We inductively compute reduced
Arakelov divisors Di D d.Ii/ for which

kDi � .OF ; w2i

/kPic < log @F ; for i D 0; 1; : : : ; t ,

as follows. We put D0 D .OF ; 1/. We compute DiC1 from Di by doubling.
More precisely, by induction we have Di D .OF ; w2i

/ C .OF ; wi/ in Pic0
F for

some wi 2 F�
R with kwikPic < log @F . Let DiC1 be a reduced divisor whose

distance to 2Di � .OF ; w2
i / is at most log @F . Then we have

DiC1 � .OF ; w2iC1

/ D .OF ; wiC1/

in Pic0
F for some wiC1 2 FR satisfying kwiC1kPic < log @F . Using Algo-

rithm 10.3, we see that DiC1 is of the form d.IiC1/ where IiC1 D I2
i =.x/ for

some element x 2 I2
i that has the property that w�2

i x is a shortest vector in the



484 RENÉ SCHOOF

lattice w�2
i I2

i � FR . Since kwikPic < log @F and since Di D d.Ii/ is reduced,
the computation of DiC1 can be performed in time polynomial in log j�F j. This
completes the description of the algorithm.

Mutatis mutandis, we have the same algorithms for the group eDiv0
F

of ori-
ented divisors and for the oriented Arakelov class group fPic0

F
. The only differ-

ence is that the unit u of an oriented Arakelov divisor D D .I; u/ is a complex
rather than a positive real number. The image of the set of reduced Arakelov
divisors in this group is probably also reasonably dense in fPic0

F
and that’s all

we need for the Jump algorithm to work. See Proposition 9.1.

APPLICATION 10.9. We present an algorithm to compute the function h0.D/,
introduced in [Van der Geer and Schoof 2000]. For an Arakelov divisor D D

.I; u/, the number h0.D/ should be viewed as the arithmetic analogue of the
dimension of the space of global sections of a divisor D on an algebraic curve.
The number h0.D/ depends only on the class of D in Pic0

F and is defined as

h0.D/ D log
P

f 2I

exp.��kf k2
D

/:

See Section 4 for the close relation between the function h0.D/ and the Hermite
constant  .D/ of the ideal lattice associated to D. Since the short vectors f 2 I

contribute the most to this exponentially quickly converging sum, the function
h0.D/ can be evaluated most efficiently when we know a good, i.e., a reasonably
orthogonal basis for I . As we explained above, a direct application of a lattice
reduction algorithm to D may be very time consuming. Therefore we apply the
Jump algorithm. We jump to a reduced divisor D0 D d.J / close to D in Pic0

F .
Then D is equivalent to D0 C .OF ; v/ for some short v 2 F�

R and

h0.D/ D h0.D0
C .OF ; v// D log

X
f 2J

exp
�
��kf k

2
D0C.OF ;v/

�
D log

X
f 2J

exp
�

��N.J /�2=n
X

�

deg.�/j�.f /j2v2
�

�
:

Since D0 is reduced and the vector v D .v� /� is short, an LLL reduced basis
for the lattice associated to D0 C .OF ; v/ can be computed efficiently. This is
because J �1 is an integral ideal of norm at most j�F j1=2. This completes the
description of the algorithm to compute h0.D/.

11. A deterministic algorithm

In this section we describe a deterministic algorithm to compute the Arakelov
class group of a number field F of degree n and discriminant �F . It runs in
time proportional to

p
j�F j times a power of log j�F j.
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LEMMA 11.1. Let B > 0. Then any ideal J � OF with N.J / < B is of the
form J D xI�1, where the Arakelov divisor D D .I; N.I/�1=n/ is reduced, the
element u D N.x/1=n=jxj of F�

R satisfies kukPic < log @F , and the element x is
contained in I and satisfies kxkDC.OF ;u/ <

p
nB1=n.

PROOF. Suppose that J � OF satisfies N.J / < B. By Minkowski’s Theo-
rem there exists y 2 J �1, a shortest vector in J �1 � FR , satisfying j�.y/j <

N.J /�1=n@
1=n
F

for every � . We pick such an element y, put x D 1=y and
I DxJ �1. Then the Arakelov divisor D D .I; N.I/�1=n/ is reduced. Moreover,
since xI�1 D J � OF , we have x 2 I .

Writing u D N.x/1=n=jxj, all coordinates of the vector N.I/�1=nux have
absolute value N.I/�1=nN.x/1=n D N.J /1=n, so

kxkDC.OF ;u/ D
p

nN.J /1=n <
p

nB1=n:

Finally, we estimate kukPic. Since N.I/ � 1, we have

ju� j D
jN.x/j1=n

j�.x/j
D j�.y/jjN.x/j1=n

� N.J /�1=n@
1=n
F

jN.x/j1=n

D N.I/1=n@
1=n
F

� @
1=n
F

:

Lemma 7.5 then implies kukPic � .1�1=n/1=2 log @F � log @F , as required. �

It is not hard to see that the lemma’s converse also holds: any ideal J � OF for
which the three conditions are satisfied automatically has norm at most B.

ALGORITHM 11.2. Suppose we have computed all reduced divisors in a con-
nected component of the Arakelov class group Pic0

F . In that component, detect
all divisors that are of the form .J �1; N.J /1=n/ with J � OF and N.J / < @F .

Description. Let "; "0 2 R be such that 0 < "0 < ". For each reduced divi-
sor D D .I; N.I/�1=n/ in the given connected component, we make a web
in the ball of center D D .I; N.I/�1=n/ and radius log @F , whose members
P D DC.OF ; v/ D .I; N.I/�1=nv/ are at most " and at least "0 apart. For each
divisor P D D C .OF ; v/ in the web, we compute the vectors x for which we
have kxkP �

p
ne2"@

1=n
F

. This is done as follows. First we compute an LLL-
reduced basis b1; : : : ; bn for the lattice associated to the Arakelov divisor P .
Let b�

1
; : : : ; b�

n denote its Gram–Schmidt orthogonalization. By Lemma 10.1
we have for any vector x D

Pn
iD1 mibi in the lattice for which kxkP is at most

p
ne2"@

1=n
F

, that

jmi jkb�
i k �

�
3

p
2

�n�1p
ne2"@

1=n
F

:

We simply try all coefficients mi satisfying this inequality.
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For each such element x we then compute the corresponding ideals J D

I�1x. The ideals J that we compute in this way are contained in OF . Moreover,
every ideal J � OF of norm at most @F and for which the Arakelov divisor
.J �1; N.J /1=n/ lies on the given component, is obtained in this way. Indeed,
if we have N.J / < @F , Lemma 11.2 with B D @F implies that J D xI�1 for
some reduced divisor d.I/D .I; N.I/�1=n/ and some x 2I . Moreover, we have
kxkDC.OF ;u/ <

p
n@

1=n
F

for some u satisfying kukPic < log @F . This means that
the divisor D C .OF ; u/ is contained in the ball of center D D .I; N.I/�1=n/

and radius log @F . Therefore there is a member P D D C .OF ; v/ of the web
at distance at most " from D C .OF ; u/. Proposition 6.2 implies then that

kxkP � e2"
p

n@
1=n
F

;

as required.
This shows that we encounter all ideals J that we are after. But we’ll find

many more and we’ll find each ideal many times. Indeed, the vectors x DPn
iD1 mibi that we consider in the computation above satisfy

jmi jkb�
i k �

�
3

p
2

�n�1
p

ne2"@
1=n
F

for each i and hence

kxkP � n

�
3

p
2

�n�1

e2"@
1=n
F

:

It follows from the arithmetic geometric mean inequality that for the ideal J D

xI�1 we have

N.J / D N.xI�1/ � nn=2e2"n

�
3

p
2

�n.n�1/

@F :

In order to estimate the running time of this algorithm, we estimate the number
of ideals J that we compute, and in addition we estimate for how many divisors
P in the web and how many vectors x, we obtain each ideal J . By [Lenstra
1992, Theorem 6.5], the number of ideals J is bounded by

p
j�F j times a power

of log j�F j times a constant that depends only on the degree n. Next we bound
the number of times we find each ideal J .

First, suppose that for some divisor P D .I; N.I/�1=n/C.OF ; v/ in the web,
there are two elements x; x0 2 I�1 satisfying

max.kxkP ; kx0
kP / �

p
ne2"@

1=n
F

;

for which the ideals xI�1 and x0I�1 are the same. Then we have

j�.x/N.I/�1=nv� j �
p

ne2"@
1=n
F
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for each � . Since we have jN.v/j D 1, the product over � satisfiesY
�

j�.x/N.I/�1=nv� j
deg.�/

D N.xI�1/ � 1:

Therefore

�.n � 1/ log.
p

ne2"@
1=n
F

/ � log j�.x/N.I/�1=nv� j � log.
p

ne2"@
1=n
F

/

for every � . We have the same inequalities for x0. It follows that the unit
" D x0=x satisfies

� log @F � n log.
p

ne2"/ � log j�."/j D log
ˇ̌̌̌
�.x0/

�.x/

ˇ̌̌̌
� log @F C n log.

p
ne2"/;

for every � and hence we have

klog j"jk �
p

n log @F C n3=2 log.
p

ne2"/:

By [Dobrowolski 1979], there exists an absolute constant c > 0 such that any
unit " 2 O�

F
that is not a root of unity satisfies

ˇ̌
log j"j

ˇ̌
> cn�3=2. Since the

number of roots of unity in F is O.n log n/, the number of units satisfying the
bounds above is bounded by some power of log @F . It follows that the number
of distinct elements x 2 I for which the ideals xI�1 are equal to the same ideal
J � OF is also bounded by some power of log @F .

Next, suppose that an ideal J � OF of norm at most @F is of the form xI�1

where D D .I; N.I/�1=n/ is a reduced divisor and x 2 I satisfies kxkP �

e2"
p

n@
1=n
F

for some divisor P D D C .OF ; v/ in the web constructed. In
particular, v satisfies kvkPic < log @F . This implies thatˇ̌̌̌

�.x/

N.x/1=n
v�1

�

ˇ̌̌̌
D

ˇ̌
�.x/N.I/1=nv�1

�

ˇ̌ 1

N.J /1=n
<

p
ne2"@

1=n
F

N.J /1=n
�

p
ne2"@

1=n
F

:

It follows that the Arakelov divisors P and .J �1; N.J /1=n/ are rather close to
one another in Pic0

F . Indeed, we have

kP � .J �1; N.J /1=n/kPic D k.OF ; jxjN.x/�1=nv�1
� /kPic:

Since we have log j�.x/N.x/�1=nv�1
� j < log.

p
ne2"@

1=n
F

/ for every infinite
prime � , it follows from Lemma 7.5 that we have

kP � .J; N.J /1=n/kPic < log.n2=ne2"=n@F /:

By Corollary 7.9, the number of reduced divisors in a ball is bounded by some
constant, depending only on the degree of the number field, times its volume.
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Therefore the number of web members P for which we encounter a given ideal
J � OF , is bounded by a polynomial expression in log @F .

This completes the description and our analysis of the algorithm.

A deterministic algorithm. Finally we explain the deterministic algorithm to
compute the Arakelov class group of a number field F . This algorithm seems
to have been known to the experts. It was explained to me by Hendrik Lenstra.
We start at the neutral element .OF ; 1/ of the Arakelov class group. We use
Algorithm 10.3 to determine all reduced Arakelov divisors in the ball of radius
2 log @F and center .OF ; 1/. Then we do the same with the reduced divisors D

we found: determine all reduced Arakelov divisors in the ball of radius 2 log @F

and center D. Proceeding in a systematic way that is somewhat complicated to
write down, we find in this way all reduced divisors in the connected component
of identity. Keeping track of their positions in terms of the coordinates in

Q
� F�

one computes in this way the absolute values of a set of generators of the unit
group O�

F
. The running time is proportional to the volume of the connected

component of identity and is polynomial in log j�F j.
Next we use Algorithm 11.2 and make a list L of all integral ideals J � OF

of norm at most @F , for which .J �1; N.J /1=n/ is on the connected component
of identity. The amount of work is again proportional to the volume of the
connected component of identity and polynomial in log j�F j. By Minkowski’s
Theorem, the prime ideals of norm at most @F generate the ideal class group
of F . Therefore we check whether all prime ideals of norm at most @F are in the
list. This involves computing gcd’s of the polynomial that defines the number
field F with the polynomials X pi

� X for i D 1; 2; : : : ; n for prime numbers p

that are smaller than the Minkowski bound @F . One reads off the degrees of the
prime ideals over p and hence the number of primes of norm pi for i D 1; 2; : : :.
The amount of work is linear in the length of the list and polynomial time in log p

for each prime p. If all prime ideals of norm at most @F are in the list L, then
we are done. The class number is 1 and the Arakelov class group is connected.

However, if we do encounter a prime number p, for which a prime ideal
p of norm pi < @F is missing, then we compute it. This involves factoring
a polynomial of degree n modulo p. When we do this with a simple minded
trial division algorithm, the amount of work is at most pi < @F times a power
of log j�F j. By successive multiplications and reductions, we compute for j D

1; 2; : : : reduced divisor Dj in the connected components of the Arakelov class
groups that contain divisors of the form .pj ; u/ for some u. Each time we check
whether Dj is already in the list L. If it is, we stop computing divisors Dj .

Then we repeat the algorithm, but this time we work with the connected
components of the divisors Dj rather than .OF ; 1/: we use Algorithm 10.3
to determine all reduced Arakelov divisors in the balls of radius 2 log @F and
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center Dj . Then we do the same with the reduced divisors we found, and so
on. Once we have computed all reduced divisors on the connected components
of Dj , we use Algorithm 11.2 to compute all integral ideals J � OF of norm
at most @F , for which .J �1; N.J /1=n/ is on the connected components of the
divisors Dj and we add these to the list L.

When we are done with this, the list L contains all integral ideals J � OF

of norm at most @F , whose classes are in the group generated by the ideal class
of p. We check again whether all prime ideals of norm at most @F are in the
list. If this turns out to be the case, we are done. The ideal class group is cyclic,
generated by the class of p. If, on the other hand, we do encounter a second
prime number q, for which a prime ideal q of norm qi < @F is missing, then
we compute it. We compute reduced divisors that are in the components of the
powers of q : : : etc.

For each new prime that we find is not in the list L, we factor a polynomial
and the amount of work to do this is at most @F . However, since the ideal class
group has order at most

p
j�F j times power of log j�F j, we need to do this at

most log j�F j times. As a result this algorithm takes time at most
p

j�F j times
power of log j�F j.

12. Buchmann’s algorithm

In this section we briefly sketch Buchmann’s algorithm [1990; 1991] for com-
puting the Arakelov divisor class group and, as a corollary, the class group and
regulator of a number field F . This algorithm combines the infrastructure idea
with an algorithm for complex quadratic number fields presented by J. Hafner
and K. McCurley [1989]. When we fix the degree of F , the algorithm is un-
der reasonable assumptions subexponential in the discriminant of the number
field F . A practical approach is described in [Cohen 1993, Section 6.5]. The
algorithm has been implemented in LiDIA, MAGMA and PARI. See also [Thiel
1995].

Let F be a number field of degree n. The structure of Buchmann’s algorithm
is very simple. Our first description involves the Arakelov class group Pic0

F

rather than the oriented group fPic0
F

.

Step 1: Estimate the volume of Pic0
F . By Proposition 6.5 the volume of the

compact Lie group Pic0
F is given by

vol.Pic0
F / D

wF

p
n

2r1.2�
p

2/r2

� j�F j
1=2

� Res
sD1

�F .s/:

The computation of r1, r2 and wF D #�F is easy. The discriminant is computed
as a byproduct of the calculation of the ring of integers OF . Approximating the
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residue of the zeta function

�F .s/ D

Y
p

�
1 �

1

N.p/s

��1

at s D 1 is done by dividing �F .s/ by the zeta function of Q and by directly
evaluating a truncated Euler productY

p�X

1 � 1=pQ
pjp.1 � 1=N.p//

:

This involves factoring the ideals pOF for all prime numbers p < X ; for effi-
cient methods to do this, see [Cohen 1993]. The Euler product converges rather
slowly. Under assumption of the Generalized Riemann Hypothesis for the zeta
function of F , using the primes p <X , the relative error is O.X �1=2 log j�FX j/.
Here the O-symbol only depends on the degree of the number field F . See
[Buchmann and Williams 1989; Schoof 1982]. Therefore, there is a constant
c only depending on the degree of F , so that if we truncate the Euler product
at X D c log2

j�F j, the relative error in the approximation of vol.Pic0
F / is at

most 1=2.

Step 2: Compute a factor basis. We compute a factor base B, that is, a list
of prime ideals p of OF of norm less than Y for some Y > 0. Computing a
factor basis involves factoring the ideals pOF for various prime numbers p. It
is convenient to do this alongside the computation of the Euler factors in Step 1.
We add the infinite primes to our factor basis. By normalizing, we obtain in this
way a factor basis of Arakelov divisors of degree 0. The factor basis should be
so large that the natural homomorphism� L

p2B

Z �
L
�

R

�0
� Pic0

F

is surjective. By Proposition 2.2 this means that the classes of the primes in B

must generate the ideal class group. Under assumption of the Generalized Rie-
mann Hypothesis for the L-functions L.s; �/ associated to characters � of the
ideal class group ClF of F , this is the case for Y > c0 log2

j�F j for some
constant c0 > 0 that only depends on the degree of F . Taking B this big, we
have

Pic0
F D

� L
p2B

Z �
L
�

R

�0.
H;

where H is the discrete subgroup of principal divisors of B-units, i.e., the group
of divisors .f / where f 2 F� are elements whose prime factorizations involve
only prime ideals p 2 B.
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Step 3: Compute many elements in H . An Arakelov divisor D D .I; u/

is called B-smooth if I is a product of powers of primes in B. We need to
find elements f 2 F� for which .f / is B-smooth and hence .f / 2 H . This
is achieved by repeatedly doing the following. For at most O.log j�F j/ prime
ideals p 2 B pick random exponents mp 2 Z of absolute value not larger than
j�F j. In addition, pick random x� 2 R of absolute value not larger than j�F j.
Replacing x� by x�N.D/�1=n, scale the Arakelov divisor

D D
P
p

mpp C
P
�

x��

so that it acquires degree zero. Then the class of D is a random element of Pic0
F .

We use the Jump Algorithm described in Section 10 and “jump to D”. The result
is a reduced divisor D0 D .I; N.I/�1=n/ whose image in Pic0

F is not too far from
the image of D. This means that

D D .f / C D0
C .OF ; v/

for some f 2 F� and v D .v� / 2
�Q

� R�
C

�0 for which kvkPic is small, say at
most log @F . There is no need to compute f , but when one applies the Jump
Algorithm one should keep track of the infinite components and compute v or
its logarithm.

Since the divisor D is random, it seems reasonable to think of the reduced
divisor D0 D .I; N.I/�1=n/ as being “random” as well. Next we attempt to
factor the integral ideal I�1 into a product of prime ideals p 2 B. Since D0

is random and since the norm of I�1 is at most @F D .2=�/r2 j�F j1=2 and
hence relatively small, we have a fair chance to succeed. If we do, then we have
D0 D

P
p2B npp C

P
� y�� and hence .f / 2 H . This factorization leads to a

relation of the form

.f / D D � D0 � .OF ; v/ D
P
p2B

.mp � np/p C
P
�

.x� � y� C v� /�:

In this way we have computed an explicit element in H .
Since we want to find many such relations, we need to be successful relatively

often. In other words, the ‘random’ reduced divisors D0 that we obtain, should
be B-smooth relatively often. This is the weakest point of our analysis of the
algorithm. In Section 9 the set Red00

F of Arakelov divisors d.I/ for which 1 2 I

is primitive and N.I�1/ �
p

j�F j was introduced. Under the assumption of
the Generalized Riemann Hypothesis, Buchmann and Hollinger [1996] showed
that when Y � exp.

p
log j�F j/, the proportion of B-smooth ideals J with

d.J �1/ 2 Red00
F is at least exp.�

p
log j�F j log log j�F j/. Here the Riemann

Hypothesis for the zeta-function of the normal closure of F is used to guarantee
the existence of sufficiently many prime ideals of norm at most

p
j�F j and
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degree 1. It is likely, but at present not known whether the proportion of B-
smooth ideals I for which d.I/ is contained in the subset RedF rather than
Red0

F , is also at least exp.�
p

log j�F j log log j�F j/. Even if this were the
case, there is the problem that the divisor D0 that comes out of the reduction
algorithm is not a ‘random’ reduced divisor. Indeed, Example 9.5 provides
examples of reduced divisors that are not the reduction of any Arakelov divisor.
These reduced divisors will never show up in our calculations, since everything
we compute is a result of the reduction algorithm. It would be of interest to
know how many such reduced divisors there may be.

For the next step we need to have computed approximately as many elements
in H as the size of the factor base B. This implies that we expect to have
to repeat the computation explained above about exp

�p
log j�F j log log j�F j

�
times. When the discriminant j�F j is large, this is more work than we need to
do in Steps 1, 2 and 4. Step 3 is in practice the dominating part of the algorithm.
It follows that the algorithm is subexponential and runs in time

O
�
exp.

p
log j�F j log log j�F j/

�
:

Step 4: Verify that the elements computed in Step 3 actually generate H .
Let H 0 denote the subgroup of H generated by the divisors

.f / D
P
p2B

kpp C
P
�

y��

computed in Step 3. The quotient group
�L

p2B Z �
L

� R
�0

=H 0 admits a nat-
ural map onto Pic0

F . Its volume is equal to the determinant of a square matrix of
size #B whose rows are the coefficients of a set of #B independent principal divi-
sors that generate H 0. If the quotient of the volume by the estimate of vol.Pic0

F /

computed in Step 1 is less than 1=2, then H 0 D H and
�L

p2B Z �
L

� R
�
=H 0

is actually isomorphic to Pic0
F and we are done.

In practice this means that once we have computed somewhat more divisors
.f / in H than #B, we “reduce” the coefficient matrix. From the “reduced” ma-
trix we can read off the structure of the ideal class group as well approximations
to the logarithms of the absolute values of a set of units " that generate the unit
group O�

F
. This enables us to compute the regulator RF .

This completes our description of Buchmann’s algorithm. It seems difficult to
compute approximations to the numbers �."/ themselves from approximations
to their absolute values j�."/j. If one wants to obtain such approximations,
one should apply the algorithm above to the oriented Arakelov class group. The
computations are the same, but rather than real, one carries complex coordinates
x� along. More precisely,fPic0

F D

� L
p2B

Z �
L
�

F�
�

�0. eH
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for the discrete subgroup eH that consists of elements f 2 F� whose prime
factorizations involve only prime ideals p 2 B. In this way one obtains approxi-
mations to �."i/ for a basis "i of the unit group O�

F
. In principle, once one has

such approximations one may solve the linear system �."i/ D
P

j �ij �.!j / and
compute �ij 2 Z so that "i D

P
j �ij !j for 1 � i � r1 C r2 � 1. However, it is

well known that the size of the coefficients �ij may grow doubly exponentially
quickly in logj�F j and it is therefore not reasonable to ask for an efficient algo-
rithm that computes a set of generators of the unit group as linear combination
of the basis !k of the additive group OF .

What can be done efficiently, is to compute a compact representation of a set
of generators of the unit group O�

F
. Briefly, this works as follows. Using the

notation used in the description of the Jump Algorithm of Section 10, one finds
for each fundamental unit "j integers mij suach that

Q
i v

mij

i is close to "j . The
Arakelov divisors .OF ; vi/ are equivalent to reduced divisors d.f �1

i /. While
jumping towards the fundamental unit, one keeps track of the principal ideals
that are encountered on the way. For instance, if in the process one com-
putes the sum of the divisors .OF ; vi/ and .OF ; vj / and reduces the result by
means of a shortest vector f , then the result is equivalent to the reduced divi-
sor d..ffifj /�1/. The size of the elements fi , fj and f : : : etc. is bounded
by .logj�F j/O.1/. With a good strategy one can jump reasonably close to the
unit. The number of jumps we need to reach this point is also bounded by
.log j�F j/O.1/. Using the approximations to the fundamental units and to the
vectors fi , fj , f : : : etc, we can approximate a small element g 2 F�, so that
the difference between the divisor we jumped to and the fundamental unit is
equivalent to a divisor of the form .OF ; g/. Since g is small, we can compute
it in time bounded by log j�F jO.1/ from its the approximations of the various
�.g/. From this we easily obtain the fundamental unit "j .
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