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Four primality testing algorithms
RENÉ SCHOOF

ABSTRACT. In this expository paper we describe four primality tests. The
first test is very efficient, but is only capable of proving that a given number
is either composite or ‘very probably’ prime. The second test is a determinis-
tic polynomial time algorithm to prove that a given numer is either prime or
composite. The third and fourth primality tests are at present most widely used
in practice. Both tests are capable of proving that a given number is prime or
composite, but neither algorithm is deterministic. The third algorithm exploits
the arithmetic of cyclotomic fields. Its running time is almost, but not quite
polynomial time. The fourth algorithm exploits elliptic curves. Its running
time is difficult to estimate, but it behaves well in practice.
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1. Introduction

In this expository paper we describe four primality tests.
In Section 2 we discuss the Miller–Rabin test. This is one of the most ef-

ficient probabilistic primality tests. Strictly speaking, the Miller–Rabin test is
not a primality test but rather a ‘compositeness test’, since it does not prove the
primality of a number. Instead, if n is not prime, the algorithm proves this in all
likelihood very quickly. On the other hand, if n happens to be prime, the algo-
rithm merely provides strong evidence for its primality. Under the assumption of
the Generalized Riemann Hypothesis one can turn the Miller–Rabin algorithm
into a deterministic polynomial time primality test. This idea, due to G. Miller,
is also explained.
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In Section 3 we describe the deterministic polynomial time primality test that
was proposed by M. Agrawal, N. Kayal and N. Saxena in 2002 [Agrawal et al.
2004]. At the moment of this writing, this new test, or rather a more efficient
probabilistic version of it, had not yet been widely implemented. In practice,
therefore, for proving the primality of a given integer, one still relies on older
tests that are either not provably polynomial time or not deterministic. In the
remaining two sections we present the two most widely used such tests.

In Section 4 we discuss the cyclotomic primality test. This test is determin-
istic and is actually capable of proving that a given integer n is either prime or
composite. It does not run in polynomial time, but very nearly so. We describe
a practical non-deterministic version of the algorithm. Finally in Section 5, we
describe the elliptic curve primality test. This algorithm also provides a proof
of the primality or compositeness of a given integer n. Its running time is hard
to analyze, but in practice the algorithm seems to run in polynomial time. It is
not deterministic. The two ‘practical’ tests described in Sections 4 and 5 have
been implemented and fine tuned. Using either of them it is now possible to
routinely prove the primality of numbers that have several thousands of decimal
digits [Mihăilescu 1998; Morain 1998].

2. A probabilistic test

In this section we present a practical and efficient probabilistic primality test.
Given a composite integer n > 1, this algorithm proves with high probability
very quickly that n is not prime. On the other hand, if n passes the test, it is
merely likely to be prime. The algorithm consists of repeating one simple step,
a Miller–Rabin test, several times with different random initializations. The
probability that a composite number is not recognized as such by the algorithm,
can be made arbitrarily small by repeating the main step a number of times.
The algorithm was first proposed by M. Artjuhov [1966/1967]. Later M. Rabin
proposed the probabilistic version [1980]. Under assumption of the Generalized
Riemann Hypothesis (GRH) one can actually prove that n is prime by applying
the test sufficiently often. This leads to G. Miller’s conditional algorithm [1976].
Under assumption of GRH it runs in polynomial time. Our presentation follows
the presentation of the algorithms in the excellent book [Crandall and Pomerance
2001].

Here is the key ingredient:

THEOREM 2.1. Let n > 9 be an odd positive composite integer. We write
n � 1 D 2km for some exponent k � 1 and some odd integer m. Let

B D fx 2 .Z=nZ/�
W xm D 1 or xm2i

D �1 for some 0 � i < kg:
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Then we have
#B

'.n/
�

1

4
:

Here '.n/ D #.Z=nZ/� denotes Euler’s '-function.

PROOF. Let 2l denote the largest power of 2 that has the property that it divides
p � 1 for every prime p divisor of n. Then the set B is contained in

B0
D fx 2 .Z=nZ/�

W xm2l�1

D ˙1g:

Indeed, clearly any x 2 .Z=nZ/� satisfying xm D 1 is contained in B0. On the
other hand, if xm2i

D �1 for some 0 � i < k, we have xm2i

� �1 .mod p/

for every prime p dividing n. It follows that for every p, the exact power of 2
dividing the order of x modulo p, is equal to 2iC1. In particular, 2iC1 divides
p � 1 for every prime divisor p of n. Therefore we have l � i C 1. So we
can write that xm2l�1

D .�1/2l�i�1

, which is �1 or C1 depending on whether
l D i C 1 or l > i C 1. It follows that B � B0.

By the Chinese Remainder Theorem, the number of elements x 2 .Z=nZ/�

for which we have xm2l�1

D 1, is equal to the product over p of the number
of solutions to the equation X m2l�1

D 1 modulo pap . Here p runs over the
prime divisors of n and pap is the exact power of p dividing n. Since each of
the groups .Z=pap Z/� is cyclic, the number of solutions modulo pap is given
by

gcd..p � 1/pap�1; m2l�1/ D gcd.p � 1; m/2l�1:

The last equality follows from the fact that p does not divide m. Therefore we
have

#fx 2 .Z=nZ/�
W xm2l�1

D 1g D

Y
pjn

gcd.p � 1; m/2l�1:

Similarly, the number of solutions of the equation X m2l

D 1 modulo pap is
equal to gcd.p�1; m/2l , which is twice the number of solutions of X m2l�1

D 1

modulo pap . It follows that the number of solutions of the equation X m2l�1

D

�1 modulo pap is also equal to gcd.p � 1; m/2l�1. Therefore we have

#B0
D 2

Y
pjn

gcd.p � 1; m/2l�1;

and hence
#B0

'.n/
D 2

Y
pjn

gcd.p � 1; m/2l�1

.p � 1/pap�1
:
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Suppose now that the propertion #B='.n/ exceeds 1
4

. We want to derive a
contradiction. Since we have B � B0, the inequality above implies that

1

4
< 2

Y
pjn

gcd.p � 1; m/2l�1

.p � 1/pap�1
: .�/

We draw a number of conclusions from this inequality. First we note that
gcd.p � 1; m/2l�1 divides .p � 1/=2 so that the right hand side of .�/ is at
most 21�t where t is the number of different primes dividing n. It follows that
t � 2.

Suppose that t D 2, so that n has precisely two distinct prime divisors. If
one of them, say p, has the property that p2 divides n so that ap � 2, then the
right hand side of .�/ is at most 21�2=3 D 1=6. Contradiction. It follows that
all exponents ap are equal to 1, so that n D pq for two distinct primes p and q.
The inequality (�) now becomes

p � 1

gcd.p � 1; m/2l
�

q � 1

gcd.q � 1; m/2l
< 2:

Since the factors on the left hand side of this inequality are positive integers,
they are both equal to 1. This implies that p �1 D gcd.p �1; m/2l and q �1 D

gcd.q � 1; m/2l . It follows that the exact power of 2 dividing p � 1 as well as
the exact power of 2 dividing q�1 are equal to 2l and that the odd parts of p�1

and q � 1 divide m. Considering the relation pq D 1 C 2km modulo the odd
part of p � 1, we see that the odd part of p � 1 divides the odd part of q � 1.
By symmetry, the odd parts of p �1 and q �1 are therefore equal. This implies
p � 1 D q � 1 and contradicts the fact that p 6D q. Therefore we have t D 1 and
hence n D pa for some odd prime p and exponent a � 2. The inequality (�)
now says that pa�1 < 4, so that p D 3 and a D 2, contradicting the hypothesis
that n > 9. This proves the theorem. �

When a random x 2 .Z=nZ/� is checked to be contained in the set B of The-
orem 2.1, we say that ‘n passes a Miller–Rabin test’. Checking that x 2 B

involves raising x 2 Z=nZ to an exponent that is no more than n. Using the bi-
nary expansion of the exponent, this takes no more that O.log n/ multiplications
in Z=nZ. Therefore a single exponentiation involves O..log n/1C�/ elementary
operations or bit operations. Here � is a constant with the property that the
multiplication algorithm in Z=nZ takes no more than O..log n/�/ elementary
operations. We have � D 2 when we use the usual multiplication algorithm,
while one can take � D 1 C " for any " > 0 by employing fast multiplication
techniques.

By Theorem 2.1 the probability that a composite number n passes a single
Miller–Rabin test, is at most 25%. Therefore, the probability that n passes log n
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such tests is smaller than 1=n. The probability that a large composite n passes
.log n/2 tests is astronomically small: less than n� log n. Since for most compos-
ite n the probability that n passes a Miller–Rabin test is much smaller than 1=4,
one is in practice already convinced of the primality of n, when n successfully
passes a handful of Miller–Rabin tests. This is enough for most commercial
applications.

Under assumption of the Generalized Riemann Hypothesis (GRH) for qua-
dratic Dirichlet characters, the Miller–Rabin test can be transformed into a deter-
ministic polynomial time primality test. This result goes back to [Miller 1976].

THEOREM 2.2 (GRH). Let n be an odd positive composite integer. Let n�1 D

2km for some exponent k � 1 and some odd integer m. If for all integers x

between 1 and 2.log n/2 one has

xm � 1 .mod n/ or x2i m � �1 .mod n/ for some 0 � i < k;

then n is a prime number.

PROOF. We first show that n is squarefree. See also [Lenstra 1979]. Suppose
that p is a prime for which p2 divides n. A special case of the result [Konyagin
and Pomerance 1997, (1.45)] on the distribution of smooth numbers implies that
for every odd integer r � 5 one has

#fa 2 Z W 1 � a � r and a is product of primes � .log r/2g �
p

r :

We apply this with r D p2. It follows that the subgroup H of .Z=p2Z/� that is
generated by the natural numbers x � .log n/2 has order at least p. On the other
hand, the hypothesis of the theorem implies that every x 2 H , being a product of
numbers a that satisfy an�1 � 1 .mod p2/, satisfies xn�1 � 1 .mod p2/. Since
the order of the group .Z=p2Z/� is p.p�1/ and p does not divide n�1, we see
that any x 2H must satisfy xp�1 �1 .mod p2/. But this is impossible, because
the subgroup of .Z=p2Z/� that consists of elements having this property, has
order p � 1.

Therefore, if n is composite, it is divisible by two odd distinct primes p

and q. Let � denote the quadratic character of conductor p. By a result of
E. Bach [1990], proved under assumption of the GRH, there exists a natural
number x � 2.log p/2 < 2.log n/2 for which �.x/ 6D 1. Since the condition
of the theorem implies that we have gcd.x; n/ D 1, we must have �.x/ D �1.
Writing p � 1 D 2l� for some exponent l � 1 and some odd integer �, we
have x2l�1� � �.x/ D �1 .mod p/. This implies that �1 is contained in the
subgroup of .Z=pZ/� generated by x. Since the 2-parts of the subgroups of
.Z=pZ/� generated by xm and by x are the same, we have xm 6� 1 .mod p/

and hence xm 6� 1 .mod n/. Therefore the hypothesis of the theorem implies
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that x2i m � �1 .mod n/ for some 0 � i < k. Since for this value of i we also
have x2i m � �1 .mod p/, necessarily the equality i D l � 1 holds. It follows
that we have x2l�1m � �1 .mod q/, so that the order of xm .mod q/ is equal
to 2l . Writing q �1 D 2l 0

�0 for some exponent l 0 � 1 and some odd integer �0,
we have therefore l � l 0.

Repeating the argument, but switching the roles of p and q, we conclude
that l D l 0. Let �0 denote the quadratic character of conductor q. A second
application of Bach’s theorem, this time to the non-trivial character ��0, pro-
vides us with a natural number y � 2.log n/2 for which ��0.y/ 6D 1 and hence,
say, �.y/ D �1 while �0.y/ D 1. The arguments given above, but this time
applied to y, show that we cannot have ym � �1 .mod n/, so that necessarily
y2i m � �1 .mod n/ for some 0 � i < k. Moreover, the exponent i is equal
to l � 1 D l 0 � 1. It follows that y2l 0�1m � �1 .mod q/. This implies that
the element ym 2 .Z=qZ/� has order 2l 0

. Since the subgroups of .Z=qZ/�

generated by ym and y�0

are equal, the order of y�0

2 .Z=qZ/� is also 2l 0

. This
contradicts the fact that 1 D �0.y/ � y2l 0�1�0

.mod q/.
We conclude that n is prime and the result follows. �

It is clear how to apply Theorem 2.2 and obtain a test that proves that n is prime
under condition of GRH: given an odd integer n>1, we simply test the condition
of Theorem 2.2 for all a 2 Z satisfying 1 < a < 2.log n/2. If n passes all these
tests and GRH holds, then n is prime. Each test involves an exponentiation
in the ring Z=nZ. Since the exponent is less than n, this can be done using
only O..log n/1C�/ elementary operations. Therefore this is a polynomial time
primality test. Testing n takes O..log n/3C�/ elementary operations. As before,
we have � D 2 when we use the usual multiplication algorithm, while we can
take � D 1 C " for any " > 0 by employing fast multiplication techniques.

3. A deterministic polynomial time primality test

In the summer of 2002 the three Indian computer scientists M. Agrawal,
N. Kayal and N. Saxena presented a deterministic polynomial time primality
test. We describe and analyze this extraordinary result in this section.

For any prime number r we let

˚r .X / D X r�1
C � � � C X C 1

denote the r -th cyclotomic polynomial. Let �r be a zero of ˚r .X / and let ZŒ�r �

denote the ring generated by �r over Z. For any n 2 Z we write ZŒ�r �=.n/ for
the residue ring ZŒ�r � modulo the ideal .n/ generated by n. For n 6D 0, this is a
finite ring.
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THEOREM 3.1. Let n be an odd positive integer and let r be a prime number.
Suppose that

(i) n is not divisible by any of the primes � r ;
(ii) the order of n .mod r/ is at least .log n=log 2/2;
(iii) for every 0 � j < r we have .�r C j /n D �n

r C j in ZŒ�r �=.n/.

Then n is a prime power.

PROOF. It follows from condition (ii) that we have n 6� 1 .mod r/. Therefore
there exists a prime divisor p of n that is not congruent to 1 .mod r/. Let A

denote the Fp-algebra ZŒ�r �=.p/. It is a quotient of the ring ZŒ�r �=.n/. For
k 2 Z coprime to r we let �k denote the ring automorphism of A determined
by �k.�r / D �k

r . The map .Z=rZ/� ‘ � given by k ‘ �k is a well defined
isomorphism. We single out two special elements of �. One is the Frobenius
automorphism �p and the other is �n. Let � denote the subgroup of � that is
generated by �p and �n.

Next we consider the subgroup G of elements of the multiplicative group A�

that are annihilated by the endomorphism �n �n 2 ZŒ��. In other words, we put

G D fa 2 A�
W �n.a/ D an

g:

Pick a maximal ideal m of A and put k D A=m. Then k is a finite extension
of Fp, generated by a primitive r -th root of unity. Let H � k� be the image
of G under the natural map � W A � k. The group H is cyclic. Its order is
denoted by s. We have the following commutative diagram.

G � A�

# � # �

H � k�

Since � is commutative, it acts on G. Since �n and �p act on G by raising to
the power n and p respectively, every �m 2 � acts by raising g 2 G to a certain
power em that is prime to #G. The powers em are well determined modulo the
exponent exp.G/ of G. Therefore the map � � .Z=exp.G/Z/�, given by
�m ‘ em, is a well defined group homomorphism. Since H is a cyclic quotient
of G, its order s divides the exponent of G and the map �m ‘ em induces a
homomorphism

� � .Z=sZ/�:

If m � pinj .mod r/, then it maps �m 2 � to em � pinj .mod s/.
It is instructive to see what all this boils down to when n is prime. Then we

have n D p and �n is equal to the Frobenius automorphism �p. The group G is
all of A� so that H is equal to k�. Writing f for the order of p modulo r , the
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group � D h�pi has order f while the groups H D k� and its automorphism
group Aut.H / are much larger. Indeed, H has order s D pf �1 D n#� �1 and
Aut.H / Š .Z=sZ/� is of comparable size

Under the conditions of the theorem, but without assuming that n is prime,
something similar can be shown to be true.

CLAIM. s > n[
p

#� ].

Using this inequality, we complete the proof of the theorem. Consider the ho-
momorphism

� � .Z=sZ/�

constructed above. We first apply the box principle in the small group � and
then obtain a relation in Z from a relation in .Z=sZ/� using the fact that the
latter group is very large.

Let q D n=p. We consider the products � i
p�

j
q 2 � for 0 � i; j �

�p
#�
�
.

Since we have
�
1 C

�p
#�
��2

> #� , there are two pairs .i; j / 6D .i 0; j 0/ for

which � i
p�

j
q and � i0

p �
j 0

q are the same element in � . It follows that their images
in the group .Z=sZ/� are the same as well. Since �q is mapped to q .mod s/,
this means that piqj � pi0

qj 0

.mod s/. The integer piqj does not exceed

nmax.i;j/ � n

hp
#�

i
< s. The same holds for pi0

qj 0

. We conclude that piqj D

pi0

qj 0

in Z! Since .i; j / 6D .i 0; j 0/ it follows that n is a power of p. �

PROOF OF THE CLAIM. We first estimate s D #H in terms of #G. Then we
show that G is large.

The first bound we show is

s � #G1=Œ�W� �: .�/

Let C denote a set of coset representatives of � in � and consider the homo-
morphism

G �

Y
i2C

k�

given by mapping a 2 G to the vector .�i.a/ .mod m//i2C .
This map is injective. Indeed, if a 2 G has the property that �i.a/ D 1 for

some i , then we also have �in.a/ D �i.a
n/ D �i.a/n D 1 and similarly �ip.a/ D

1. In other words, we have �.a/ D 1 for all elements � in the coset of � con-
taining �i . Therefore, if a 2 G has the property that �i.a/ D 1 for all i 2 C , then
automatically also �i.a/ D 1 for all i 2 .Z=rZ/�. It follows that �i.a � 1/ D 0

for all i 2 .Z=rZ/�. Writing the element a � 1 as f .�r / for some polyno-
mial f .X / 2 Fp ŒX �, this implies that f .�i

r / D 0 for all i 2 .Z=rZ/�. It follows
that the cyclotomic polynomial ˚r .X / divides f .X / in Fp ŒX � and hence that
a � 1 D 0, as required.
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Since for every i 2 C , the image of the map G � k� given by a ‘

�i.a/ .mod m/ is equal to H , the injectivity of the homomorphism implies that
#G � sŒ�W� � as required.

The second estimate is
#G � 2r�1: .��/

Since p 6� 1 .mod r/, the irreducible factors of ˚r .X / D .X r � 1/=.X � 1/ in
the ring Fp ŒX � have degree at least 2 and hence cannot divide any polynomial
of degree 1. Therefore the elements �r C j for 0 � j < r � 1 are not contained
in any maximal ideal of the ring A. It follows that they are units of A. By
condition (iii), for each subset J � f0; 1; : : : ; r � 2g the elementY

j2J

.�r C j /

is contained in G.
All these elements are distinct. Indeed, since the degree of the cyclotomic

polynomial ˚r is r �1, the only two elements that could be equal to one another
are the ones corresponding to the extreme cases J D∅ and J D f0; 1; : : : ; r �2g.
This can only happen when

Qr�2
jD0.X Cj /�1 is divisible by ˚r .X / in the ring

Fp ŒX �. Since both polynomials have the same degree, we then necessarily haveQr�2
jD0.X Cj /�1 D ˚r .X /. Inspection of the constant terms shows that p D 2.

But this is impossible, because n is odd.
Since there are 2r�1 subsets J � f0; 1; : : : ; r � 2g, we conclude that #G �

2r�1, as required.

Combining the inequalities (�) and (��) we find that

s � #G1=Œ�W� �
� 2.r�1/=Œ�W� �

D 2#� > n
p

#�
� nŒ

p
#� �:

Here we used the inequality #� > .log n=log 2/2. It follows from the fact that
the order of �n 2 � is larger than .log n=log 2/2. Indeed, this order is equal to
the order of n modulo r , which by condition (ii) is larger than .log n=log 2/2.
This proves the claim. �

Theorem 3.1 leads to the following primality test.

ALGORITHM 3.2. Let n > 1 be an odd integer.

(i) First check that n is not a proper power of an integer.
(ii) By successively trying r D 2; 3; : : : , determine the smallest prime r not

dividing n nor any of the numbers ni � 1 for 0 � i � .log n=log 2/2.
(iii) For 0 � j < r � 1 check that .�r C j /n D �n

r C j in the ring ZŒ�r �=.n/.

If the number n does not pass the tests, it is composite. If it passes them, it is a
prime.
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PROOF OF CORRECTNESS. If n is prime, it passes the tests by Fermat’s little
theorem. Conversely, suppose that n passes the tests. We check the conditions
of Theorem 3.1. By the definition of r , the number n has no prime divisors � r .
Since r does not divide any of the ni � 1 for 1 � i � .log n=log 2/2, the order
of n modulo r exceeds .log n=log 2/2. This shows that the second condition of
Theorem 3.1 is satisfied. Since test (iii) has been passed successfully, the third
condition is satisfied. We deduce that n is a prime power. Since n passed the
first test, it is therefore prime. �

RUNNING TIME ANALYSIS. The first test is performed by checking that n1=m

is not an integer, for all integers m between 2 and log n=log 2. This can be done
in time O..log n/4/ by computing sufficiently accurate approximations to the
real number n1=m. The second test does not take more than r times O..log n/2/

multiplications with modulus � r . This takes at most O.r.log r log n/2/ bit
operations. The third test takes r times O.log n/ multiplications in the ring
ZŒ�r �=.n/. The latter ring is isomorphic to ZŒX �=.˚r .X /; n/. If the multipli-
cation algorithm that we use to multiply two elements of bit size t takes no
more than O.t�/ elementary operations, then this adds up to O..r log n/1C�/

elementary operations. Since � � 1 and since r exceeds the order of n mod r ,
we have r > .log n=log 2/2. Therefore the third test is the dominating part of
the algorithm.

We estimate how small we can take r . By the definition of r , the product
n
Q

i.n
i � 1/ is divisible by all primes l < r . Here the product runs over values

of i � .log n=log 2/2. SoX
l<r

log l � log n C log n
X

1�i�.
log n
log 2

/2

i D O..log n/5/:

A weak and easily provable form of the prime number theorem says that there
exists a constant c > 0 such that

P
l<r log l � cr for every r . Therefore we

have r D O..log n/5/. It follows that the algorithm takes O..log n/6.1C�//

elementary operations. When the usual multiplication algorithm is used, we
have � D 2 and obtain an algorithm that takes at most O..log n/18/ elementary
operations. It takes O..log n/12C"/ elementary operations when fast multipli-
cation techniques are employed. �

REMARK 1. Since the upper bound
p

#� is optimal for the box principle, the
inequality 2#� > n

p
#� used above implies that #� D r � 1 needs to be at

least .log n=log 2/2. This we know to be the case because the order of �n 2

� , which is equal to the order of n 2 .Z=rZ/�, exceeds .log n=log 2/2. The
argument involving the prime number theorem given above implies then that
we cannot expect to be able to prove that the order of magnitude of the prime r
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is smaller than O..log n/5/. Therefore this algorithm cannot be expected to be
proved to run faster than O..log n/6.1C�//. On the other hand, in practice one
easily finds a suitable prime of the smallest possible size O..log n/2. Therefore
the practical running time of the algorithm is O..log n/3.1C�//.

REMARK 2. One may replace the ring

ZŒ�r �=.n/ Š .Z=nZ/ŒX �=.˚r .X //

by any Galois extension of Z=nZ of the form

.Z=nZ/ŒX �=.f .X //

that admits an automorphism � with the properties that

�.X / D X n and � has order at least .log n=log 2/2.

This was pointed out by Hendrik Lenstra shortly after the algorithm described
above came out. The running time of the resulting modified algorithm is then
O..d log n/1C�/ where d is the degree of the polynomial f .X /. Since the order
of � is at most d , one has

d > .log n=log 2/2

and one cannot obtain an algorithm that runs faster than O..log n/3.1C�//. Since
then Lenstra and Pomerance [� 2008] showed that for every " > 0 one can con-
struct suitable rings with d D O..log n/2C"/. This leads to a primality test that
runs in time O..log n/.3C"/.1C�//. This is essentially the same as the practical
running time mentioned above.

4. The cyclotomic primality test

In this section we describe the cyclotomic primality test. This algorithm
was proposed in 1981 by L. Adleman, C. Pomerance and R. Rumely [Adle-
man et al. 1983]. It is one of the most powerful practical tests available today
(see [Mihăilescu 1998]). Our exposition follows H. Lenstra’s lecture [1981];
see also [Cohen 1993, 9.1; Washington 1997, 16.1]. The actual computations
involve Jacobi sums, but the basic idea of the algorithm is best explained in terms
of Gaussian sums. See [Washington 1997; Lang 1978] for a more systematic
discussion of the basic properties of Gaussian sums and Jacobi sums. For any
positive integer r , we denote the subgroup of r -th roots of unity of Q

�
by �r .

DEFINITION. Let q be a prime and let r be a positive integer prime to q. Let
� W .Z=qZ/� � �r be a character and let �q be a primitive q-th root of unity.
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Then we define the Gaussian sum �.�/ by

�.�/ D �

X
x2.Z=qZ/�

�x
q �.x/:

The Gaussian sum �.�/ is an algebraic integer, contained in the cyclotomic
field Q.�r ; �q/. We have the diagram of fields

Q.�r ; �q/

Q.�q/

G

Q.�r /

�

Q

The Galois group of Q.�r ; �q/ over Q is isomorphic to ��G. Here we have �D

f�i W i 2 .Z=rZ/�g, where �i 2 � is the automorphism that acts trivially on q-th
roots of unity, while its action of r -th roots of unity is given by �i.�r / D �i

r . The
map .Z=rZ/� � � given by i ‘ �i is an isomorphism of groups. Similarly,
we have G D f�j W j 2 .Z=qZ/�g where �j 2 � is the automorphism given by
�j .�r / D �r and �j .�q/ D �

j
q . The map .Z=qZ/� � G given by j ‘ �j is an

isomorphism of groups. We write the actions of the group rings ZŒ�� and ZŒG�

on the multiplicative group Q.�r ; �q/� using exponential notation.
One easily checks the following relations.

�.�/�i D �.�i/ for i 2 .Z=rZ/�.

and

�.�/�j D �.j /�1�.�/ for j 2 .Z=qZ/�.

We write �.�/ for the complex conjugate of �.�/. For � 6D 1 one has

�.�/�.�/ D q;

showing that �.�/ is an algebraic integer that is only divisible by primes that lie
over q.

For our purposes the key property of the Gaussian sums is the following.

PROPOSITION 4.1. Let q be a prime, let r be a positive integer prime to q. Let
� W .Z=qZ/� � �r be a character and let �.�/ be the corresponding Gaussian
sum. Then, for every prime number p not dividing qr we have

�.�/�p�p
D �p.p/ in the ring ZŒ�q; �r �=.p/.
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PROOF. We have �.�/p ��
P

x2.Z=qZ/� �
px
q �p.x/ modulo the ideal pZŒ�q; �r �.

Multiplying by �p.p/ and replacing the variable x by p�1x, we get that

�p.p/�.�/p
� ��p.p/

X
x2.Z=qZ/�

�x
q �p.p�1x/ D �.�p/ � �.�/�p .mod p/

as required. �

The cyclotomic primality test proceeds by checking the congruence of Propo-
sition 4.1 for suitable characters � W .Z=qZ/� � �r . The next theorem is the
key ingredient for the cyclotomic primality test.

THEOREM 4.2. Let n be a natural number. Let q be a prime not dividing n, let
r be a power of a prime number l not dividing n and let � W .Z=qZ/� � �r be
a character. If
– for every prime p dividing n there exists �p in the ring Zl of l-adic integers
such that

pl�1
D n.l�1/�p in Z�

l ;

– the Gaussian sum �.�/ satisfies

�.�/�n�n
2 h�r i in the ring ZŒ�q; �r �=.n/;

then we have
�.p/ D �.n/�p

for every prime divisor p of n.

Note that �p 2 Zl in the first condition is well defined because both nl�1 and
pl�1 are congruent to 1 .mod l/. In addition, �p is unique. When l is odd, the
first condition is equivalent to the fraction .pl�1�1/=.nl�1�1/ being l-integral.
In the second condition, we denote by h�r i the cyclic subgroup of .ZŒ�r �=.n//�

of order r generated by �r . Note that the group h�r i is not necessarily equal to
the group of r -th roots of unity in the ring ZŒ�r �=.n/.

PROOF OF THE THEOREM. We may assume that � is a non-trivial character. By
the second condition we have

�.�/��1
n n

D ��.�/ for some � 2 h�r i � ZŒ�q; �r �=.n/:

Note that the operator ��1
n n 2 ZŒ�� has the property that ���1

n n D �. Therefore,
for any integer L � 0, applying it .l � 1/L times leads to the relation

�.�/.��1
n n/.l�1/L

D �.l�1/L�.�/; in the ring ZŒ�q; �r �=.n/:

On the other hand, Proposition 4.1 implies that for any prime divisor p of n we
have �.�/��1

p p
D �.p/�1�.�/ and hence

�.�/.��1
p p/l�1

D �.p/1�l�.�/ in the ring ZŒ�q; �r �=.p/.
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Let lM be the order of the l-part of the finite multiplicative group .ZŒ�q;�r �=.n//�

and A the group .ZŒ�q; �r �=.n//� modulo lM -th powers. Let L be an integer be-
tween 0 and lM for which L � �p .mod lM /. Then we have pl�1 � n.l�1/L �

n.l�1/�p .mod lM / and hence .��1
n n/.l�1/L D ��1

p p in the ring .Z= lM Z/Œ��.
It follows that the left hand sides of the two formulas above are equal in the
group A. Then the same is true for the right hand sides. Since �.�/ is invertible
modulo p, this means

�.l�1/L
D �.p/1�l in the group A.

Since l � 1 is coprime to the order of �r and since the natural map h�r i Œ A

is injective, this implies

�.p/�1
D �L

D ��p ;

in the group h�r i � .ZŒ�q; �r �=.n//�. When we multiply the formulas of the first
condition for the various prime divisors p of n together, we see that for every
positive divisor d of n there exists �d 2 Zl for which d l�1 D n.l�1/�d in Zl .
We have, of course, �n D 1. From the relation �dd 0 D �d C�d 0 , we deduce that
��d D �.d/�1 for every divisor d of n. In particular, we have � D ��n D �.n/�1

and hence

�.p/ D �.n/�p ;

for every prime divisor p of n, as required. �

ALGORITHM. The following algorithm is based on Theorem 4.2. Suppose we
want to prove that a natural number n is prime. First determine an integer R > 0

that has the property that

s D

Y
q�1jR
q prime

q

exceeds
p

n. At the end of this section we recall that there is a constant c >0 such
that for every natural number n>16 there exists an integer R<.log n/c log log log n

that has this property. Taking R equal to the product of the first few small prime
powers is a good choice. For all primes q dividing s and for each prime power
r that divides q � 1 exactly, we make sure that gcd.n; qr/ D 1 and then check
the two conditions of Theorem 4.2 for one character of conductor q and order r .
When n passes all these tests, we check for k D1; : : : ; R�1 whether the smallest
positive residue of nk modulo s divides n. If that never happens, then n is prime.

PROOF OF CORRECTNESS. We first note that when n is prime, Proposition 4.1
implies that it passes all tests. Conversely, suppose that p �

p
n is a prime

divisor of n. For every prime l dividing R, let �p be the l-adic number that
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occurs in the first condition of Theorem 4.2. Let L 2 f0; 1; : : : ; R � 1g be the
unique integer for which we have

L � �p .mod r/;

for the power r of l that exactly divides R. Theorem 4.2 implies therefore that
�.p/ D �.n/L for the set of characters of conductor q and order r for which the
conditions of Theorem 4.2 have been checked. Since we have s D

Q
q�1jR q,

the exponent of the group .Z=sZ/� divides R. Therefore our set of characters
generates the group of all characters of .Z=sZ/�. It follows that

p � nL .mod s/:

Since we have 0 < p �
p

n < s, this means that p must actually be equal to the
smallest positive residue of nk modulo s for some k D 1; 2; : : : ; R � 1. Since
we checked that none of these numbers divide n, we obtain a contradiction. It
follows that p cannot exist, so that n is necessarily prime. �

In practice, checking the first condition of Theorem 4.2 is easy. When l 6D 2,
the number �p 2 Zl of the first condiction exists if and only if for any prime
divisor p of n, the rational number .pl�1 � 1/=.nl�1 � 1/ is l-integral. Since
we have pl�1 � 1 .mod l/, this is automatic when we have nl�1 6� 1 .mod l2/.
Given n, this usually holds true for various prime numbers l . Another useful
criterion is the following. It can be checked for free when one checks the second
condition of Theorem 4.2.

PROPOSITION 4.3. Let n > 1 be an integer and let l be a prime number not
dividing n. Then there exists for every prime divisor p of n an exponent �p 2 Zl

for which
pl�1

D n.l�1/�p in Z�
l ;

whenever there exists a prime q not dividing n for which the following holds.

(i) (l 6D 2) for some power r > 1 of l and some character � W .Z=qZ/� � �r

of order r the number �.�/�n�n is a generator of the cyclic subgroup h�r i of
.ZŒ�q; �r �=.n//�.

(ii) (l D 2 and n � 1 .mod 4/) we have �.�/�n�n D �1 for the quadratic
character � modulo q.

(iii) (l D 2 and n � 3 .mod 4/) and for some character � W .Z=qZ/� � �r of
2-power order r � 4, the number �.�/�n�n is a generator of the cyclic sub-
group h�r i of .ZŒ�q; �r �=.n//�. Moreover, the Gaussian sum associated to the
quadratic character �r=2 satisfies �.�r=2/�n�n D �1 in the ring ZŒ�q �=.n/.

PROOF. Let p be a prime divisor of n and let r be a power of l . As in the
proof of Theorem 4.2, let lM denote the order of the l-part of the unit group
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.ZŒ�q; �r �=.p//� and let A be the group .ZŒ�q; �r �=.p//� modulo lM -th powers.
The latter is a module over the l-adic group ring Zl Œ��. The multiplicative
subgroup f��1

m m 2 Zl Œ�� W m 2 Z�
l g is naturally isomorphic to Z�

l . Therefore,
when l 6D 2, its subgroup G of .l � 1/-th powers is isomorphic to the additive
group Zl . When l D 2, this is not true, but in that case the subgroup G2 of
squares is isomorphic to Z2. By Proposition 4.1 for any prime q and character
� W .Z=qZ/� � �r of order r we have

�.�/��1
p p

D �.p/�1�.�/ in the group A.

If �.�/�n�n is a generator of the group h�r i � .ZŒ�q; �r �=.n//�, then we have

�.�/��1
n n

D ��.�/ in the group A.

for some primitive r -th root of unity � 2 h�r i � .ZŒ�q; �r �=.n//�.
Now we prove (i). Since � is a primitive root, the operator .��1

n n/l�1 2 Zl Œ��

cannot be a ‘proper’ l-adic power of .��1
p p/l�1 in the sense that there cannot

exist � 2 lZl for which .��1
n n/l�1 D .��1

p p/�.l�1/. Since both operators are
contained in the pro-cyclic group G Š Zl , the converse must therefore be true:
we have .��1

p p/l�1 D .��1
n n/.l�1/�p and hence pl�1 D n.l�1/�p for some

�p 2 Zl .
To prove (ii), we observe that the values of � are either 1 or �1. Therefore

we have �.�/�n D �.�/. Since we have �.�/2 D �.�1/�.�/�.�/ D �.�1/q, the
condition �.�/�n�n D �1 means precisely that

.�.�1/q/.n�1/=2
� �1 .mod n/:

This shows that the 2-parts of the order of �.�1/q .mod p/ and of n � 1 are
equal. This means that n � 1 divides p � 1 in the ring of 2-adic integers Z2.
Since n � 1 .mod 4/, this is equivalent to the statement that p D n�p for some
�p 2 Z2.

To prove (iii), we note that for l D 2, the group G that we considered above
is not isomorphic to Z2, but the subgroup G2 is. Therefore the arguments of
the proof of part (i) only show that p2 D n2�p and hence p D ˙n�p for some
�p 2 Z2. We show that we have the plus sign. From the relation p2 D n2�p we
deduce that ��1.p/2 D �2�p . Raising this relation to the power �r=4, we find�

p

q

�
D �r=2.p/ D ��r�p=2

D .�1/�p :

Here we used the usual Legendre symbol to denote the quadratic character �r=2.
Since q � 1 .mod 4/, we have �.�1/ D 1. Therefore the second condition
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�.�r=2/�n�n ��1 .mod n/ says precisely that we have q.n�1/=2 ��1 .mod n/.
Since .n � 1/=2 is odd, it follows that�

q

p

�
D

 
q.n�1/=2

p

!
D

�
�1

p

�
:

Since � has order at least 4, we have q � 1 .mod 4/ and hence, by quadratic
reciprocity,

�
p
q

�
D

�
q
p

�
. The two formulas above imply that

�
�1
p

�
D .�1/�p .

This means precisely that p � n�p .mod 4/, so that we must have the plus sign,
as required. �

If the number n that is being tested for primality is actually prime, then in each
instance the conditions of Proposition 4.3 are satisfied for a prime q that has
the property that n is not an l-th power modulo q. Given n, one encounters in
practice for every prime l very quickly such a prime q, so that the first condition
of Theorem 4.2 can be verified. In the unlikely event that for some prime l

none of the primes q has this property, one simply tests the second condition of
Theorem 4.2 for some more primes q � 1 .mod l/.

Testing the second condition of Theorem 4.2 is a straightforward computation
in the finite ring ZŒ�q; �r �=.n/. In practice it is important to reduce this to a
computation in the much smaller subring ZŒ�r �=.n/. This is done by using Jacobi
sums.

DEFINITION. Let q be a prime and let �; �0 W .Z=qZ/� � �r be two characters.
Then we define the Jacobi sum j .�; �0/ by

j .�; �0/ D �

X
x2Z=qZ

�.x/�0.1 � x/:

Here we extend � and �0 to Z=qZ by putting �.0/ D �0.0/ D 0.

The Jacobi sum is an algebraic integer, contained in the cyclotomic field Q.�r /.
If the characters �; �0 W .Z=qZ/� � �r satisfy ��0 6D 1, we have

j .�; �0/ D
�.�/�.�0/

�.��0/
:

In particular, if i > 0 is prime to r and less than the order of �, we have

�.�/i��i D
�.�/i

�.�i/
D

i�1Y
kD1

j .�; �k/:

The subgroup of the l-power order roots of unity in Q
�

is a ZŒ��-module. Let
I � ZŒ�� be its annihilator. This ideal is generated by the elements of the
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form �i � i with i 2 Z coprime to l . Since we have �.�/�j �1 2 �r for all
j 6� 0 .mod q/, we have

1 D �.�/.�j �1/x
D �.�/x.�j �1/ for every x 2 I .

This shows that �.�/x and hence that �.�/x is contained in Q.�r / for every x 2

ZŒ��. This applies in particular to the element x D �n � n 2 I . It turns out that
it is possible to check the condition of Theorem 4.2 that �.�/�n�n is contained
in h�r i, without ever writing down the Gaussian sum �.�/ 2 ZŒ�r ; �q �, but by
doing only computations with Jacobi sums in the ring ZŒ�r �=.n/.

When l is odd, the ideal I generates a principal ideal in the l-adic group
ring Zl Œ��. It is generated by any element of the form �i � i for which i l�1 6�

1 .mod l2/. We have 2l�1 6� 1 .mod l2/ for all primes l < 3 � 109 except when
l D 1093 or 3511. Therefore we can in practice always use i D 2. In this case
the relevant Jacobi sum is given by

�.�/�2�2
D

�.�/�.�/

�.�2/
D j .�; �/ D �

X
x2Z=qZ

�.x.1 � x//:

A computation [Cohen 1993, 9.1.5] shows that we have �n � n D ˛.�2 � 2/

where ˛ 2 Zl Œ�� is given by

˛ D

X
1�i<r

gcd.i;r /D1

�
ni

r

�
��1

i

times a unit in Zl Œ��. Here Œt � denotes the integral part of t 2 R. It follows
that in order to verify that �.�/�n�n is contained in the group h�r i and to see
whether it has order r , it suffices to evaluate the productY

1�i<r
gcd.i;r /D1

j .�; �/Œni=r ���1
i ;

in the ring ZŒ�r �=.n/ and check that it is contained in the group h�r i and see
whether it has order r . Since the elements in the ring Zl Œ�� map the subgroup
h�r i � .ZŒ�r �=.n//� to itself, the fact that we only know the element ˛ up to
multiplication by a unit in Zl Œ�� is of no importance.

When l D 2, the Zl Œ��-ideal generated by I is not principal. It is generated by
the elements �3�3 and ��1C1. Suppose that the character � W .Z=qZ/� � �r

has 2-power order r � 8.
When n � 1 or 3 .mod 8/, the element �n �n is contained in the Zl Œ��-ideal

generated by �3 � 3 and we may proceed as above, replacing the Jacobi sum
by the a product of two Jacobi sums: �.�/�3�3 D j .�; �/j .�; �2/. We have
�n � n D ˛.�3 � 3/ where ˛ 2 Zl Œ�� is given by ˛ D

P
i2E

�
ni
r

�
��1

i times a
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unit in Zl Œ��. Here E denotes the set
˚
i 2 Z W 1 � i < r and i � 1; 3 .mod 8/

	
.

Up to a Zl Œ��-automorphism we have

�.�/�n�n
D

Y
i2E

�
j .�; �/j .�; �2/

�Œni=r ���1
i ;

and this expression involves only elements in the ring ZŒ�r �=.n/.
When n � 5; 7 .mod 8/, we have �n � n D �.��n C n/ C .��n C �n/. Now

the element ��n Cn is contained in the ideal generated by �3 �3, while we have
�.�/��nC�n D �.�n/�.��n/ D q�.�1/. In this way one can express �.�/�n�n

in a similar way in terms of elements of the subring ZŒ�r �=.n/. See [Cohen
1993, 9.1.5] for the formulas.

When the order r of the character is 2 or 4, it is easier to proceed dircetly.
When r D 2, we have �.�/�n�n D .�.�1/q/.n�1/=2 and one should check that
this is equal to ˙1 in the ring Z=.n/. Finally let r D 4. We have

�.�/n��n D
�
j .�; �/2�.�1/q

�.n�1/=4

when n � 1 .mod 4/, while

�.�/n��n D j .�; �/
�
j .�; �/2�.�1/q

�.n�3/=4

when n � 3 .mod 4/. In either case, in order to verify the second condition
of Theorem 2.3, one should check that this number is a power of i in the ring
ZŒi �=.n/.

Running time analysis. All computations take place in finite rings of the form
ZŒ�r �=.n/, where r divides R. The various summations range over the con-
gruence classes modulo r or q. Both q and r are less than R. The number
of pairs .q; r/ involved in the computations is also at most O.R/. It follows
that the number of elementary operations needed to perform the calculations is
proportional to R times a power of log n. Therefore it is important that R is
small. On the other hand, the size of the s should be at least

p
n.

By a result in analytic number theory [Crandall and Pomerance 2001, The-
orem 4.3.5], there is a constant c > 0 so that for every natural number n > 16

there exists an integer R < .log n/c log log log n for which s D
Q

q�1jR q exceeds
p

n. It follows that the algorithm is almost polynomial time. It runs in time
O..log n/c0 log log log n/ for some constant c0 > 0.

For instance, for n approximately 880 decimal digits, a good choice is R D

24 � 32 � 5 � 7 � 11 � 13 � 17 � 19, because then we have s > 10441.
H. W. Lenstra proposed a slight modification of the cyclotomic test, which

allows one to efficiently test integers satisfying n < s3 rather than n < s2, for
primality. See [Lenstra 1981, Remark 8.7; Lenstra 1984] for this important
practical improvement.
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5. The elliptic curve primality test

The elliptic curve primality test, proposed by A. O. L. Atkin in 1988, is one
of the most powerful primality tests that is used in practice [Morain 1998]. In
order to explain its principle, we first consider a multiplicative group version of
the test.

THEOREM 5.1. Let n > 1 be a natural number and suppose that there is an
element a 2 Z=nZ and an exponent s > 0 satisfying

as
D 1I

as=q
� 1 2 .Z=nZ/� for every prime divisor q of s.

Then any prime dividing n is congruent to 1 .mod s/. In particular, if s >
p

n,
then n is prime.

PROOF. Let p be a prime divisor of n. Then the image of a in Z=pZ is a
unit of order s. Indeed, as � 1 .mod p/ while as=q 6� 1 .mod p/ for every
prime divisor q of s. Therefore s divides the order of .Z=pZ/�. In other words,
p � 1 .mod s/, as required. Since a composite n has a prime divisor p �

p
n,

the second statement of the theorem is also clear. �

In applications, s is a divisor of n�1 and the element a of Z=nZ is the .n�1/=s-
th power of a randomly selected element. One tests the condition that as=q �1 2

.Z=nZ/� for every prime divisor q of s, by evaluating the powers b D as=q in
the ring Z=nZ and then checking that gcd.n; b�1/ D 1. In order to do this,
one needs to know all prime divisors q of s. In addition, s needs to be large!
Indeed, one needs that s >

p
n in order to conclude that n is prime. If n is

large, computing a divisor s of n � 1 with these properties is usually very time
consuming. Therefore only rarely a large number n is proved prime by a direct
application of this theorem.

Occasionally however, it may happen that one can compute a divisor r > 1

of n � 1 that has the property that s D .n�1/=r is probably prime. In practice,
r is the product of the small prime divisors of n � 1 that one is able to find in
a reasonable short time. The cofactor s is much larger than r . If, by a stroke
of luck, the number s happens to pass some probabilistic primality test and one
is confident that s is prime, then one may reduce the problem of proving the
primality of n to proving the primality of s, which is at most as large as n=2

and usually quite a bit smaller. Indeed, pick a random x 2 Z=nZ and compute
a D xr . Almost certainly we have as � 1 .mod n/ and a�1 2 .Z=nZ/�. Since
s >

p
n, Theorem 5.1 implies then that n is prime provided that s is prime.

However, the chance that n � 1 factors like r � s this way is on the average
O.1=log n/. Therefore any attempt to proceed in some kind of inductive way,
has only a very slight chance of succeeding.
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Elliptic curves provide a way out of this situation. The main point is that
for prime n there are many elliptic curves E over Z=nZ and the orders of the
groups E.Z=nZ/ are rather uniformly distributed in the interval .n C 1 � 2

p
n;

n C 1 C 2
p

n/. S. Goldwasser and J. Kilian [1986] proposed a primality test
based on the principle of Theorem 5.1 and on a deterministic polynomial time
algorithm to determine the number of points on an elliptic curve over a finite
field [Schoof 1985]. The running time of their probabilistic algorithm is poly-
nomial time if one assumes a certain unproved assumption on the distribution
of prime numbers in short intervals. Some years later, L. Adleman and M.-
D. Huang [1992] eliminated the assumption, by proposing a probabilistic test
involving abelian varieties of dimension 2. Both tests are of theoretical rather
than practical value. From a theoretical point of view these algorithms have
been superseded by the much simpler polynomial time deterministic algorithm
explained in Section 3. However, the key idea leads to a powerful practical
algorithm.

The main result is the following elliptic analogue of Theorem 5.1.

THEOREM 5.2. Let n > 1 be a natural number and let E be an elliptic curve
over Z=nZ. Suppose that there is a point P 2 E.Z=nZ/ and an integer s > 0

for which

sP D 0 in E.Z=nZ/I

.s=q/P 6D 0 in E.Z=pZ/ for any prime divisor p of n.

Then every prime p dividing n satisfies #E.Z=pZ/ � 0 .mod s/. In particular,
if s > . 4

p
n C 1/2, then n is prime.

PROOF. Let p be a prime divisor of n. Then the image of the point P in
E.Z=pZ/ has order s. This implies that #E.Z=pZ/ � 0 .mod s/. By Hasse’s
Theorem, we have #E.Z=pZ/ � .

p
p C 1/2. Therefore, if s > . 4

p
n C 1/2, we

have
.
p

p C 1/2
� #E.Z=pZ/ � s � . 4

p
n C 1/2

and hence p >
p

n. If n were composite, it would have a prime divisor p �
p

n.
We conclude that n is prime as required. �

The algorithm reduces the problem of proving the primality of n, to the problem
of proving that a smaller number is prime as follows. Given a probable prime
number n, one randomly selects elliptic curves E over Z=nZ and determines
the order of the group E.Z=nZ/ until one finds a curve for which #E.Z=nZ/

is of the form r � s, where r > 1 and s is a probable prime number satisfying
s > . 4

p
n C 1/2. In order to apply Theorem 5.2, one selects a random point

Q 2 E.Z=nZ/ and computes P D rQ. One checks that sP D 0 in E.Z=nZ/

and that P 6D 0 in E.Z=pZ/ for every prime dividing n. If one works with
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projective coordinates .x W y W z/ satisfying a Weierstrass equation, then the
latter simply means that the gcd of n and the z-coordinate of P is equal to 1.
Theorem 5.2 implies then that n is prime if s is prime.

In practice, one computes #E.Z=nZ/ under the assumption that n is prime.
Then one attempts to factor the order of the group E.Z=nZ/ by means of a
simple trial divison algorithm or another method that finds small prime factors
quicker than larger ones, like Lenstra’s Elliptic Curve Method [1987]. Let r be
the product of these small prime factors. When #E.Z=nZ/ factors as a product
r � s with s a probable prime, it is in practice not a problem to verify the condi-
tions of Theorem 5.2 for some randomly selected point P . That’s because n is
probably prime. But we do not need to know this in order to apply Theorem 5.2.

Just as in the multiplicative case discussed above, this computation usually
does not work out when n is large. Typically one only succeeds in computing a
small completely factored factor r of #E.Z=nZ/ whose cofactor s is not prime,
but cannot be factored easily. In that case one discards the curve E, randomly
selects another one and tries again. Since the curves E are rather uniformly
distributed with respect to the number of points in #E.Z=nZ/, the number of
attempts one needs to make before one encounters a prime cofactor s, is expected
to be O.log n/. In the unlikely event that one is able to factor #E.Z=nZ/ com-
pletely or that one has s < . 4

p
nC1/2, one is also satisfied. If this happens, one

can switch the roles of r and s and almost certainly apply Theorem 5.2.
Atkin [1993] turns the test of Goldwasser and Kilian into a practical test

by selecting the elliptic curves E in the algorithm above more carefully. He
considers suitable elliptic curves over the complex numbers with complex mul-
tiplication (CM) by imaginary quadratic orders of relatively small discriminant.
He reduces the curves modulo n and uses only these in his primality proof. The
main point is that it is not only theoretically, but also in practice very easy to
count the number of points on these elliptic curves modulo n. The resulting
test is in practice very efficient, but its running time is very difficult to analyze
rigorously, even assuming various conjectures on the distributions of smooth
numbers and prime numbers. We sketch the algorithm and give a heuristic
estimate of its running time.

Given n, Atkin first searches for imaginary quadratic integers ' for which
N.'/ D n and N.' � 1/ D r � s, where r > 1, s > . 4

p
n C 1/2 and s is proba-

bly prime, in the sense that it passes a probabilistic primality test. Here N.˛/

denotes the norm of an imaginary quadratic number ˛.
The theory of complex multiplication guarantees the existence of an elliptic

curve E over C with endomorphism ring isomorphic to the ring of integers of
the imaginary quadratic field Q.'/. Moreover, if n is prime, the characteristic
polynomial of the Frobenius endomorphism of the reduced curve E .mod n/
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is equal to the minimum polynomial of '. The number of points in E.Z=nZ/

is equal to N.' � 1/ D r � s. Therefore one may apply Theorem 5.2 to some
randomly selected point and conclude that n is prime when s is. We first ex-
plain how to compute suitable imaginary quadratic integers ' and then how to
compute the corresponding elliptic curves.

If n is prime, an imaginary quadratic field F contains an element ' with
N.'/ D n if and only if n factors as a product of two principal prime ideals in
the ring of integers OF of F D Q.'/. The probability that this happens is 1=2h,
where h is the class number of OF . Therefore in practice one first considers all
imaginary quadratic fields with class number h D 1, then the ones with class
number h D 2, : : : , etc. First one checks whether or not n splits in F . If n is
prime, this happens if and only if the discriminant �F is a square modulo n. If n

splits, one sees whether it is a product of two prime principal ideals. To do this
one computes a square root z of �F modulo n. Then the ideal I generated by n

and z �
p

�F is a prime divisor of n. To check that it is principal, one employs
a lattice reduction algorithm and computes a shortest vector in the rank 2 lattice
generated by n and z �

p
�F in C. If the shortest vector has norm n, then we

take it as our integer ' and we know that I D .'/ is principal. If the norm of
the shortest vector is not equal to n, then the ideal I is not principal and there
does not exist an algebraic integer ' 2 F with N.'/ D n. In this case we cannot
make use of the elliptic curves that have complex multiplication by the ring of
integers of F .

We explain how to compute the elliptic curves E over Z=nZ from the qua-
dratic integers '. The j -invariants of elliptic curves over C that admit complex
multiplication by the ring of integers of F D Q.'/ are algebraic integers con-
tained in the Hilbert class field of F . The j -invariant of one such curve is

j .�/ D

�
1 C 240

1P
kD1

�3.k/qk
�3

q
1Q

kD1

.1 � qk/24

;

where q D e2�i� , �3.k/ D
P

d jk d3, and � 2 C has positive imaginary part
and has the property that the ring Z C Z� is isomorphic to the ring of integers
of Q.'/. The conjugates of j .�/ are given by j

�
�Cb

a

�
for suitable integers a; b.

One computes approximations to these numbers and then the coefficients of
the minimum polynomial of j .�/. This polynomial is contained in ZŒX � and
has huge coefficients. Therefore one rather works with modular functions that
are contained in extensions of moderate degree d (usually d D 12 or 24) of
the function field C.j /. The coefficients of these modular functions are much
smaller. See [Cohen and Stevenhagen 2008, p. 532] for a precise statement.
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If n is prime, it splits by construction completely in the Hilbert class field H

of F . We compute a root of the minimal polynomial of j .�/ in Z=nZ and call
it j . From this we compute a Weierstrass equation of an elliptic curve E over
Z=nZ with j -invariant equal to j . We perform all necessary computations as if
n were prime. Since n probably is prime, they will be successful. If n is prime,
then we have #E.Z=nZ/ D N.�'�1/ for some root of unity � 2 Q.'/. If � 6D 1,
we ‘twist’ the curve E so that we have #E.Z=nZ/ D N.' �1/ D r � s. Usually,
we have � 2 f˙1g. The exceptions are the fields F D Q.i/ and F D Q.

p
�3/,

in which cases � can be a fourth or sixth root of unity respectively.
It seems difficult to analyze this algorithm in a rigorous way. We present only

a heuristic estimate of its running time. It is confirmed by the running times of
actual implementations [Morain 2007].

In each step of the algorithm we reduce the proof of the primality of n to the
proof of the primality of a number that is at most n=2 and usually much smaller.
Therefore the number of steps is bounded by O.log n/. Each step consists of
two phases.

First we search an imaginary quadratic number field F with the property
that n is a norm of a principal ideal .'/. Since the class number h of F is
approximately the square root of the discriminant j�F j, the probability that this
happens is 1=2h. In addition, the probability that N.' � 1/ is equal to r � s

where r > 1 is a small completely factored number and s is a probable prime, is
proportional to 1= log n. Therefore we expect to consider imaginary quadratic
number fields F with discriminants of size at most O..log n/2/.

As explained above, the search for F involves computing square roots mod-
ulo n, lattice base reductions and Miller-Rabin primality tests. The cost of
computing one square root modulo n is O..log n/1C�/. By making a list of
square roots of small prime numbers < log n, we can compute the square roots
of a sufficiently large set of discriminants �F . This idea goes back to J. Shal-
lit. It leads to an algorithm that takes O..log n/2C�/ operations. The lattice
base reduction is a gcd computation that can be set up to take no more than
O..log n/�/ operations. Since it is performed for O..log n/2/ fields F , this part
of the algorithm also involves no more than O..log n/2C�/ operations. Finally,
the work involved in doing O.log n/ Miller-Rabin tests is O..log n/2C�/. It
follows that the cost of the entire first phase is at most O..log n/2C�/.

The second phase is a computation involving the ‘lucky’ quadratic number
field F that we found in the first phase: we compute an elliptic curve E with
CM by the ring of integers of F . Since the discriminant �F is O..log n/2/, the
amount of work to compute the minimum polynomial g of its j - invariant by
means of the high precision computations explained above is O..log n/1C�/.
See [Enge 2006]. The number of bits needed to write down g is O..log n/2/.
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The work to find a zero of g in Z=nZ is proportional to the effort to compute
an .n � 1/=2-th power modulo g, which is O..log n/1C2�/. Finally we com-
pute a large multiple of a random point on an elliptic curve modulo n. The
work involved is O..log n/1C�/, so that the cost of the entire second phase is
O..log n/1C2�/.

The total amount of work for a single step can therefore be estimated by
O..log n/max.2C�;1C2�// D O..log n/1C2�/. The cost of the entire algorithm
is therefore O..log n/2C2�/. This is O..log n/6/ if one uses standard arithmetic
in Z=nZ and O..log n/4C"/ using fast multiplication techniques.
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