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Large Deviations for dummies Cramér's Theorem

X1, X2, ... i.i.d. R-valued random variables with E [X;] = 0 and
Var(X;) =02 € R.
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Large Deviations for dummies Cramér's Theorem

X1, X2, ... i.i.d. R-valued random variables with E [X;] = 0 and
Var(X;) =02 € R.

e Strong law of large numbers (SLLN):
( ZX oo, ) 1:
o Central limit theorem (CLT):

<MZX€A R A

@ Large Deviation Principle (LDP) (+ other conditions):

( ZX >x>~e nZ(x),

j=1
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Large Deviations for dummies Cramér's Theorem

Large Deviation Theory deals with asymptotic computation
of small probabilities on an exponential scale.
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Large Deviations for dummies Cramér's Theorem

Theorem (Cramér)

Let X1, X5, ... be i.i.d. R-valued random variables such that

o(t)=E [etxl} <oo VteR
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Large Deviations for dummies Cramér's Theorem

Theorem (Cramér)

Let X1, X5, ... be i.i.d. R-valued random variables such that

o(t)=E [etxl} <oo VteR

Then, for all x > E [X1],

1 1<
| — — : > = _
nllm - |og]P’<n ElXJ _x) Z(x),
J:

where

I(x):= fgI[Rz [tx — log (t)].
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Large Deviations for dummies Cramér's Theorem

1(x)

essinf(X;) L'L esssu;J(X,) X
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Large Deviations for dummies Cramér's Theorem

1(x)

essinf(X;) L'L esssu;J(X,) X

The function Z(x)
@ is convex,
@ has compact level sets (= is lower semi-continuous),
@ Z(x) > 0 and equality holds iff x = = E [X1].
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Large Deviations for dummies ~ Main definition

Definition

Let X be a Polish space. A function T : X — [0, 0] is called rate function
if

o T # 0

@ T has compact level sets (= lower semicontinuous)
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Definition
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Large Deviations for dummies ~ Main definition

Definition

Let X be a Polish space. A function T : X — [0, 0] is called rate function
if

o T # 0

@ T has compact level sets (= lower semicontinuous)

Definition
Let v, — oo be a sequence in R*. A sequence of probability measures

{pn} on (X, B(X)) satisfies a large deviation principle with rate function T
and speed v, if

n—oo xe0

1
© For every open set O, liminf — log ps(O) > — inf Z(x);
Tn

@ For every closed set C,  limsup 1 log pun(C) < — inf Z(x).

n—oo “Vn xeC
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Large Deviations for dummies ~ Main definition

Remarks

O 7 lower semi-continuous = attains a minimum on every compact set;
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Large Deviations for dummies ~ Main definition

Remarks

O 7 lower semi-continuous = attains a minimum on every compact set;

@ for a "nice" set A
Mn(A) ~ ef'y,,ianI;

Q up(X)=1= Xlgﬁ(I(x) = )r(’r%i)r}I(x) = 0;

Q if 3lx s.t. Z(x) = 0, the LDP implies SLLN ;

@ in general no relation between LDP and CLT.
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Large Deviations for dummies  Applications

Recall "Laplace method":

n—oo n x€[0,1]

1 1
Vf :10,1] — R continuous, lim — Iog/ e"™dx = max f(x).
0
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Large Deviations for dummies  Applications

Recall "Laplace method":

1 1
Vf :10,1] — R continuous, lim — Iog/ e"™dx = max f(x).
0

n—oo n x€[0,1]

Theorem (Varadhan's Lemma)

Let (un) satisfy an LDP on the Polish space X with speed v, and rate
function T. Let F : X — R be a continuous function bounded from above.
Then

lim 1Iog/ e F0) 0 (dx) = sup [F(x) —Z(x)].
n—=00 Yn X XEX
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Let (X¢)reqo,00) be the simple random walk on Z? in continuous time. lts
generator is the Laplace operator:

Af(x)= Y [fy)—f(x)], xe€z? f: 29 R

y€EZI: y~x

Call empirical measure

t
Zt(z) Z:/ ]l{Xs:z}dS'
0
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Let (X¢)reqo,00) be the simple random walk on Z? in continuous time. lts
generator is the Laplace operator:

Af(x)= Y [fy)—f(x)], xe€z? f: 29 R
y€EZI: y~x

Call empirical measure

t
Zt(z) Z:/ ]l{Xs:z}dS'
0

Theorem (Donsker, Varadhan)

The process of empirical measures (%Kt)tew of the simple random walk
under Po(- N {supp(¢¢) C B}) satisfies a large deviation principle on
Mi(B) with speed +; = t and rate function

0 = (= Bevi i) =5 3 (Vhl = Vi)'

x~y:xeB

Michele Salvi (TU Berlin) An LDP for a RWRC in a finite box February 09, 2011 10 / 23



Random Walk among Random Conductances = The model
The model
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Random Walk among Random Conductances = The model

The model d=2
Consider the lattice Z9 and assign to
any bond (x,x + €) a random weight
wy,e such that ®

® Wy e = Wxte,—e (Symmetry), Wy

a),\'yz
T, ~exp Zw”_

° {wx,e}xezdyeeg are i.i.d.,
® wy e > 0 (positivity).
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Random Walk among Random Conductances = The model

The model d=2

Consider the lattice Z9 and assign to
any bond (x, x + e) a random weight -
o,

wx,e such that ./\ ”(“’-"'):Z(;

® Wy e = Wxte,—e (Symmetry), g

(2]

R

a),\'yz
T, ~exp Zw”_

° {wx,e}xezdyeeg are i.i.d.,
® wy e > 0 (positivity).
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Random Walk among Random Conductances = The model

The model d=2
Consider the lattice Z9 and assign to
any bond (x,x + €) a random weight @,,
o,

Wx,e SUCh that o ./a?‘ p(xa."\):y

® Wy e = Wxte,—e (Symmetry), s o

.. o,
° {u}x,e}xezdyeeg are i.i.d., . ~cxp[zw”_]

® wy e > 0 (positivity).

Definition
The Random Walk among Random Conductances (RWRC) is the
continuous-time process generated by

A“f(x) = Z wy.e(f(x + €) — f(x)).

x€Z4 ecE
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Random Walk among Random Conductances = The model

RWRE RWRC
Time Mostly discrete Mostly continuous
Reversibility No Yes
CLT, SLLN,
Problems criteria for tran- | CLT, SLLN
sience/recurrence,
ballisticity
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What has been done so far?

@ wye € [0,1] with Prob(wx,e > 0) > pc(d), discrete time: quenched
functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]
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What has been done so far?
@ wye € [0,1] with Prob(wx,e > 0) > pc(d), discrete time: quenched
functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]

@ w's with polynomial tails near 0, continuous time: probability of return
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What has been done so far?
@ wye € [0,1] with Prob(wx,e > 0) > pc(d), discrete time: quenched
functional CLT, via homogenization [BISKUP, PRESCOTT (2007)]

@ w's with polynomial tails near 0, continuous time: probability of return
to 0 in the quenched [BERGER, BISKUP, HOFFMAN, KOZMA
(2008)] and the annealed case [FONTES, MATHIEU (2008)]

® wye € [0,1] with Prob(wx,e > 0) > pc(d), continuous time: almost
sure invariance principle [MATHIEU (2008)]

® wye € [1,00), continuous time: annealed and quenched CLT
[BARLOW, DEUSCHEL (2009)]

® wye € [1,00), discrete time: convergence to some Lévy process
[BARLOW, CERNY (2010)]
Our case: restrict to a finite connected set and assume essinf{wy ¢} =0
(more specifically log Prob(wx,e < 5) o —e7 M fore | 0,np>1.)

@ Aim: large deviation principle for local times!
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Random Walk among Random Conductances = The model

Let (Xt)te[0,00) be the RWRC. For x € B C 79, B finite and connected
set, define the local time

t
Et(X) ZI/ ]l{XS:X}dS.
0
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Random Walk among Random Conductances = The model

Let (Xt)te[0,00) be the RWRC. For x € B C 79, B finite and connected
set, define the local time

t
Et(X) ZI/ ]l{Xs:X}dS'
0

We want to study the annealed behaviour of /;:

(e~ e))

where g : B — RT, with supp(g) € B, Y, cg8%(x) =1 and (-) is the
expectation w.r.t. the conductances.
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Random Walk among Random Conductances = The model

Let (Xt)te[0,00) be the RWRC. For x € B C 79, B finite and connected
set, define the local time

t
Et(X) ZI/ ]l{Xs:X}dS'
0

We want to study the annealed behaviour of /;:

(e~ e))

where g : B — RT, with supp(g) € B, Y, cg8%(x) =1 and (-) is the
expectation w.r.t. the conductances.

Three noises: % the conductances;
% the waiting times;
% the embedded discrete-time RW.
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Related fields:
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Related fields:

@ Note that, by a Fourier expansion:

d-#B
( “ly ~ g2 ‘supp (4) € B) Z e 0)(f, 1) ~ otAT(B)

where Ay (B) is the bottom of the spectrum of —AY restricted to the
box B. Relation with Random Schrddinger operators!
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Random Walk among Random Conductances Related fields

Related fields:

@ Note that, by a Fourier expansion:

d-#B
( —ly~ g ‘supp (4) € B) Z e )(fe, 1) = t/\f(B)y

where Ay (B) is the bottom of the spectrum of —AY restricted to the
box B. Relation with Random Schrddinger operators!

o Parabolic Anderson model with random Laplace operator:

Oru(x,t) = A%u(x,t) +&(x)u(x,t), te(0,00), x € Z9
u(x,0) = dp(x) x € z9.

Feynman-Kac formula gives u(x, t) = EY [efotg(XS)ds(So(Xt)], where X;
is a RWRC.
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Random Walk among Random Conductances = The main theorem

Recall:
e B C 79 finite and connected:;
o logPr(wxe <e)m—e1, fore|0,n>1,
o le(x) = [ Lix,—xyds.
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Random Walk among Random Conductances = The main theorem

Recall:
e B C 79 finite and connected:;
° IogPr(wxe <e)m—e, fore|0,n>1;

4 f fO ]l{Xs—x}dS
Theorem (joint work with Wolfgang Konig and Tilman Wolff)

The process of empirical measures (10;),cg+ of the Random Walk among
Random Conductances under the annealed law (Pg(- N {supp(¢;) C BY}))
satisties a large deviation principle on M1(B) with speed ; = 71T and
rate function J given by

1+n

)=GC ) lglz+e)—glz )7 = G, Vg H””

for all g> € M1(B), where C, := (1+ 1 )"7”"
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Random Walk among Random Conductances = The main theorem

This means

2n

<]P"6’( {%Et ~ g2} N {supp(¢;) C B})> r e G N lg(ze) g ()T
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Random Walk among Random Conductances = The main theorem

This means

2n

<]P"6’( {%Et ~ g2} N {supp(¢;) C B})> r e G N lg(ze) g ()T

In particular:

Corollary

The annealed probability of non-exit from the box B for the Random Walk
among Random Conductances for t > 0 is

n 2n
log (Pg (supp(¢:) CB) )~ sup —t¥n( g(z+e)—g(z)|m!.
(Pg (supp(t:) € B) ) ey TG el ) 8 (2)
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Random Walk among Random Conductances = Sketch of the proof

Sketch of the proof (heuristics):

Project:

@ rescale the conductances;
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Random Walk among Random Conductances = Sketch of the proof

Sketch of the proof (heuristics):

Project:
@ rescale the conductances;

e combine "classical" LDP's for weighted random walk and for the
conductances;
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@ rescale the conductances;

e combine "classical" LDP's for weighted random walk and for the
conductances;
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Random Walk among Random Conductances = Sketch of the proof

Sketch of the proof (heuristics):

Project:
@ rescale the conductances;

e combine "classical" LDP's for weighted random walk and for the
conductances;

@ "physicists’ trick";
@ optimization over the rescaled shape of the conductances.
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Random Walk among Random Conductances = Sketch of the proof

<]P’B"(%€t ~ g2> ]l{t,wwo}> ~ ]P’S_'“"(%Et ~ g2)Prob(t'w ~ go)

Michele Salvi (TU Berlin) An LDP for a RWRC in a finite box February 09, 2011 19 / 23



Random Walk among Random Conductances = Sketch of the proof

1 —r 71
<]P>(6}(?€t ~ g2> ]l{t,wwo}> ~ ]P’S “’(Eﬂt ~ g2)Prob(t'w ~ go)
LDP for the conductances:

Prob(Vz, e:t'wye ~ ¢(z, e)) = HProb(wLe ~t7"p(z, e))

z.e

~exp{—t" Z o(z,€)7"}.
z,e
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Random Walk among Random Conductances = Sketch of the proof

1 —r 71
<]P>(6}(?€t ~ g2> ]l{t,wwo}> ~ ]P’S “’(Eﬂt ~ g2)Prob(t'w ~ go)
LDP for the conductances:

Prob(Vz, e:t'wye ~ ¢(z, e)) = HProb(wLe ~t7"p(z, e))

z.e

~ exp { — t Z o(z, e)_"}.
z,e
LDP for weighted random walk:
1
IPg’(EEt ~ gz) A exp { — tZ@b(Z, e) (g(z +e)— g(z))z}
z,e

Michele Salvi (TU Berlin) An LDP for a RWRC in a finite box February 09, 2011



Random Walk among Random Conductances = Sketch of the proof

1 —r 71
<]P>(6}(?€t ~ g2> ]l{t’w~¢}> ~ ]P’S “’(Eﬁt ~ g2)Prob(t'w ~ go)
LDP for the conductances:

Prob(Vz, e:t'wye ~ ¢(z, e)) = HProb(wLe ~t7"p(z, e))

z.e

~ep {7 plze) 7).
LDP for weighted random walk:
PB”(%@ ~ &%) mep{ —tY h(z.e)(g(z + ) — £(2))°}
therefore
(M ) = 5 (s 87)

~ exp{ — ng(z, e)(g(z +e)— g(z))z}
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Random Walk among Random Conductances = Sketch of the proof

Physicists’ trick:
Best rate of convergence for

1
t =t e r=——.
1+

Then correct speed for the LDP: ~; = £,
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Random Walk among Random Conductances = Sketch of the proof

Physicists’ trick:
Best rate of convergence for

1
t =t e r=——.
1+

Then correct speed for the LDP: ~; = £,

Optimization over ¢ for fixed g:

Y [e(z. €)= p(z,6)(8(z + €) — g(2))?]

z,e

is optimal if
2

_1 2
o(z,e) =nT|g(z+e) —g(e)| .
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Random Walk among Random Conductances = Sketch of the proof

Technical obstacles:
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Random Walk among Random Conductances = Sketch of the proof

Technical obstacles:

@ Lower bound for open sets.
Problem: need to understand the asymptotics of

inf 29(Gtec).

There seems to be no monotonicity, but there is some kind of
continuity of the map ¢ — Pg(-).
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Random Walk among Random Conductances = Sketch of the proof

Technical obstacles:

@ Lower bound for open sets.
Problem: need to understand the asymptotics of

1
inf IP‘P<—£t e )
pEA t
There seems to be no monotonicity, but there is some kind of
continuity of the map ¢ — Pg(-).

@ Upper bound for closed sets.
Problem: t"w is not bounded. We need a compactification argument
for the space of rescaled conductances.
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Future work:
Consider growing box

B:=a;BNZY,

IR say ap = t9.
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Future work:
Consider growing box

B:=a;BNZY,

IR say ap = t9.
The rescaled local times is

od

Li(x) = Ttﬁt({atxj), x € B.
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Future work:
Consider growing box

B:=a;BNZY,

IR say ap = t9.
The rescaled local times is

od

Li(x) = Ttﬁt({atxj), x € B.

L; should satisfy an LDP with speed

1—a(dn—2)
Y=t Tt
and rate function
J(f2) / (e-Vf) )”’7 =C ||Vf||”’7.
1+n

eEN
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Dankeschon!
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