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Complex networks

Scale-free
Law of degrees decays polynomially:

P(Dx ≥ t) ' t−γ

Small world
Graph dist ' log(Euclidean dist)

Positive clustering coefficient
Probability that two of my friends are
friends is high.

Scale-free Small world Positive CC
Erdös-Rényi 7 3 7

Norros-Reittu, Chung-Lu 3 3 7

Watts-Strogatz 7 3 3

Go beyond mean field, regular lattices, explicit large structures...
Combine motion + demography (metapopulation)
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The model

Random graph G = (V ,E )
G = G (ω) with law P :

V = PPP(Rn)

E 3 {x , y} with P(x ↔ y)

Examples: - P(x ↔ y) = 1 (complete graph)
- P(x ↔ y) = ‖x − y‖−α (long-range percolation)
- P(x ↔ y) 'WxWy‖x − y‖−α (scale-free percolation)

Dynamics (ηt(·))t≥0.
Fix G (ω). Under Pω independent particles that

Jump from x to y at rate r(x , y) = e−‖x−y‖1l{x↔y}

Give birth to new particle at rate b on site.
Die at rate d .
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Epidemics at macroscopic scale

Our aim:
Describe macroscopic behaviour of the system, i.e. hydrodynamic limits.

Where is the epidemics?

OPTION 1
Introduce a further SIR dynamics with infection at rate λ, recovery at

rate γ. Requires rapid stirring techniques.

OPTION 2
View model as first stages of SIR epidemics in a large population: b is

then infection rate, d is the recovery rate.
Note: Approximation valid on a time window where infected population
remains locally small compared to population size.
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Existence

Theorem (with V. Bansaye)
For P-a.a. realizations G (ω), suppose Eω[η0(x)] ≤ M, ∀x ∈ V (ω). Then

(ηt)t∈[0,T ] is well defined.

For functions fH(η) =
∑

x∈V H(x)η(x) the “generator” of the process “is”

LfH(η) =
∑

x,y∈V

η(x)r(x , y)
(
H(y)− H(x)

)
+
∑
x∈V

η(x)
(
b − d

)
H(x) .

Holds for any choice of P(x ↔ y)!

b = d = 0 independent random walks, easy.

Available techniques (Liggett, Andjel, Ganguly-Ramanan) don’t apply:
- Jump rates are not bounded
- Restriction on initial conditions
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Sketch of proof

Fix a compact K ⊂ Rd .
Aim: only finite number of events in K up to T .
Idea: enlarge space, particles leave “ghosts” behind when jumping.

STEP 1: finite subgraph
Existence when suppressing jumps out of a finite subgraph B + show

Eω[ghosts(K ) + particles(K ) at T ] ≤ CK (ω)MebT (uniform in B!)

STEP 2: full graph, finite initial condition
Extend to whole G (ω) but finite initial particles: take increasing sequence
of subgraphs BN + range of particles stays finite a.s.

STEP 3: full graph, infinite initial conditions
Extend to infinite initial conditions by monotonicity and previous bound:

Eω[ghosts(K ) + particles(K ) at T ]

(MON)
= lim

N→∞
Eω[ghosts(K ) + particles(K ) at T with ηN0 ] ≤ CK (ω)MebT .
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Main result: hydrodynamic limits

Sped-up process (ηNt )t∈[0,T ]:

LN fH(η) =
∑
x∈V

η(x)LNH(x/N) +
∑
x∈V

η(x)
(
b − d

)
H(x/N) .

LN generator of random walk on V /N with rates N2r(·, ·):

LNH(x/N) =
∑
y∈V

N2r(x , y)
(
H(y/N)− H(x/N)

)
.

LN acts on L2(µN), where µN := N−n
∑

x∈V δx/N .

Measure-valued process (πNt )t∈[0,T ]:

πNt = πN(ηNt ) = N−n
∑
x∈V

ηNt (x)δx/N ∈M(Rn) .
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Theorem (with V. Bansaye)

ASSUMPTION 1: ηN0 (x) ≤ M + Poisson, for each x ∈ V .
ASSUMPTION 2: ∃ρ0 : Rn → [0,∞) s.t. for any H ∈ C∞c (Rn)

N−n
∑
x∈V

ηN0 (x)H(x/N)
N→∞−−−−→
Pω

∫
Rn

H(x)ρ0(x) dx .

The sequence of processes {(πNt )t∈[0,T ]}N∈N converges in law in
D([0,T ],M(Rn)) to the deterministic trajectory (ρ(t, u) du)t∈[0,T ], where
ρ(·, ·) : [0,T ]× Rn → R is the unique weak solution of{

∂tρ = σ∆ρ+ (b − d)ρ

ρ(0, ·) = ρ0
.

Here
σ2 :=

1
2

inf
ψ∈B(Ω)

E0

[∑
y∈V

r(0, y)
(
y1 + ψ(θyω)− ψ(ω)

)2]
.
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Strategy of the proof

STEP 1: Corrected empirical measure
LNH might be irregular (not in L2(µN)).
Idea: LN is a discretization of σ∆ =⇒ substitute H with Hλ

N :

(λ−LN)Hλ
N = (λ−σ∆)H .

PIN 1: need to show that Hλ
N converges to H in L1 and L2.

STEP 2: Tightness of {(πNt )t∈[0,T ]}N∈N

MN
t = 〈πNt ,Hλ

N〉 − 〈πN0 ,Hλ
N〉 −

∫ t

0
〈πNs , LNHλ

N + (b − d)Hλ
N〉ds

shown to be an L2 martingale converging to 0. Tightness from Aldous’ crit.
PIN 2: need control of sup

t∈[0,T ]
〈πNt , f 〉 = sup

t∈[0,T ]
N−n

∑
x∈V

ηNt (x)f (x/N).

STEP 3: Identification of the limit
Limit of (πNt ) is unique and has density ρ(t, u): ∂tρ = σ∆ρ+ (b − d)ρ.
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Stochastic homogenization

PIN 1: Show that Hλ
N converges to H in L1(µω) and L2(µω), where

(λ−LN)Hλ
N = (λ−σ∆)H .

[Faggionato, 2023 & 2023+]: Take a point process and rates s.t. P-a.s.
A1 P is stationary and ergodic
A2 Finite and positive intensity 0 < E[µω([0, 1]n)] <∞
A3 θgω 6= θg ′ω

A4 µω is stationary and rθgω(x , y) = rω(τgx , τgy)

A5 r(x , y) = r(y , x)

A6 The graph is connected
A7 E0[

∑
x∈V r(0, x)‖x‖k ] <∞ for k = 0, 2

A8 L2(P0) is separable
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Non-reversible Kipnis-Varadhan

PIN 2: Control sup
t∈[0,T ]

N−n
∑
x∈V

ηNt (x)f (x/N) .

Kipnis-Varadhan estimates, BUT (1) Unbounded rates (2) Non-reversib.

STEP 1: Case b = d = 0. Start with reversible measure (⊗Poisson)

Pω
(

sup
t∈[0,T ]

N−n
∑
x∈V

η̃Nt (x)f (x/N) > A
)
≤ c
|||f |||N
A

with |||f |||2N := ‖f ‖2
L1(µN )

+ ‖f ‖2
L2(µN )

N−n‖LN f ‖L2(µn) .

STEP 2: Extension to non-reversible case.

Pω
(

sup
t∈[0,T ]

N−n
∑
x∈V

ηNt (x)f (x/N) > A
)
≤ c1ec2bT

|||f |||N
A

Proof: For each initial particle look at single branch of the ancestral line,
say of length `. Dominate with indep. r.w.’s with percolated initial
distribution: keep each particle with P(particle has ` births up to time T ).
Use reversible K-V (1). Union bound.
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Results are true if A1,. . . ,A8 are satisfied!
Can consider more general point processes, graphs, jumping rates...

Future developments

What happens when jumping rates decay slower?

We only accelerated by N2 the jumps.
What happens if consider faster births/deaths? (rapid stirring)

Consider more realistic birth/death mechanism.
Example: For dx(η) = d + cη(x) should obtain in the limit

∂tρ = σ∆ρ+ (b − d − cρ)ρ .

Or births/deaths that depend via a non-local kernel on the population size
in a surrounding region.
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Can consider more general point processes, graphs, jumping rates...

Future developments

What happens when jumping rates decay slower?

We only accelerated by N2 the jumps.
What happens if consider faster births/deaths? (rapid stirring)

Consider more realistic birth/death mechanism.
Example: For dx(η) = d + cη(x) should obtain in the limit

∂tρ = σ∆ρ+ (b − d − cρ)ρ .

Or births/deaths that depend via a non-local kernel on the population size
in a surrounding region.
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Thank you!
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