
Name: Matriculation number:

September 12, 2019, L.A.G. exam

Solve the following exercises, explaining clearly each passage:

1) Consider the matrix A =

[
1 −k

2− k −1

]
(1a) Compute the rank of A depending on the parameter k.

(1b) For which values of k is the matrix invertible?

(1c) Compute the inverse of A for the values of k from the previous point

2) Consider the linear transformation f : R3 → R2 defined by

f

x1x2
x3

 =

[
x1 + x2 + x3

x2

]

(2a) Determine the dimension and a basis of Ker(f) and of Im(f).

(2b) Say if f is injective and if it is surjective.

(2c) Determine all the vectors v ∈ R3, if they exist, such that f(v) =

[
1
1

]

3) Consider in the 3-dimensional space the line r of cartesian equation

{
x+ 2z − 1 = 0

y − z − 1 = 0

(3a) Find a parametric equation of r.

(3b) Determine the plane π perpendicular to r passing through the point (1, 2, 1).

(3c) Find the distance between π and the origin.

(3d) Find the angle between r and the x axis.

4) Consider in the euclidean plane the conic

x2 + 2y2 − 4x− 12y + 21 = 0

(4a) Find a translation X = x+ a, Y = y + b that puts the conic in canonical
form

(4b) Recognize the type of conic

(4c) Find the coordinates of the centre, if it exists

(4d) Find the coordinates of the vertices.
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Solve the following exercises, explaining clearly each passage:

1) Consider the matrix A =

[
k k
1 2− k

]
(1a) Compute the rank of A depending on the parameter k.

(1b) For which values of k is the matrix invertible?

(1c) Compute the inverse of A for the values of k from the previous point

2) Consider the linear transformation f : R2 → R3 defined by

f

[
x1
x2

]
=

x1 + x2
x1 + x2
x1


(2a) Determine the dimension and a basis of Ker(f) and of Im(f).

(2b) Say if f is injective and if it is surjective.

(2c) Determine all the vectors v ∈ R2, if they exist, such that f(v) =

1
1
2



3) Consider in the 3-dimensional space the line r of cartesian equation

{
x− 2z − 1 = 0

y + z − 1 = 0

(3a) Find a parametric equation of r.

(3b) Determine the cartesian equation of the plane π perpendicular to r passing
through the point (1, 1, 1)

(3c) Find the distance between π and the origin.

(3d) Find the angle between r and the x axis.

4) Consider in the euclidean plane the conic

x− 2y2 + 8y − 9 = 0

(4a) Find a translation X = x+ a, Y = y + b that puts the conic in canonical
form

(4b) Recognize the type of conic

(4c) Find the coordinates of the centre, if it exists

(4d) Find the coordinates of the vertices.


