On (special versions of) Hartshorne Conjecture

On (special versions of) Hartshorne Conjecture

• I will report on joint work/thoughts with Paltin Ionescu.

(E)

æ

Definitions

• $X^n \subset \mathbb{P}^N$ irreducible complex projective manifold;

On (special versions of) Hartshorne Conjecture

Definitions

- $X^n \subset \mathbb{P}^N$ irreducible complex projective manifold;
- ② $X^n ⊂ \mathbb{P}^{n+c}$ is assumed to be **non-degenerate**, $n = \dim(X)$ and $c = \operatorname{codim}(X) = N - n$.

Definitions

- $X^n \subset \mathbb{P}^N$ irreducible complex projective manifold;
- ② $X^n ⊂ \mathbb{P}^{n+c}$ is assumed to be **non-degenerate**, $n = \dim(X)$ and $c = \operatorname{codim}(X) = N - n$.

3

$$X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{N=n+c},$$

Definitions

- $X^n \subset \mathbb{P}^N$ irreducible complex projective manifold;
- ② $X^n ⊂ \mathbb{P}^{n+c}$ is assumed to be **non-degenerate**, $n = \dim(X)$ and $c = \operatorname{codim}(X) = N - n$.

3

$$X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{N=n+c},$$

scheme theoretically intersection of

Definitions

- $X^n \subset \mathbb{P}^N$ irreducible complex projective manifold;
- ② $X^n ⊂ \mathbb{P}^{n+c}$ is assumed to be **non-degenerate**, $n = \dim(X)$ and $c = \operatorname{codim}(X) = N - n$.

3

$$X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{N=n+c},$$

scheme theoretically intersection of $V(f_i) \subset \mathbb{P}^N$ hypersurface of degrees d_i with

Definitions

- $X^n \subset \mathbb{P}^N$ irreducible complex projective manifold;
- ② $X^n ⊂ \mathbb{P}^{n+c}$ is assumed to be **non-degenerate**, $n = \dim(X)$ and $c = \operatorname{codim}(X) = N - n$.

3

$$X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{N=n+c},$$

scheme theoretically intersection of $V(f_i) \subset \mathbb{P}^N$ hypersurface of degrees d_i with

$$d_1 \geq d_2 \geq \ldots \geq d_m \geq 2.$$

Definitions

- $X^n \subset \mathbb{P}^N$ irreducible complex projective manifold;
- ② $X^n ⊂ \mathbb{P}^{n+c}$ is assumed to be **non-degenerate**, $n = \dim(X)$ and $c = \operatorname{codim}(X) = N - n$.

3

4

$$X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{N=n+c},$$

scheme theoretically intersection of $V(f_i) \subset \mathbb{P}^N$ hypersurface of degrees d_i with

$$d_1 \geq d_2 \geq \ldots \geq d_m \geq 2.$$

$$d:=\sum_{i=1}^{c}(d_i-1)\geq c.$$

On (special versions of) Hartshorne Conjecture

Remarks

٢

$$X^n = V(f_1, \ldots, f_c) \subset \mathbb{P}^{n+c} \Longrightarrow I(X) = \langle f_1, \ldots, f_c \rangle,$$

Remarks

۲

$$X^n = V(f_1, \ldots, f_c) \subset \mathbb{P}^{n+c} \Longrightarrow I(X) = \langle f_1, \ldots, f_c \rangle,$$

i.e. $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

Remarks

٩

$$X^n = V(f_1, \ldots, f_c) \subset \mathbb{P}^{n+c} \Longrightarrow I(X) = \langle f_1, \ldots, f_c \rangle,$$

i.e. $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

 (f₁,..., f_c) define an isomorphism of locally free sheaves of rank c :

Remarks

$X^n = V(f_1, \ldots, f_c) \subset \mathbb{P}^{n+c} \Longrightarrow I(X) = \langle f_1, \ldots, f_c \rangle,$

i.e. $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

(f₁,..., f_c) define an isomorphism of locally free sheaves of rank c :

$$u: \bigoplus_{i=1}^{c} \mathcal{O}_X(-d_i) \to \frac{\mathcal{I}_X}{\mathcal{I}_X^2}.$$

Remarks

$X^n = V(f_1, \ldots, f_c) \subset \mathbb{P}^{n+c} \Longrightarrow I(X) = \langle f_1, \ldots, f_c \rangle,$

i.e. $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

(f₁,..., f_c) define an isomorphism of locally free sheaves of rank c :

$$u: \bigoplus_{i=1}^{c} \mathcal{O}_X(-d_i) \to \frac{\mathcal{I}_X}{\mathcal{I}_X^2}.$$

Adjunction yields

$$\mathcal{O}_X(K_X) \simeq \mathcal{O}_X(-n-c-1) \otimes \mathcal{O}_X(\sum_{i=1}^c d_i) = \mathcal{O}_X(d-n-1),$$

i.e.

Remarks

$X^n = V(f_1, \ldots, f_c) \subset \mathbb{P}^{n+c} \Longrightarrow I(X) = \langle f_1, \ldots, f_c \rangle,$

i.e. $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

(f₁,..., f_c) define an isomorphism of locally free sheaves of rank c :

$$u: \bigoplus_{i=1}^{c} \mathcal{O}_X(-d_i) \to \frac{\mathcal{I}_X}{\mathcal{I}_X^2}.$$

Adjunction yields

$$\mathcal{O}_X(K_X) \simeq \mathcal{O}_X(-n-c-1) \otimes \mathcal{O}_X(\sum_{i=1}^c d_i) = \mathcal{O}_X(d-n-1),$$

i.e.

$$-K_X = \mathcal{O}_X(n+1-d).$$

On (special versions of) Hartshorne Conjecture

•
$$X^n = V(f_1, \ldots, f_m) \subset \mathbb{P}^{n+c}$$
 as above,

On (special versions of) Hartshorne Conjecture

E 🖌 🖌 E 🕨

•
$$X^n = V(f_1, \dots, f_m) \subset \mathbb{P}^{n+c}$$
 as above, $\exists \ g_i \in H^0(\mathcal{I}_X(d_i)), \ i = 1, \dots, c$

such that

On (special versions of) Hartshorne Conjecture

▶ < 문 ▶ < 문 ▶</p>

2

•
$$X^n = V(f_1, \dots, f_m) \subset \mathbb{P}^{n+c}$$
 as above,
 $\exists \ g_i \in H^0(\mathcal{I}_X(d_i)), \ i = 1, \dots, c$

such that

$$Y = V(g_1,\ldots,g_c) = X \cup X',$$

as schemes.

On (special versions of) Hartshorne Conjecture

▶ < 문 ▶ < 문 ▶</p>

2

$$Y^n = V(g_1, \ldots, g_c) = X \cup X'$$
 is connected since $n \ge 1$

(g₁,...,g_c) define an injective homomorphism of locally free sheaves

$$u: \bigoplus_{i=1}^{c} \mathcal{O}_X(-d_i) \to \frac{\mathcal{I}_X}{\mathcal{I}_X^2}$$

白 と く ヨ と く ヨ と …

$$Y^n = V(g_1, \ldots, g_c) = X \cup X'$$
 is connected since $n \ge 1$

• (g_1, \ldots, g_c) define an injective homomorphism of locally free sheaves

$$u: \bigoplus_{i=1}^{c} \mathcal{O}_X(-d_i) \to \frac{\mathcal{I}_X}{\mathcal{I}_X^2}$$

$$supp(X \cap X') = supp(coker(u)).$$

白 と く ヨ と く ヨ と …

$$Y^n = V(g_1, \ldots, g_c) = X \cup X'$$
 is connected since $n \ge 1$

• (g_1, \ldots, g_c) define an injective homomorphism of locally free sheaves

$$u: \bigoplus_{i=1}^{c} \mathcal{O}_X(-d_i) \to \frac{\mathcal{I}_X}{\mathcal{I}_X^2}$$

$$supp(X \cap X') = supp(coker(u)).$$

If $X' \neq \emptyset$, then $X \cap X' \neq \emptyset$, supp $(X \cap X')$ is a divisor D and

白 ト ・ ヨ ト ・ ヨ ト

$$Y^n = V(g_1, \ldots, g_c) = X \cup X'$$
 is connected since $n \ge 1$

(g₁,...,g_c) define an injective homomorphism of locally free sheaves

$$u: \bigoplus_{i=1}^{c} \mathcal{O}_X(-d_i) \to \frac{\mathcal{I}_X}{\mathcal{I}_X^2}$$

$$supp(X \cap X') = supp(coker(u)).$$

If $X' \neq \emptyset$, then $X \cap X' \neq \emptyset$, supp $(X \cap X')$ is a divisor D and

$$\mathcal{O}_X(D) \simeq \det(\frac{\mathcal{I}_X}{\mathcal{I}_X^2}) \otimes \mathcal{O}_X(\sum_{i=1}^{c} d_i) \simeq \mathcal{O}_X(d-n-1) \otimes \omega_X^*.$$

ヨット イヨット イヨッ

$$Y^n = V(g_1, \ldots, g_c) = X \cup X'$$
 is connected since $n \ge 1$

(g₁,...,g_c) define an injective homomorphism of locally free sheaves

$$u: \bigoplus_{i=1}^{c} \mathcal{O}_X(-d_i) \to \frac{\mathcal{I}_X}{\mathcal{I}_X^2}$$

supp
$$(X \cap X')$$
 = supp(coker(u)).
If $X' \neq \emptyset$, then $X \cap X' \neq \emptyset$, supp $(X \cap X')$ is a divisor D and

$$\mathcal{O}_X(D) \simeq \det(rac{\mathcal{I}_X}{\mathcal{I}_X^2}) \otimes \mathcal{O}_X(\sum_{i=1}^{c} d_i) \simeq \mathcal{O}_X(d-n-1) \otimes \omega_X^*.$$

• In conclusion for $X^n = V(f_1, \ldots, f_m) \subset \mathbb{P}^{n+c}$ we have

ヨット イヨット イヨッ

$$Y^n = V(g_1, \ldots, g_c) = X \cup X'$$
 is connected since $n \ge 1$

(g₁,...,g_c) define an injective homomorphism of locally free sheaves

$$u: \bigoplus_{i=1}^{c} \mathcal{O}_{X}(-d_{i}) \rightarrow \frac{\mathcal{I}_{X}}{\mathcal{I}_{X}^{2}}$$

$$supp(X \cap X') = supp(coker(u)).$$

If $X' \neq \emptyset$, then $X \cap X' \neq \emptyset$, $supp(X \cap X')$ is a divisor D and

$$\mathcal{O}_X(D) \simeq \det(\frac{\mathcal{I}_X}{\mathcal{I}_X^2}) \otimes \mathcal{O}_X(\sum_{i=1}^c d_i) \simeq \mathcal{O}_X(d-n-1) \otimes \omega_X^*.$$

• In conclusion for $X^n = V(f_1, \ldots, f_m) \subset \mathbb{P}^{n+c}$ we have

 X^n is a complete intersection $\iff -K_X = \mathcal{O}_X(n+1-d)$.

• $(x_0 : \ldots : x_N)$ homogeneous coordinates on $\mathbb{P}^{N=n+c}$ such that

$$x = (1:0:\ldots:0) \in X_{\mathsf{reg}}$$

and

(ロ) (同) (E) (E) (E)

• $(x_0 : \ldots : x_N)$ homogeneous coordinates on $\mathbb{P}^{N=n+c}$ such that

$$x = (1:0:\ldots:0) \in X_{\mathsf{reg}}$$

and

$$T_X X = V(x_{n+1},\ldots,x_N).$$

$$\mathbb{A}^{N} = \mathbb{P}^{N} \setminus V(x_{0})$$

with affine coordinates

$$(y_1,\ldots,y_N),$$

(ロ) (同) (E) (E) (E)

• $(x_0 : \ldots : x_N)$ homogeneous coordinates on $\mathbb{P}^{N=n+c}$ such that

$$x = (1:0:\ldots:0) \in X_{\mathsf{reg}}$$

and

۲

$$T_X X = V(x_{n+1},\ldots,x_N).$$

$\mathbb{A}^{N} = \mathbb{P}^{N} \setminus V(x)$	<u>)</u>
--	----------

with affine coordinates

$$(y_1,\ldots,y_N),$$

i.e.
$$y_l = \frac{x_l}{x_0}, \forall l = 1, \dots, N.$$

(日) (同) (E) (E) (E)

$$x = (1:0:\ldots:0) \in X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{n+c};$$

イロン イヨン イヨン イヨン

$$x = (1:0:\ldots:0) \in X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{n+c};$$

$$E = \mathbb{P}((t_X X)^*) = \mathbb{P}^{n-1} \subset E' = \mathbb{P}((t_X \mathbb{P}^N)^*) = \mathbb{P}^{N-1}.$$

イロン イヨン イヨン イヨン

$$x = (1:0:\ldots:0) \in X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{n+c};$$

$$E = \mathbb{P}((t_x X)^*) = \mathbb{P}^{n-1} \subset E' = \mathbb{P}((t_x \mathbb{P}^N)^*) = \mathbb{P}^{N-1}.$$

$$f_i = f_i^1 + f_i^2 + \cdots + f_i^{d_i},$$

On (special versions of) Hartshorne Conjecture

イロン イヨン イヨン イヨン

$$x = (1:0:\ldots:0) \in X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{n+c};$$

$$E = \mathbb{P}((t_x X)^*) = \mathbb{P}^{n-1} \subset E' = \mathbb{P}((t_x \mathbb{P}^N)^*) = \mathbb{P}^{N-1}$$

$$f_i = f_i^1 + f_i^2 + \dots + f_i^{d_i}$$

with f_i^j homogeneous of degree j in the variables (y_1, \ldots, y_N) .

$$x = (1:0:\ldots:0) \in X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{n+c};$$

$$E = \mathbb{P}((t_x X)^*) = \mathbb{P}^{n-1} \subset E' = \mathbb{P}((t_x \mathbb{P}^N)^*) = \mathbb{P}^{N-1}$$

$$f_i = f_i^1 + f_i^2 + \cdots + f_i^{d_i},$$

with f_i^j homogeneous of degree j in the variables (y_1, \ldots, y_N) .

$$V(f_1^1,\cdots,f_m^1)=V(y_{n+1},\ldots,y_N)=E\subset E'.$$

$$x = (1:0:\ldots:0) \in X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{n+c};$$

$$E = \mathbb{P}((t_X X)^*) = \mathbb{P}^{n-1} \subset E' = \mathbb{P}((t_X \mathbb{P}^N)^*) = \mathbb{P}^{N-1}$$

$$f_i = f_i^1 + f_i^2 + \cdots + f_i^{d_i},$$

with f_i^j homogeneous of degree j in the variables (y_1, \ldots, y_N) .

$$V(f_1^1,\cdots,f_m^1)=V(y_{n+1},\ldots,y_N)=E\subset E'.$$

$$\mathcal{L}_{x,\mathbb{P}^{N}}=E'=\mathbb{P}^{N-1}=\mathbb{P}((t_{x}\mathbb{P}^{N})^{*})$$

(本間) (本語) (本語) (二語)

$$x = (1:0:\ldots:0) \in X^n = V(f_1,\ldots,f_m) \subset \mathbb{P}^{n+c};$$

$$E = \mathbb{P}((t_x X)^*) = \mathbb{P}^{n-1} \subset E' = \mathbb{P}((t_x \mathbb{P}^N)^*) = \mathbb{P}^{N-1}$$

$$f_i = f_i^1 + f_i^2 + \cdots + f_i^{d_i},$$

with f_i^j homogeneous of degree j in the variables (y_1, \ldots, y_N) .

$$V(f_1^1,\cdots,f_m^1)=V(y_{n+1},\ldots,y_N)=E\subset E'.$$

$$\mathcal{L}_{x,\mathbb{P}^{N}}=E'=\mathbb{P}^{N-1}=\mathbb{P}((t_{x}\mathbb{P}^{N})^{*})$$

Hilbert scheme of lines of \mathbb{P}^N passing through x.

□→ ★ 国 → ★ 国 → □ 国

Definitions

Q $\mathbf{y} = (y_1 : \ldots : y_n)$ homogeneous coordinates on $E \subset E'$.

On (special versions of) Hartshorne Conjecture

・ロン ・回 と ・ ヨ と ・ ヨ と

Definitions

- **9** $\mathbf{y} = (y_1 : \ldots : y_n)$ homogeneous coordinates on $E \subset E'$.
- **2** For j = 2, ..., m and $\forall i = 1, ..., m$,

On (special versions of) Hartshorne Conjecture

・ロン ・回と ・ヨン ・ヨン

Definitions

$$\widetilde{f}_i^j(\mathbf{y}) = f_i^j(y_1,\ldots,y_n,0,0,\ldots,0,0).$$

On (special versions of) Hartshorne Conjecture

・ロン ・回 と ・ ヨン ・ ヨン

æ

Definitions

\$\mathcal{L}_{x,X}\$ is the (abstract) Hilbert scheme of lines contained in X and passing through x

・ロン ・回と ・ヨン・

Definitions

$$f_i^J(\mathbf{y}) = f_i^J(y_1, \ldots, y_n, 0, 0, \ldots, 0, 0).$$

\$\mathcal{L}_{x,X}\$ is the (abstract) Hilbert scheme of lines contained in X and passing through x

$\mathcal{L}_{x,X} = V(f_1^1, f_1^2, \cdots, f_1^{d_1}, \cdots, f_m^1, f_m^2, \cdots, f_m^{d_m}) \subset E'$

and

4

<ロ> (日) (日) (日) (日) (日)

Definitions

$$f_i^J(\mathbf{y}) = f_i^J(y_1, \ldots, y_n, 0, 0, \ldots, 0, 0).$$

\$\mathcal{L}_{x,X}\$ is the (abstract) Hilbert scheme of lines contained in X and passing through x

$$\mathcal{L}_{x,X} = V(f_1^1, f_1^2, \cdots, f_1^{d_1}, \cdots, f_m^1, f_m^2, \cdots, f_m^{d_m}) \subset E'$$

and

4

$$\mathcal{L}_{x,X} = V(\widetilde{f}_1^2, \cdots, \widetilde{f}_1^{d_1}; \cdots; \widetilde{f}_m^2, \cdots, \widetilde{f}_m^{d_m}) \subset E$$

・ロン ・回と ・ヨン・

Definitions

$$f_i^J(\mathbf{y}) = f_i^J(y_1, \ldots, y_n, 0, 0, \ldots, 0, 0).$$

\$\mathcal{L}_{x,X}\$ is the (abstract) Hilbert scheme of lines contained in X and passing through x

$$\mathcal{L}_{x,X} = V(f_1^1, f_1^2, \cdots, f_1^{d_1}, \cdots, f_m^1, f_m^2, \cdots, f_m^{d_m}) \subset E'$$

and

4

$$\mathcal{L}_{x,X} = V(\widetilde{f}_1^2, \cdots, \widetilde{f}_1^{d_1}; \cdots; \widetilde{f}_m^2, \cdots, \widetilde{f}_m^{d_m}) \subset E$$

・ロン ・回と ・ヨン・

Remarks

L_{x,X} ⊂ *E* scheme theoretically defined by at most ∑^m_{i=1}(*d_i* − 1) equations.

回 と く ヨ と く ヨ と

Remarks

• $\mathcal{L}_{x,X} \subset E$ scheme theoretically defined by at most $\sum_{i=1}^{m} (d_i - 1)$ equations.

3 the scheme $T_X X \cap X \cap \mathbb{A}^N = t_X X \cap X \cap \mathbb{A}^N$ is

$$V(f_1^1,\ldots,f_m^1,f_1^1+f_1^2+\cdots+f_1^{d_1},\ldots,f_m^1+f_m^2+\cdots+f_m^{d_m}) =$$

白 ト イヨ ト イヨト

Remarks

• $\mathcal{L}_{x,X} \subset E$ scheme theoretically defined by at most $\sum_{i=1}^{m} (d_i - 1)$ equations.

3 the scheme $T_X X \cap X \cap \mathbb{A}^N = t_X X \cap X \cap \mathbb{A}^N$ is

$$V(f_1^1,\ldots,f_m^1,f_1^1+f_1^2+\cdots+f_1^{d_1},\ldots,f_m^1+f_m^2+\cdots+f_m^{d_m}) =$$

$$=V(f_1^1,\ldots,f_m^1,f_1^2+\cdots+f_1^{d_1},\ldots,f_m^2+\cdots+f_m^{d_m})\subset\mathbb{A}^N.$$

回 と く ヨ と く ヨ と

Remarks

 L_{x,X} ⊂ E scheme theoretically defined by at most ∑^m_{i=1}(d_i − 1) equations.
 the scheme T_xX ∩ X ∩ A^N = t_xX ∩ X ∩ A^N is

$$V(f_1^1,\ldots,f_m^1,f_1^1+f_1^2+\cdots+f_1^{d_1},\ldots,f_m^1+f_m^2+\cdots+f_m^{d_m}) =$$

$$=V(f_1^1,\ldots,f_m^1,f_1^2+\cdots+f_1^{d_1},\ldots,f_m^2+\cdots+f_m^{d_m})\subset\mathbb{A}^N.$$

3 The scheme $T_X X \cap X \cap \mathbb{A}^N \subset t_X (X \cap \mathbb{A}^N) = t_X X$ is

$$V(\widetilde{f}_1^2+\cdots+\widetilde{f}_1^{d_1},\ldots,\widetilde{f}_m^2+\cdots+\widetilde{f}_m^{d_m})\subset t_xX=\mathbb{A}^n.$$

(4月) (4日) (4日)

$$I := \langle \widetilde{f}_1^2 + \dots + \widetilde{f}_1^{d_1}, \dots, \widetilde{f}_m^2 + \dots + \widetilde{f}_m^{d_m} \rangle \subset \mathbb{C}[y_1, \dots, y_n] = S$$

イロン イヨン イヨン イヨン

$$I := \langle \widetilde{f}_1^2 + \dots + \widetilde{f}_1^{d_1}, \dots, \widetilde{f}_m^2 + \dots + \widetilde{f}_m^{d_m} \rangle \subset \mathbb{C}[y_1, \dots, y_n] = S$$

 $I^* := \langle \{ \text{ initial terms of } f \in I \} \rangle.$

On (special versions of) Hartshorne Conjecture

イロト イヨト イヨト イヨト

$$I := \langle \widetilde{f}_1^2 + \dots + \widetilde{f}_1^{d_1}, \dots, \widetilde{f}_m^2 + \dots + \widetilde{f}_m^{d_m} \rangle \subset \mathbb{C}[y_1, \dots, y_n] = S$$

 $I^* := \langle \{ \text{ initial terms of } f \in I \} \rangle.$

I homogeneous and generated by forms of the same degree $\implies I = I^*$.

On (special versions of) Hartshorne Conjecture

・ロン ・回 と ・ ヨ と ・ ヨ と

$$I := \langle \widetilde{f}_1^2 + \dots + \widetilde{f}_1^{d_1}, \dots, \widetilde{f}_m^2 + \dots + \widetilde{f}_m^{d_m} \rangle \subset \mathbb{C}[y_1, \dots, y_n] = S$$

 $I^* := \langle \{ \text{ initial terms of } f \in I \} \rangle.$

I homogeneous and generated by forms of the same degree $\implies I = I^*$. With these definitions we have :

With these definitions we have :

$$C_x(T_xX\cap X) = \operatorname{Spec}(\frac{S}{I^*})$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$I := \langle \widetilde{f}_1^2 + \dots + \widetilde{f}_1^{d_1}, \dots, \widetilde{f}_m^2 + \dots + \widetilde{f}_m^{d_m} \rangle \subset \mathbb{C}[y_1, \dots, y_n] = S$$

 $I^* := \langle \{ \text{ initial terms of } f \in I \} \rangle.$

I homogeneous and generated by forms of the same degree $\implies I = I^*$. With these definitions we have :

With these definitions we have :

$$C_{x}(T_{x}X \cap X) = \operatorname{Spec}(\frac{S}{I^{*}})$$

$$\mathbb{P}(C_x(T_xX\cap X))=\operatorname{Proj}(\frac{S}{I^*})\subset E.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$J := \langle \widetilde{f}_1^2, \cdots, \widetilde{f}_1^{d_1}; \cdots; \widetilde{f}_m^2, \cdots, \widetilde{f}_m^{d_m} \rangle \subset S$$

イロン イヨン イヨン イヨン

$$J := \langle \widetilde{f}_1^2, \cdots, \widetilde{f}_1^{d_1}; \cdots; \widetilde{f}_m^2, \cdots, \widetilde{f}_m^{d_m} \rangle \subset S$$

$$\mathcal{L}_{x,X} = \operatorname{Proj}(\frac{S}{J}) \subset \mathbb{P}((t_x X)^*).$$

イロン イヨン イヨン イヨン

$$J := \langle \widetilde{f}_1^2, \cdots, \widetilde{f}_1^{d_1}; \cdots; \widetilde{f}_m^2, \cdots, \widetilde{f}_m^{d_m} \rangle \subset S$$

$$\mathcal{L}_{x,X} = \operatorname{Proj}(rac{S}{J}) \subset \mathbb{P}((t_x X)^*).$$

$$I := \langle \widetilde{f}_1^2 + \dots + \widetilde{f}_1^{d_1}, \dots, \widetilde{f}_m^2 + \dots + \widetilde{f}_m^{d_m} \rangle \subset S$$

On (special versions of) Hartshorne Conjecture

イロン イヨン イヨン イヨン

$$J := \langle \widetilde{f}_1^2, \cdots, \widetilde{f}_1^{d_1}; \cdots; \widetilde{f}_m^2, \cdots, \widetilde{f}_m^{d_m} \rangle \subset S$$

$$\mathcal{L}_{x,X} = \operatorname{Proj}(\frac{S}{J}) \subset \mathbb{P}((t_x X)^*).$$

$$I := \langle \widetilde{f}_1^2 + \dots + \widetilde{f}_1^{d_1}, \dots, \widetilde{f}_m^2 + \dots + \widetilde{f}_m^{d_m} \rangle \subset S$$

$$I^* \subseteq J \Longrightarrow \mathcal{L}_{x,X} \subseteq \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)).$$

On (special versions of) Hartshorne Conjecture

イロン イヨン イヨン イヨン

$$X^n = V(f_1, \ldots, f_m) \subset \mathbb{P}^N$$
 is called **quadratic** if

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

 $X^n = V(f_1, \ldots, f_m) \subset \mathbb{P}^N$ is called **quadratic** if $d_1 = 2$, that is if it scheme theoretically intersection of quadrics.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

 $X^n = V(f_1, \ldots, f_m) \subset \mathbb{P}^N$ is called **quadratic** if $d_1 = 2$, that is if it scheme theoretically intersection of quadrics.

Remarks

・ロン ・聞と ・ほと ・ほと

 $X^n = V(f_1, \ldots, f_m) \subset \mathbb{P}^N$ is called **quadratic** if $d_1 = 2$, that is if it scheme theoretically intersection of quadrics.

Remarks

$$X \subset \mathbb{P}^N \text{ quadratic } \Longleftrightarrow d = c.$$

2
$$X^n \subset \mathbb{P}^{n+c}$$
 quadratic $\Longrightarrow I = I^* = J$.

・ロン ・聞と ・ほと ・ほと

Proposition

 $X^n \subset \mathbb{P}^N$ be a (non-degenerate) projective variety, $x \in X_{reg}$. Then, as schemes,

Proposition

 $X^n \subset \mathbb{P}^N$ be a (non-degenerate) projective variety, $x \in X_{reg}$. Then, as schemes,

1

$$\mathcal{L}_{x,X} \subseteq \mathbb{P}(C_x(T_xX \cap X)).$$

æ

Proposition

 $X^n \subset \mathbb{P}^N$ be a (non-degenerate) projective variety, $x \in X_{reg}$. Then, as schemes,

$$\mathcal{L}_{x,X} \subseteq \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)).$$

$$2 X^n is a quadratic \implies$$

$$T_X X \cap X \cap \mathbb{A}^N = C_X (T_X X \cap X) \subset t_X X,$$

æ

Proposition

 $X^n \subset \mathbb{P}^N$ be a (non-degenerate) projective variety, $x \in X_{reg}$. Then, as schemes,

$$\mathcal{L}_{x,X} \subseteq \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)).$$

$$2 X^n is a quadratic \implies$$

$$T_X X \cap X \cap \mathbb{A}^N = C_X(T_X X \cap X) \subset t_X X,$$

$$\mathcal{L}_{x,X} = \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)) \subset \mathbb{P}((t_xX)^*).$$

<ロ> <同> <同> <同> < 同> < 同>

æ

Proposition

 $X^n \subset \mathbb{P}^N$ be a (non-degenerate) projective variety, $x \in X_{reg}$. Then, as schemes,

$$\mathcal{L}_{x,X} \subseteq \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)).$$

$$2 X^n \text{ is a quadratic} \Longrightarrow$$

$$T_X X \cap X \cap \mathbb{A}^N = C_X(T_X X \cap X) \subset t_X X,$$

$$\mathcal{L}_{x,X} = \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)) \subset \mathbb{P}((t_xX)^*).$$

イロト イポト イヨト イヨト

• $T_X X \cap X$ is also a subscheme of X.

On (special versions of) Hartshorne Conjecture

(日) (同) (E) (E) (E)

- $T_X X \cap X$ is also a subscheme of X.
- *T_xX* ∩ *X* is the base locus scheme of the projection from *T_xX* onto ℙ^{N-n-1}, which is not defined at *x*.

イロン イ部ン イヨン イヨン 三日

- $T_X X \cap X$ is also a subscheme of X.
- *T_xX* ∩ *X* is the base locus scheme of the projection from *T_xX* onto ℙ^{N-n-1}, which is not defined at *x*.

۲

 $\phi : \operatorname{Bl}_{X} X \to X$

۲

- $T_X X \cap X$ is also a subscheme of X.
- *T_xX* ∩ *X* is the base locus scheme of the projection from *T_xX* onto ℙ^{N-n-1}, which is not defined at *x*.

 $\phi : \operatorname{Bl}_{X} X \to X$

 $|\phi^*(H) - 2E|_{|E} \subseteq |\phi^*(H) - 2E| = |-2E_{|E}| = |\mathcal{O}_{\mathbb{P}((t_X X)^*)}(2)|$

yields the restriction to E of the induced tangential projection on $\mathsf{Bl}_x X,$

・ 同 ト ・ ヨ ト ・ ヨ ト

۲

- $T_X X \cap X$ is also a subscheme of X.
- *T_xX* ∩ *X* is the base locus scheme of the projection from *T_xX* onto ℙ^{N-n-1}, which is not defined at *x*.

 $\phi : \operatorname{Bl}_X X \to X$

$$|\phi^*(H) - 2E|_{|E} \subseteq |\phi^*(H) - 2E| = |-2E_{|E}| = |\mathcal{O}_{\mathbb{P}((t_x X)^*)}(2)|$$

yields the restriction to E of the induced tangential projection on $Bl_x X$, whose base locus scheme is

・ 同 ト ・ ヨ ト ・ ヨ ト

۲

- $T_X X \cap X$ is also a subscheme of X.
- *T_xX* ∩ *X* is the base locus scheme of the projection from *T_xX* onto ℙ^{N-n-1}, which is not defined at *x*.

$$\phi: \operatorname{Bl}_{X} X \to X$$

$$|\phi^*(H) - 2E|_{|E} \subseteq |\phi^*(H) - 2E| = |-2E_{|E}| = |\mathcal{O}_{\mathbb{P}((t_X X)^*)}(2)|$$

yields the restriction to E of the induced tangential projection on $Bl_x X$, whose base locus scheme is

$$\mathsf{Bl}_x(T_xX\cap X)\cap E=\mathbb{P}(\mathcal{C}_x(T_xX\cap X))\subset\mathbb{P}((t_xX)^*).$$

(4月) (4日) (4日)

- $T_X X \cap X$ is also a subscheme of X.
- *T_xX* ∩ *X* is the base locus scheme of the projection from *T_xX* onto ℙ^{N-n-1}, which is not defined at *x*.

$$\phi: \operatorname{Bl}_{X} X \to X$$

$$|\phi^*(H) - 2E|_{|E} \subseteq |\phi^*(H) - 2E| = |-2E_{|E}| = |\mathcal{O}_{\mathbb{P}((t_X X)^*)}(2)|$$

yields the restriction to E of the induced tangential projection on $Bl_x X$, whose base locus scheme is

$$\mathsf{Bl}_x(\mathcal{T}_xX\cap X)\cap E=\mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX\cap X))\subset\mathbb{P}((t_xX)^*).$$

In conclusion

۲

$$\operatorname{Proj}(\frac{\mathrm{S}}{\widetilde{\mathrm{I}}}) = \mathbb{P}(\mathcal{C}_{x}(\mathcal{T}_{x}X \cap X)) = \operatorname{Proj}(\frac{\mathrm{S}}{\mathrm{I}^{*}}) \subset \mathbb{P}((t_{x}X)^{*}),$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- $T_X X \cap X$ is also a subscheme of X.
- *T_xX* ∩ *X* is the base locus scheme of the projection from *T_xX* onto ℙ^{N-n-1}, which is not defined at *x*.

$$\phi: \operatorname{Bl}_{X} X \to X$$

$$|\phi^*(H) - 2E|_{|E} \subseteq |\phi^*(H) - 2E| = |-2E_{|E}| = |\mathcal{O}_{\mathbb{P}((t_X X)^*)}(2)|$$

yields the restriction to E of the induced tangential projection on $Bl_x X$, whose base locus scheme is

$$\mathsf{Bl}_x(\mathcal{T}_xX\cap X)\cap E=\mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX\cap X))\subset\mathbb{P}((t_xX)^*).$$

In conclusion

۲

$$\operatorname{Proj}(\frac{\mathrm{S}}{\widetilde{\mathrm{I}}}) = \mathbb{P}(C_x(T_xX \cap X)) = \operatorname{Proj}(\frac{\mathrm{S}}{\mathrm{I}^*}) \subset \mathbb{P}((t_xX)^*),$$

with $\tilde{I} \subset S$ generated by $r \leq c$ quadratic equations.

On (special versions of) Hartshorne Conjecture

A closer look $\mathcal{L}_{x,X}$ and at $\mathbb{P}(C_x(T_xX \cap X))$

• $X^n \subset \mathbb{P}^{n+c}$ manifold.

On (special versions of) Hartshorne Conjecture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

- $X^n \subset \mathbb{P}^{n+c}$ manifold.
- $Y = V(g_1, \ldots, g_c) = X \cup X'$ and $X \cap X'$ supported on the divisor $D \ge 0$.

イロン イボン イヨン イヨン 三日

• $X^n \subset \mathbb{P}^{n+c}$ manifold.

۲

Y = V(g₁,...,g_c) = X ∪ X' and X ∩ X' supported on the divisor D ≥ 0.

 $x \in U = X \setminus \operatorname{supp}(D)$

イロン イボン イヨン イヨン 三日

• $X^n \subset \mathbb{P}^{n+c}$ manifold.

۲

۲

• $Y = V(g_1, \ldots, g_c) = X \cup X'$ and $X \cap X'$ supported on the divisor $D \ge 0$.

$$x \in U = X \setminus \mathrm{supp}(D)$$

 $Y \setminus \mathrm{supp}(D) = U \amalg V,$

• $X^n \subset \mathbb{P}^{n+c}$ manifold.

۲

۲

۲

Y = V(g₁,...,g_c) = X ∪ X' and X ∩ X' supported on the divisor D ≥ 0.

$$x \in U = X \setminus \mathrm{supp}(D)$$

 $Y \setminus \mathrm{supp}(D) = U \amalg V,$

 $V = X' \setminus \operatorname{supp}(D).$

イロン イボン イヨン イヨン 三日

• $X^n \subset \mathbb{P}^{n+c}$ manifold.

۲

۲

• $Y = V(g_1, \ldots, g_c) = X \cup X'$ and $X \cap X'$ supported on the divisor $D \ge 0$.

$$x \in U = X \setminus \mathrm{supp}(D)$$

 $Y \setminus \mathrm{supp}(D) = U \amalg V,$

$$V = X' \setminus \operatorname{supp}(D).$$

• Then $T_X X \cap X \cap U = T_X Y \cap Y \cap U$ so that

 $C_x(T_xX\cap X) = C_x(T_xX\cap X\cap U) = C_x(T_xY\cap Y\cap U) = C_x(T_xY\cap Y).$

伺 ト イヨト イヨト

E 990

• $X^n \subset \mathbb{P}^{n+c}$ manifold.

۲

۲

• $Y = V(g_1, \ldots, g_c) = X \cup X'$ and $X \cap X'$ supported on the divisor $D \ge 0$.

$$x \in U = X \setminus \mathrm{supp}(D)$$

 $Y \setminus \mathrm{supp}(D) = U \amalg V,$

$$V = X' \setminus \operatorname{supp}(D).$$

• Then $T_X X \cap X \cap U = T_X Y \cap Y \cap U$ so that

 $C_x(T_xX\cap X) = C_x(T_xX\cap X\cap U) = C_x(T_xY\cap Y\cap U) = C_x(T_xY\cap Y).$

伺 ト イヨト イヨト

E 990

• Recall that $\mathcal{L}_{x,Y}$ can be scheme-theoretically defined by $d = \sum_{i=1}^{c} (d_i - 1)$ equations.

・ 回 と ・ ヨ と ・ モ と …

- Recall that $\mathcal{L}_{x,Y}$ can be scheme-theoretically defined by $d = \sum_{i=1}^{c} (d_i 1)$ equations.
- Also remark that

$$\operatorname{supp}(\mathcal{L}_{X,X}) = \operatorname{supp}(\mathcal{L}_{X,Y}).$$

・ 回 と ・ ヨ と ・ モ と …

Proposition

Let $X^n \subset \mathbb{P}^{n+c}$ manifold, $x \in U$ be a general point. Then :

• $\mathcal{L}_{x,X}$ can be set theoretically defined by the $r \leq d$ equations defining $\mathcal{L}_{x,Y}$ scheme theoretically.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Proposition

Let $X^n \subset \mathbb{P}^{n+c}$ manifold, $x \in U$ be a general point. Then :

- $\mathcal{L}_{x,X}$ can be set theoretically defined by the $r \leq d$ equations defining $\mathcal{L}_{x,Y}$ scheme theoretically.
- 2 If $d \leq n-1$, then $\mathcal{L}_{x,X} \neq \emptyset$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Proposition

Let $X^n \subset \mathbb{P}^{n+c}$ manifold, $x \in U$ be a general point. Then :

• $\mathcal{L}_{x,X}$ can be set theoretically defined by the $r \leq d$ equations defining $\mathcal{L}_{x,Y}$ scheme theoretically.

② If
$$d \leq n-1$$
, then $\mathcal{L}_{\mathsf{x},\mathsf{X}}
eq \emptyset$.

If X is quadratic, then

$$\mathcal{L}_{x,X} = \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)) = \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)) = \mathcal{L}_{x,Y}$$

- 4 同 ト 4 三 ト

Proposition

Let $X^n \subset \mathbb{P}^{n+c}$ manifold, $x \in U$ be a general point. Then :

• $\mathcal{L}_{x,X}$ can be set theoretically defined by the $r \leq d$ equations defining $\mathcal{L}_{x,Y}$ scheme theoretically.

② If
$$d \leq \mathsf{n}-1$$
, then $\mathcal{L}_{\mathsf{x},\mathsf{X}}
eq \emptyset$.

If X is quadratic, then

$$\mathcal{L}_{x,X} = \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)) = \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)) = \mathcal{L}_{x,Y}$$

so that $\mathcal{L}_{x,X} \subset \mathbb{P}((t_x X)^*)$ is a quadratic variety (in fact a manifold !) scheme theoretically defined by $r \leq c$ linearly independent quadratic equations.

・ロト ・回ト ・ヨト ・ヨト

Problem

Let $X^n \subset \mathbb{P}^{n+c}$ be a manifold.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Problem

Let $X^n \subset \mathbb{P}^{n+c}$ be a manifold. Under which hypothesis, if any,

・ロン ・回と ・ヨン ・ヨン

Problem

Let $X^n \subset \mathbb{P}^{n+c}$ be a manifold. Under which hypothesis, if any,

$$\mathcal{L}_{x,X} = \mathbb{P}(\mathcal{C}_x(\mathcal{T}_xX \cap X)) \Longrightarrow X^n \subset \mathbb{P}^{n+c}$$
 quadratic?

・ロト ・回ト ・ヨト ・ヨト

• $X^n \subset \mathbb{P}^N$ is a prime Fano manifold if

・ 回 と ・ ヨ と ・ ヨ と

æ

• $X^n \subset \mathbb{P}^N$ is a prime Fano manifold if

 $\bullet -K_X \text{ is ample };$

- 4 回 2 - 4 回 2 - 4 回 2 - 4

• $X^n \subset \mathbb{P}^N$ is a prime Fano manifold if

$$\mathbf{0} - K_X \text{ is ample;}$$

$$Pic(X) \simeq \mathbb{Z} \langle \mathcal{O}(1) \rangle.$$

On (special versions of) Hartshorne Conjecture

・ 回 と ・ ヨ と ・ ヨ と

æ

- $X^n \subset \mathbb{P}^N$ is a prime Fano manifold if
 - $-K_X$ is ample;
 - 2 $\operatorname{Pic}(X) \simeq \mathbb{Z} \langle \mathcal{O}(1) \rangle.$
- index of $X^n \subset \mathbb{P}^N$ defined by

$$-K_X = i(X)H,$$

with $H \subset X$ a hyperplane section of $X^n \subset \mathbb{P}^N$.

On (special versions of) Hartshorne Conjecture

(4月) イヨト イヨト

Let $X^n \subset \mathbb{P}^N$ manifold, $x \in X$ general. Then

On (special versions of) Hartshorne Conjecture

- - 4 回 ト - 4 回 ト

Let $X^n \subset \mathbb{P}^N$ manifold, $x \in X$ general. Then

• If $\mathcal{L}_x \neq \emptyset$, then $\mathcal{L}_{x,X}$ is smooth;

- - 4 回 ト - 4 回 ト

Let $X^n \subset \mathbb{P}^N$ manifold, $x \in X$ general. Then

1 If
$$\mathcal{L}_x
eq \emptyset$$
, then $\mathcal{L}_{x,X}$ is smooth ;

Let $X^n \subset \mathbb{P}^N$ manifold, $x \in X$ general. Then

- If $\mathcal{L}_x \neq \emptyset$, then $\mathcal{L}_{x,X}$ is smooth;
- If $\mathcal{L}_x \neq \emptyset$, then for every $[L] \in \mathcal{L}_x$ we have $\dim_{[L]}(\mathcal{L}_x) = -K_X \cdot L 2.$
- **③** [Mori] X prime Fano with $i(X) \ge \frac{n+1}{2}$, then $\mathcal{L}_{x,X} \neq \emptyset$.

・ 回 と ・ ヨ と ・ ヨ と

Let $X^n \subset \mathbb{P}^N$ manifold, $x \in X$ general. Then

- **1** If $\mathcal{L}_x \neq \emptyset$, then $\mathcal{L}_{x,X}$ is smooth;
- If $\mathcal{L}_x \neq \emptyset$, then for every $[L] \in \mathcal{L}_x$ we have $\dim_{[L]}(\mathcal{L}_x) = -K_X \cdot L 2$.
- **③** [Mori] X prime Fano with $i(X) \ge \frac{n+1}{2}$, then $\mathcal{L}_{x,X} \neq \emptyset$.
- if moreover i(X) ≥ n+3/2, then L_x ⊂ Pⁿ⁻¹ is irreducible (and smooth !).

(4月) イヨト イヨト

Let $X^n \subset \mathbb{P}^N$ manifold, $x \in X$ general. Then

- **1** If $\mathcal{L}_x \neq \emptyset$, then $\mathcal{L}_{x,X}$ is smooth;
- ② If $\mathcal{L}_x \neq \emptyset$, then for every $[L] \in \mathcal{L}_x$ we have dim_[L](\mathcal{L}_x) = −K_X · L − 2.
- **3** [Mori] X prime Fano with $i(X) \ge \frac{n+1}{2}$, then $\mathcal{L}_{x,X} \neq \emptyset$.
- if moreover i(X) ≥ n+3/2, then L_x ⊂ Pⁿ⁻¹ is irreducible (and smooth !).
- [Hwang] If $i(X) \ge \frac{n+3}{2}$, then $\mathcal{L}_x \subset \mathbb{P}^{n-1}$ is a non-degenerate manifold of dimension i(X) 2.

イロン イ部ン イヨン イヨン 三日

Example

 $X^n \subset \mathbb{P}^{n+c}$ smooth complete intersection of type (d_1, d_2, \ldots, d_c) with $d_c \geq 2$. Then :

On (special versions of) Hartshorne Conjecture

Example

 $X^n \subset \mathbb{P}^{n+c}$ smooth complete intersection of type (d_1, d_2, \ldots, d_c) with $d_c \geq 2$. Then :

• if n + 1 - d > 0, then X is a Fano manifold and i(X) = n + 1 - d;

On (special versions of) Hartshorne Conjecture

Example

 $X^n \subset \mathbb{P}^{n+c}$ smooth complete intersection of type (d_1, d_2, \ldots, d_c) with $d_c \geq 2$. Then :

- if n + 1 d > 0, then X is a Fano manifold and i(X) = n + 1 d;
- if $n \geq 3$, then $\operatorname{Pic}(X) \simeq \mathbb{Z} \langle \mathcal{O}(1)
 angle$;

Example

 $X^n \subset \mathbb{P}^{n+c}$ smooth complete intersection of type (d_1, d_2, \ldots, d_c) with $d_c \geq 2$. Then :

- if n + 1 d > 0, then X is a Fano manifold and i(X) = n + 1 d;
- if $n\geq 3$, then $\operatorname{Pic}(X)\simeq \mathbb{Z}\langle \mathcal{O}(1)
 angle$;
- if $i(X) \geq 2$, then $\mathcal{L}_x \neq \emptyset$,

Example

 $X^n \subset \mathbb{P}^{n+c}$ smooth complete intersection of type (d_1, d_2, \ldots, d_c) with $d_c \geq 2$. Then :

- if n + 1 d > 0, then X is a Fano manifold and i(X) = n + 1 d;
- if $n\geq 3$, then $\operatorname{Pic}(X)\simeq \mathbb{Z}\langle \mathcal{O}(1)
 angle$;
- if $i(X) \geq 2$, then $\mathcal{L}_x \neq \emptyset$,
- $\forall [L] \in \mathcal{L}_{x}$,

 $\dim_{[L]}(\mathcal{L}_{x}) = (-K_{X} \cdot L) - 2 = i(X) - 2 = n - 1 - d \ge 0;$

Example

 $X^n \subset \mathbb{P}^{n+c}$ smooth complete intersection of type (d_1, d_2, \ldots, d_c) with $d_c \geq 2$. Then :

- if n + 1 d > 0, then X is a Fano manifold and i(X) = n + 1 d;
- if $n\geq 3$, then $\operatorname{Pic}(X)\simeq \mathbb{Z}\langle \mathcal{O}(1)
 angle$;
- if $i(X) \geq 2$, then $\mathcal{L}_x \neq \emptyset$,
- $\forall [L] \in \mathcal{L}_{x}$,

 $\dim_{[L]}(\mathcal{L}_{x}) = (-K_{X} \cdot L) - 2 = i(X) - 2 = n - 1 - d \ge 0;$

• $\mathcal{L}_{\scriptscriptstyle X} \subset \mathbb{P}^{n-1}$ is a smooth complete intersection of type

$$(2, \ldots, d_1; 2, \ldots, d_2; \ldots; 2, \ldots, d_{c-1}; 2, \ldots, d_c).$$

Theorem (Bertram-Ein-Lazarsfeld)

 $X^n \subset \mathbb{P}^{n+c}$ manifold.

(4回) (4回) (日)

Theorem (Bertram-Ein-Lazarsfeld)

 $X^n \subset \mathbb{P}^{n+c}$ manifold. If

$$k \ge d_1 + \ldots + d_c - N = d - n$$
 and $i > 0$,

then

$$H^i(\mathcal{I}_X(k))=0.$$

(4回) (1日) (日)

æ

Theorem (Bertram–Ein–Lazarsfeld)

 $X^n \subset \mathbb{P}^{n+c}$ manifold. If

$$k \ge d_1 + \ldots + d_c - N = d - n$$
 and $i > 0$,

then

$$H^i(\mathcal{I}_X(k))=0.$$

Remarks

• $X^n \subset \mathbb{P}^{n+c}$ is projectively normal if $d \leq n+1$;

On (special versions of) Hartshorne Conjecture

(ロ) (同) (E) (E) (E)

Theorem (Bertram–Ein–Lazarsfeld)

 $X^n \subset \mathbb{P}^{n+c}$ manifold. If

$$k \ge d_1 + \ldots + d_c - N = d - n$$
 and $i > 0$,

then

$$H^i(\mathcal{I}_X(k))=0.$$

Remarks

- $X^n \subset \mathbb{P}^{n+c}$ is projectively normal if $d \leq n+1$;
- **2** $X^n \subset \mathbb{P}^{n+c}$ is arithmetically Cohen-Macaulay if $d \leq n$.

ヘロン 人間 とくほど くほとう

Beyond [BEL] Main Application

Proposition

 $X^n \subset \mathbb{P}^{n+c}$ manifold. Assume $d \leq n-1$ (and also $n \geq c+2$ if $X^n \subset \mathbb{P}^N$ is quadratic). Then :

Proposition

 $X^n \subset \mathbb{P}^{n+c}$ manifold.

Assume $d \le n-1$ (and also $n \ge c+2$ if $X^n \subset \mathbb{P}^N$ is quadratic). Then :

Xⁿ ⊂ P^N is an arithmetically Cohen-Macaulay Fano manifold with Pic(X) ≃ Z⟨O(1)⟩ and of index

$$i(X) = \dim(\mathcal{L}_x) + 2 \ge n + 1 - d \ge 2;$$

Proposition

 $X^n \subset \mathbb{P}^{n+c}$ manifold.

Assume $d \le n-1$ (and also $n \ge c+2$ if $X^n \subset \mathbb{P}^N$ is quadratic). Then :

 Xⁿ ⊂ P^N is an arithmetically Cohen-Macaulay Fano manifold with Pic(X) ≃ Z⟨O(1)⟩ and of index

$$i(X) = \dim(\mathcal{L}_x) + 2 \ge n + 1 - d \ge 2;$$

Ø Moreover, the following conditions are equivalent :
 X ⊂ P^N is a complete intersection;

Proposition

 $X^n \subset \mathbb{P}^{n+c}$ manifold.

Assume $d \le n-1$ (and also $n \ge c+2$ if $X^n \subset \mathbb{P}^N$ is quadratic). Then :

 Xⁿ ⊂ P^N is an arithmetically Cohen-Macaulay Fano manifold with Pic(X) ≃ Z⟨O(1)⟩ and of index

$$i(X) = \dim(\mathcal{L}_x) + 2 \ge n + 1 - d \ge 2;$$

2 Moreover, the following conditions are equivalent :
1 X ⊂ P^N is a complete intersection;
2 L_x ⊂ Pⁿ⁻¹ is a complete intersection of codimension d;

Proposition

 $X^n \subset \mathbb{P}^{n+c}$ manifold.

Assume $d \le n-1$ (and also $n \ge c+2$ if $X^n \subset \mathbb{P}^N$ is quadratic). Then :

 Xⁿ ⊂ P^N is an arithmetically Cohen-Macaulay Fano manifold with Pic(X) ≃ Z⟨O(1)⟩ and of index

$$i(X) = \dim(\mathcal{L}_x) + 2 \ge n + 1 - d \ge 2;$$

2 Moreover, the following conditions are equivalent :
1 X ⊂ P^N is a complete intersection;
2 L_x ⊂ Pⁿ⁻¹ is a complete intersection of codimension d;
3 dim(L_x) = n − 1 − d.

Conjecture

(Complete Intersection Conjecture, Hartshorne 1974) Let $X^n \subset \mathbb{P}^{n+c}$ smooth manifold

If
$$2c < n$$
 (i.e. if $c \le \frac{n-1}{2}$), $\Longrightarrow X$ is a complete intersection.

白 ト イヨト イヨト

Hartshorne Conjecture for Quadratic Manifolds

Theorem (lonescu,-)

Let $X^n \subset \mathbb{P}^{n+c}$ be a quadratic manifold.

向下 イヨト イヨト

Hartshorne Conjecture for Quadratic Manifolds

Theorem (Ionescu,–)

Let $X^n \subset \mathbb{P}^{n+c}$ be a quadratic manifold. If $c \leq \frac{n-1}{2}$, then

伺 とう きょう とう とう

Hartshorne Conjecture for Quadratic Manifolds

Theorem (Ionescu,–)

Let $X^n \subset \mathbb{P}^{n+c}$ be a quadratic manifold. If $c \leq \frac{n-1}{2}$, then $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

Theorem (Ionescu, –)

Let $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ be a quadratic manifold (2c = n). Then

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Let $X^n \subset \mathbb{P}^{n+c}$ be a quadratic manifold. If $c \leq \frac{n-1}{2}$, then $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

Theorem (Ionescu, –)

Let $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ be a quadratic manifold (2c = n). Then $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ is projectively equivalent to one of the following :

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let $X^n \subset \mathbb{P}^{n+c}$ be a quadratic manifold. If $c \leq \frac{n-1}{2}$, then $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

Theorem (Ionescu, –)

Let $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ be a quadratic manifold (2c = n). Then $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ is projectively equivalent to one of the following :

a complete intersection of quadrics;

A (1) > A (2) > A

Let $X^n \subset \mathbb{P}^{n+c}$ be a quadratic manifold. If $c \leq \frac{n-1}{2}$, then $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

Theorem (Ionescu, –)

Let $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ be a quadratic manifold (2c = n). Then $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ is projectively equivalent to one of the following :

a complete intersection of quadrics;

2
$$\mathbb{G}(1,4) \subset \mathbb{P}^9$$
.

- 4 同 6 4 日 6 4 日 6

Let $X^n \subset \mathbb{P}^{n+c}$ be a quadratic manifold. If $c \leq \frac{n-1}{2}$, then $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

Theorem (Ionescu, –)

Let $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ be a quadratic manifold (2c = n). Then $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ is projectively equivalent to one of the following :

a complete intersection of quadrics;

2
$$\mathbb{G}(1,4) \subset \mathbb{P}^9$$

$$3 S^{10} \subset \mathbb{P}^{15}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Let $X^n \subset \mathbb{P}^{n+c}$ be a quadratic manifold. If $c \leq \frac{n-1}{2}$, then $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

Theorem (Ionescu, –)

Let $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ be a quadratic manifold (2c = n). Then $X^n \subset \mathbb{P}^{\frac{3n}{2}}$ is projectively equivalent to one of the following :

a complete intersection of quadrics;

$$(\mathbf{G}(1,4) \subset \mathbb{P}^9.$$

$$3 S^{10} \subset \mathbb{P}^{15}.$$

In particular $\mathbb{G}(1,4) \subset \mathbb{P}^9$ and $S^{10} \subset \mathbb{P}^{15}$ are the unique Hartshorne varieties defined by quadratic equations, modulo projective equivalence.

イロト イポト イヨト イヨト

We shall need the following deep result of Faltings :

Theorem (Faltings)

Let
$$X^n = V(f_1, \ldots, f_m) \subset \mathbb{P}^{n+c}$$
 manifold. If $m \leq \frac{N}{2}$, then

- 4 回 2 - 4 □ 2 - 4 □

We shall need the following deep result of Faltings :

Theorem (Faltings)

Let $X^n = V(f_1, ..., f_m) \subset \mathbb{P}^{n+c}$ manifold. If $m \leq \frac{N}{2}$, then $X^n \subset \mathbb{P}^{n+c}$ is the complete intersection of $c = N - n \leq m$ hypersurfaces among the m defining it scheme theoretically.

(1日) (1日) (日)

$$c\leq \frac{n-1}{2}$$

Proof

$$i(X) = \dim(\mathcal{L}_x) + 2 \ge n-1-c+2 \ge \frac{n+3}{2}.$$

$$c\leq \frac{n-1}{2}$$

Proof

1 $X^n \subset \mathbb{P}^{n+c}$ is a Fano manifold of index

$$i(X) = \dim(\mathcal{L}_x) + 2 \ge n-1-c+2 \ge \frac{n+3}{2}.$$

2 $\mathcal{L}_{x} \subset \mathbb{P}^{n-1}$ is non-degenerate by Hwang's Theorem.

$$c\leq \frac{n-1}{2}$$

Proof

$$i(X) = \dim(\mathcal{L}_x) + 2 \ge n-1-c+2 \ge \frac{n+3}{2}.$$

- **2** $\mathcal{L}_{x} \subset \mathbb{P}^{n-1}$ is non-degenerate by Hwang's Theorem.
- £ L_x ⊂ ℙⁿ⁻¹ smooth, irreducible and scheme theoretically defined by c linearly independent quadratic forms

$$c\leq \frac{n-1}{2}$$

Proof

$$i(X) = \dim(\mathcal{L}_x) + 2 \ge n-1-c+2 \ge \frac{n+3}{2}.$$

- **2** $\mathcal{L}_{x} \subset \mathbb{P}^{n-1}$ is non-degenerate by Hwang's Theorem.
- £ L_x ⊂ ℙⁿ⁻¹ smooth, irreducible and scheme theoretically defined by c linearly independent quadratic forms
- Sy Falting's L_x ⊂ Pⁿ⁻¹ is the complete intersection of r ≤ c linearly independent quadrics vanishing on it.

$$c\leq \frac{n-1}{2}$$

Proof

$$i(X) = \dim(\mathcal{L}_x) + 2 \ge n-1-c+2 \ge \frac{n+3}{2}.$$

- **2** $\mathcal{L}_{x} \subset \mathbb{P}^{n-1}$ is non-degenerate by Hwang's Theorem.
- £ L_x ⊂ ℙⁿ⁻¹ smooth, irreducible and scheme theoretically defined by c linearly independent quadratic forms
- Sy Falting's L_x ⊂ Pⁿ⁻¹ is the complete intersection of r ≤ c linearly independent quadrics vanishing on it.

$$o r = c and dim(L_x) = n - 1 - c.$$

$$c\leq \frac{n-1}{2}$$

Proof

1 $X^n \subset \mathbb{P}^{n+c}$ is a Fano manifold of index

$$i(X) = \dim(\mathcal{L}_x) + 2 \ge n-1-c+2 \ge \frac{n+3}{2}.$$

- **2** $\mathcal{L}_{x} \subset \mathbb{P}^{n-1}$ is non-degenerate by Hwang's Theorem.
- £ L_x ⊂ ℙⁿ⁻¹ smooth, irreducible and scheme theoretically defined by c linearly independent quadratic forms
- Sy Falting's L_x ⊂ Pⁿ⁻¹ is the complete intersection of r ≤ c linearly independent quadrics vanishing on it.

$$o r = c and dim(L_x) = n - 1 - c.$$

•
$$-K_X = \mathcal{O}(n+1-c) \Longrightarrow X^n \subset \mathbb{P}^{n+c}$$
 complete intersection.

On (special versions of) Hartshorne Conjecture

Conjecture (HCF)

Assume that $c \leq \frac{n-1}{2}$ and $X^n \subset \mathbb{P}^{n+c}$ Fano.

æ

Conjecture (HCF)

Assume that $c \leq \frac{n-1}{2}$ and $X^n \subset \mathbb{P}^{n+c}$ Fano. Then $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection.

On (special versions of) Hartshorne Conjecture

・日本 ・ヨト ・ヨト

Conjecture (HCL)

 $X^n \subset \mathbb{P}^{n+c}$ covered by lines, i.e. $\mathcal{L}_x \neq \emptyset$ for $x \in X$ general.

2

Conjecture (HCL)

 $X^n \subset \mathbb{P}^{n+c}$ covered by lines, i.e. $\mathcal{L}_x \neq \emptyset$ for $x \in X$ general. $\dim(\mathcal{L}_x) \geq \frac{n-1}{2}$ and $T = \langle \mathcal{L}_x \rangle \subseteq \mathbb{P}^{n-1}$.

2

Conjecture (HCL)

$$X^n \subset \mathbb{P}^{n+c}$$
 covered by lines, i.e. $\mathcal{L}_x \neq \emptyset$ for $x \in X$ general.
 $\dim(\mathcal{L}_x) \geq \frac{n-1}{2}$ and $T = \langle \mathcal{L}_x \rangle \subseteq \mathbb{P}^{n-1}$.
If

$$\dim(\mathcal{L}_{x}) > 2 \operatorname{codim}_{\mathcal{T}}(\mathcal{L}_{x}),$$

then $\mathcal{L}_{x} \subset \mathbb{P}^{n-1}$ is a complete intersection.

個 と く ヨ と く ヨ と …

Remarks

 When n ≥ 2c + 1, by the Barth–Larsen Theorem Pic(X) ≅ Z⟨H⟩. In particular K_X = bH for some integer b. So, saying that X is Fano means exactly that b < 0; this happens, for instance, if X is covered by lines.

- When n ≥ 2c + 1, by the Barth–Larsen Theorem Pic(X) ≅ Z⟨H⟩. In particular K_X = bH for some integer b. So, saying that X is Fano means exactly that b < 0; this happens, for instance, if X is covered by lines.
- The (HCF) holds when c = 2 by a result of Ballico and Chiantini.

- When n ≥ 2c + 1, by the Barth–Larsen Theorem Pic(X) ≅ Z⟨H⟩. In particular K_X = bH for some integer b. So, saying that X is Fano means exactly that b < 0; this happens, for instance, if X is covered by lines.
- The (HCF) holds when c = 2 by a result of Ballico and Chiantini.
- By the Contraction Theorem for manifolds covered by lines, the (HCL) concerns Fano manifolds X ⊂ P^N with Pic(X) ≃ Z⟨H⟩ and of index i(X) ≥ n+3/2.

- When n ≥ 2c + 1, by the Barth–Larsen Theorem Pic(X) ≅ Z⟨H⟩. In particular K_X = bH for some integer b. So, saying that X is Fano means exactly that b < 0; this happens, for instance, if X is covered by lines.
- The (HCF) holds when c = 2 by a result of Ballico and Chiantini.
- By the Contraction Theorem for manifolds covered by lines, the (HCL) concerns Fano manifolds X ⊂ P^N with Pic(X) ≃ Z⟨H⟩ and of index i(X) ≥ ⁿ⁺³/₂.
- Dual defective and LQEL manifolds satisfy the (HCL) (Ionescu, -).

- When n ≥ 2c + 1, by the Barth–Larsen Theorem Pic(X) ≅ Z⟨H⟩. In particular K_X = bH for some integer b. So, saying that X is Fano means exactly that b < 0; this happens, for instance, if X is covered by lines.
- The (HCF) holds when c = 2 by a result of Ballico and Chiantini.
- By the Contraction Theorem for manifolds covered by lines, the (HCL) concerns Fano manifolds X ⊂ P^N with Pic(X) ≃ Z⟨H⟩ and of index i(X) ≥ ⁿ⁺³/₂.
- Dual defective and LQEL manifolds satisfy the (HCL) (Ionescu, -).
- Prime Fano manifolds of high index tend to be complete intersections. Note that for complete intersections Xⁿ ⊂ P^{n+c}, L_x ⊂ Pⁿ⁻¹ is also a complete intersection.

Conjecture

If $X \subset \mathbb{P}^N$ is covered by lines and $\mathcal{L}_x \subset \mathbb{P}^{n-1}$ is a (say smooth irreducible non-degenerate) complete intersection, then X is a complete intersection too.

Conjecture

If $X \subset \mathbb{P}^N$ is covered by lines and $\mathcal{L}_x \subset \mathbb{P}^{n-1}$ is a (say smooth irreducible non-degenerate) complete intersection, then X is a complete intersection too.

Question

Let
$$X \subset \mathbb{P}^N$$
 be as above. If $d \leq \frac{n-1}{2}$, then $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection ?

Barth-Ionescu Conjecture

Manifolds of (very) small degree with respect to their codimension are known to be complete intersections.

▲ 注 → ▲ 注 →

Barth-Ionescu Conjecture

Manifolds of (very) small degree with respect to their codimension are known to be complete intersections.

Hartshorne was the first to realize in 1973 that there exists a function $f(\deg(X))$ such that, for smooth $X^n \subset \mathbb{P}^{n+c}$,

 $n \ge f(\deg(X)) \Longrightarrow X$ complete intersection.

Remarks

• Barth–Van de Ven, Inv. Math. 1974 : for c = 2 one can take $f(\deg(X)) = 4d - 7$;

Barth-Ionescu Conjecture

Manifolds of (very) small degree with respect to their codimension are known to be complete intersections.

Hartshorne was the first to realize in 1973 that there exists a function $f(\deg(X))$ such that, for smooth $X^n \subset \mathbb{P}^{n+c}$,

 $n \ge f(\deg(X)) \Longrightarrow X$ complete intersection.

- Barth–Van de Ven, Inv. Math. 1974 : for c = 2 one can take $f(\deg(X)) = 4d 7$;
- Barth, Proc. Int. Congress Math., Vancouver 1974 : $f(\deg(X)) = \frac{5 \deg(X)(\deg(X)-1)}{2}$;

Manifolds of (very) small degree with respect to their codimension are known to be complete intersections.

Hartshorne was the first to realize in 1973 that there exists a function $f(\deg(X))$ such that, for smooth $X^n \subset \mathbb{P}^{n+c}$,

 $n \ge f(\deg(X)) \Longrightarrow X$ complete intersection.

- Barth–Van de Ven, Inv. Math. 1974 : for c = 2 one can take $f(\deg(X)) = 4d 7$;
- Barth, Proc. Int. Congress Math., Vancouver 1974 : $f(\deg(X)) = \frac{5 \deg(X)(\deg(X)-1)}{2}$;
- Barth remarks that $f(\deg(X)) \ge \deg(X) + 1$ due to $X^n = \mathbb{P}^1 \times \mathbb{P}^{n-1} \subset \mathbb{P}^{2n-1}$ for which $\deg(X^n) = n$.

Manifolds of (very) small degree with respect to their codimension are known to be complete intersections.

Hartshorne was the first to realize in 1973 that there exists a function $f(\deg(X))$ such that, for smooth $X^n \subset \mathbb{P}^{n+c}$,

 $n \ge f(\deg(X)) \Longrightarrow X$ complete intersection.

- Barth–Van de Ven, Inv. Math. 1974 : for c = 2 one can take $f(\deg(X)) = 4d 7$;
- Barth, Proc. Int. Congress Math., Vancouver 1974 : $f(\deg(X)) = \frac{5 \deg(X)(\deg(X)-1)}{2}$;
- Barth remarks that $f(\deg(X)) \ge \deg(X) + 1$ due to $X^n = \mathbb{P}^1 \times \mathbb{P}^{n-1} \subset \mathbb{P}^{2n-1}$ for which $\deg(X^n) = n$.
- Barth seems to overlook $deg(\mathbb{G}(1,4)) = 5 = n 1$.

Manifolds of (very) small degree with respect to their codimension are known to be complete intersections.

Hartshorne was the first to realize in 1973 that there exists a function $f(\deg(X))$ such that, for smooth $X^n \subset \mathbb{P}^{n+c}$,

 $n \ge f(\deg(X)) \Longrightarrow X$ complete intersection.

- Barth–Van de Ven, Inv. Math. 1974 : for c = 2 one can take $f(\deg(X)) = 4d 7$;
- Barth, Proc. Int. Congress Math., Vancouver 1974 : $f(\deg(X)) = \frac{5 \deg(X)(\deg(X)-1)}{2}$;
- Barth remarks that $f(\deg(X)) \ge \deg(X) + 1$ due to $X^n = \mathbb{P}^1 \times \mathbb{P}^{n-1} \subset \mathbb{P}^{2n-1}$ for which $\deg(X^n) = n$.
- Barth seems to overlook $deg(\mathbb{G}(1,4)) = 5 = n 1$.
- Other refinements for *c* = 2, due to Ran, Ballico-Chiantini, Holme-Schneider.

Conjecture (Barth–Ionescu)

If deg $(X) \leq n - 1$, then $X^n \subset \mathbb{P}^{n+c}$ is a complete intersection, unless it is projectively equivalent to $\mathbb{G}(1,4) \subset \mathbb{P}^9$.

On (special versions of) Hartshorne Conjecture

白 と く ヨ と く ヨ と

Remarks

• Let $X^n \subset \mathbb{P}^{n+c}$ be a manifold and suppose deg $(X) \leq n-1$.

白 ト く ヨ ト く ヨ ト

Remarks

• Let $X^n \subset \mathbb{P}^{n+c}$ be a manifold and suppose deg $(X) \leq n-1$.

• If
$$n \leq c+1$$
, then

$$0\leq \mathsf{deg}(X)-\mathsf{codim}(X)-1\leq n-1-c-1<0.$$

回 と く ヨ と く ヨ と

Remarks

• If $n \ge c + 2$ we have $\operatorname{Pic}(X) \simeq \mathbb{Z}\langle \mathcal{O}(1) \rangle$. To prove that X is Fano it suffices to prove that $p_g(X) = h^0(K_X) = 0$.

A ■

- If $n \ge c + 2$ we have $\operatorname{Pic}(X) \simeq \mathbb{Z}\langle \mathcal{O}(1) \rangle$. To prove that X is Fano it suffices to prove that $p_g(X) = h^0(K_X) = 0$.
- Recall the Harris bound

$$p_g(X) \le c \binom{M}{n+1} + \epsilon \binom{M}{n},$$

where $M = [\frac{\deg(X)-1}{c}]$ and $\epsilon = \deg(X) - 1 - Mc$.

Remarks

- If $n \ge c + 2$ we have $\operatorname{Pic}(X) \simeq \mathbb{Z}\langle \mathcal{O}(1) \rangle$. To prove that X is Fano it suffices to prove that $p_g(X) = h^0(K_X) = 0$.
- Recall the Harris bound

$$p_g(X) \leq c \binom{M}{n+1} + \epsilon \binom{M}{n}$$

where $M = \left[\frac{\deg(X)-1}{c}\right]$ and $\epsilon = \deg(X) - 1 - Mc$.

• From deg(X) $\leq n - 1$ we deduce

$$M = [\frac{\deg(X) - 1}{c}] \le 1 \frac{n - 2}{c} \le n - 2 < n$$

and $p_g(X) = 0$.

Remarks

• Suppose now $c + 2 \le n \le 2c$.

Remarks

• Suppose now $c + 2 \le n \le 2c$.

• Let
$$-K_X = i(X)H$$
 so that

$$2g(X) - 2 = (n - 1 - i(X)) \deg(X),$$

where g(X) is the sectional genus.

Remarks

• Suppose now $c + 2 \le n \le 2c$.

• Let
$$-K_X = i(X)H$$
 so that

$$2g(X) - 2 = (n - 1 - i(X)) \deg(X),$$

where g(X) is the sectional genus. The Castelnuovo–Harris bound implies

$$g(X) \leq M(\deg(X) - (\frac{M+1}{2})c - 1).$$

Remarks

• Suppose now $c + 2 \le n \le 2c$.

• Let
$$-K_X = i(X)H$$
 so that

$$2g(X) - 2 = (n - 1 - i(X)) \deg(X),$$

where g(X) is the sectional genus. The Castelnuovo–Harris bound implies

$$g(X) \leq M(\deg(X) - (\frac{M+1}{2})c - 1).$$

• Since $M \leq 1$ due to $n \leq 2c$,

$$n-1-i(X) \le 0$$
, i.e. $i(X) \ge n-1$.

Remarks

• Suppose now $c + 2 \le n \le 2c$.

• Let
$$-K_X = i(X)H$$
 so that

$$2g(X) - 2 = (n - 1 - i(X)) \deg(X),$$

where g(X) is the sectional genus. The Castelnuovo–Harris bound implies

$$g(X) \leq M(\deg(X) - (\frac{M+1}{2})c - 1).$$

• Since $M \leq 1$ due to $n \leq 2c$,

$$n-1-i(X) \le 0$$
, i.e. $i(X) \ge n-1$.

and $X \simeq \mathbb{G}(1,4) \subset \mathbb{P}^9$.

In conclusion if deg $(X) \leq n-1$ and $X ot\simeq \mathbb{G}(1,4) \subset \mathbb{P}^9$, then

・ 回 と ・ ヨ と ・ ヨ と

3

In conclusion if deg(X) $\leq n-1$ and $X \not\simeq \mathbb{G}(1,4) \subset \mathbb{P}^9$, then n > 2c and $X^n \subset \mathbb{P}^{n+c}$ is a prime Fano manifold. Therefore

回 と く ヨ と く ヨ と

In conclusion if deg(X) $\leq n-1$ and $X \not\simeq \mathbb{G}(1,4) \subset \mathbb{P}^9$, then n > 2c and $X^n \subset \mathbb{P}^{n+c}$ is a prime Fano manifold. Therefore

$(HCF) \Longrightarrow Barth-Ionescu Conjecture.$

・ 回 ト ・ ヨ ト ・ ヨ ト ・