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I will report on joint work/thoughts with Paltin Ionescu.
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Notation

Definitions

1 X n ⊂ PN irreducible complex projective manifold ;

2 X n ⊂ Pn+c is assumed to be non-degenerate, n = dim(X )
and c = codim(X ) = N − n.

3

X n = V (f1, . . . , fm) ⊂ PN=n+c ,

scheme theoretically intersection of V (fi ) ⊂ PN hypersurface
of degrees di with

d1 ≥ d2 ≥ . . . ≥ dm ≥ 2.

4

d :=
c∑

i=1

(di − 1) ≥ c.
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Complete intersections

Remarks

X n = V (f1, . . . , fc) ⊂ Pn+c =⇒ I (X ) = 〈f1, . . . , fc〉,

i.e. X n ⊂ Pn+c is a complete intersection.

(f1, . . . , fc) define an isomorphism of locally free sheaves of
rank c :

u :
c⊕

i=1

OX (−di )→
IX
I2X

.

Adjunction yields

OX (KX ) ' OX (−n − c − 1)⊗OX (
c∑

i=1

di ) = OX (d − n − 1),

i.e.
−KX = OX (n + 1− d).
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Bertram-Ein-Lazarsfeld Complete Intersection Criterion

X n = V (f1, . . . , fm) ⊂ Pn+c as above,

∃ gi ∈ H0(IX (di )), i = 1, . . . , c :

such that
Y = V (g1, . . . , gc) = X ∪ X ′,

as schemes.
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Bertram-Ein-Lazarsfeld Complete Intersection Criterion

Y n = V (g1, . . . , gc) = X ∪ X ′ is connected since n ≥ 1

(g1, . . . , gc) define an injective homomorphism of locally free
sheaves

u :
c⊕

i=1

OX (−di )→
IX
I2X

supp(X ∩ X ′) = supp(coker(u)).

If X ′ 6= ∅, then X ∩ X ′ 6= ∅, supp(X ∩ X ′) is a divisor D and

OX (D) ' det(
IX
I2X

)⊗OX (
c∑

i=1

di ) ' OX (d − n − 1)⊗ ω∗X .

In conclusion for X n = V (f1, . . . , fm) ⊂ Pn+c we have

X n is a complete intersection⇐⇒ −KX = OX (n + 1− d).
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Equations for Lx ,X ⊂ P((txX )∗)

(x0 : . . . : xN) homogeneous coordinates on PN=n+c such that

x = (1 : 0 : . . . : 0) ∈ Xreg

and

TxX = V (xn+1, . . . , xN).

AN = PN \ V (x0)

with affine coordinates

(y1, . . . , yN),

i.e. yl = xl
x0

, ∀l = 1, . . . ,N.
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Equations for Lx ,X ⊂ P((txX )∗)

x = (1 : 0 : . . . : 0) ∈ X n = V (f1, . . . , fm) ⊂ Pn+c ;

E = P((txX )∗) = Pn−1 ⊂ E ′ = P((txPN)∗) = PN−1.

fi = f 1
i + f 2

i + · · ·+ f di
i ,

with f j
i homogeneous of degree j in the variables (y1, . . . , yN).

V (f 1
1 , · · · , f 1

m) = V (yn+1, . . . , yN) = E ⊂ E ′.

Lx ,PN = E ′ = PN−1 = P((txPN)∗)

Hilbert scheme of lines of PN passing through x.
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Equations for Lx ,X ⊂ P((txX )∗)

Definitions

1 y = (y1 : . . . : yn) homogeneous coordinates on E ⊂ E ′.

2 For j = 2, . . . ,m and ∀ i = 1, . . . ,m,

f̃ j
i (y) = f j

i (y1, . . . , yn, 0, 0, . . . , 0, 0).

3 Lx ,X is the (abstract) Hilbert scheme of lines contained in
X and passing through x

4

Lx ,X = V (f 1
1 , f

2
1 , · · · , f

d1
1 , · · · , f 1

m, f
2
m, · · · , f dm

m ) ⊂ E ′

and
Lx ,X = V (f̃ 2

1 , · · · , f̃
d1
1 ; · · · ; f̃ 2

m, · · · , f̃ dm
m ) ⊂ E
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Equations for Lx ,X ⊂ P((txX )∗)
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m + · · ·+ f̃ dm

m 〉 ⊂ C[y1, . . . , yn] = S

I ∗ := 〈{ initial terms of f ∈ I}〉.

I homogeneous and generated by forms of the same degree
=⇒ I = I ∗.
With these definitions we have :

Cx(TxX ∩ X ) = Spec(
S

I ∗
)

P(Cx(TxX ∩ X )) = Proj(
S

I ∗
) ⊂ E .
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Quadratic varieties

Definition

X n = V (f1, . . . , fm) ⊂ PN is called quadratic if

d1 = 2, that is if it
scheme theoretically intersection of quadrics.

Remarks

1 X ⊂ PN quadratic ⇐⇒ d = c .

2 X n ⊂ Pn+c quadratic =⇒ I = I ∗ = J.

On (special versions of) Hartshorne Conjecture
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First results on Lx ,X ⊂ P((txX )∗)

Proposition

X n ⊂ PN be a (non-degenerate) projective variety, x ∈ Xreg. Then,
as schemes,

1

Lx ,X ⊆ P(Cx(TxX ∩ X )).

2 X n is a quadratic =⇒

TxX ∩ X ∩ AN = Cx(TxX ∩ X ) ⊂ txX ,

Lx ,X = P(Cx(TxX ∩ X )) ⊂ P((txX )∗).

3 X n ⊂ Pn+c quadratic =⇒ Lx ,X ⊂ P((txX )∗) quadratic.
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A closer look at P(Cx(TxX ∩ X ))

TxX ∩ X is also a subscheme of X .

TxX ∩X is the base locus scheme of the projection from TxX
onto PN−n−1, which is not defined at x .

φ : Blx X → X

|φ∗(H)− 2E ||E ⊆ |φ∗(H)− 2E | = | − 2E|E | = |OP((txX )∗)(2)|
yields the restriction to E of the induced tangential projection
on Blx X , whose base locus scheme is

Blx(TxX ∩ X ) ∩ E = P(Cx(TxX ∩ X )) ⊂ P((txX )∗).

In conclusion

Proj(
S

Ĩ
) = P(Cx(TxX ∩ X )) = Proj(

S

I∗
) ⊂ P((txX )∗),

with Ĩ ⊂ S generated by r ≤ c quadratic equations.
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A closer look Lx ,X and at P(Cx(TxX ∩ X ))

X n ⊂ Pn+c manifold.

Y = V (g1, . . . , gc) = X ∪ X ′ and X ∩ X ′ supported on the
divisor D ≥ 0.

x ∈ U = X \ supp(D)

Y \ supp(D) = U q V ,

V = X ′ \ supp(D).

Then TxX ∩ X ∩ U = TxY ∩ Y ∩ U so that

Cx(TxX∩X ) = Cx(TxX∩X∩U) = Cx(TxY∩Y∩U) = Cx(TxY∩Y ).
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A closer look at Lx ,X and at P(Cx(TxX ∩ X ))

Recall that Lx ,Y can be scheme-theoretically defined by
d =

∑c
i=1(di − 1) equations.

Also remark that

supp(Lx ,X ) = supp(Lx ,Y ).
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A closer look at Lx ,X and at P(Cx(TxX ∩ X ))

Proposition

Let X n ⊂ Pn+c manifold, x ∈ U be a general point. Then :

1 Lx ,X can be set theoretically defined by the r ≤ d equations
defining Lx ,Y scheme theoretically.

2 If d ≤ n − 1, then Lx ,X 6= ∅.
3 If X is quadratic, then

Lx ,X = P(Cx(TxX ∩ X )) = P(Cx(TxX ∩ X )) = Lx ,Y

so that Lx ,X ⊂ P((txX )∗) is a quadratic variety (in fact a
manifold !) scheme theoretically defined by r ≤ c linearly
independent quadratic equations.
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First Problem

Problem

Let X n ⊂ Pn+c be a manifold.

Under which hypothesis, if any,

Lx ,X = P(Cx(TxX ∩ X )) =⇒ X n ⊂ Pn+c quadratic ?
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Lines on prime Fano manifolds

Definitions

X n ⊂ PN is a prime Fano manifold if

1 −KX is ample ;
2 Pic(X ) ' Z〈O(1)〉.

index of X n ⊂ PN defined by

−KX = i(X )H,

with H ⊂ X a hyperplane section of X n ⊂ PN .
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Abstract properties of Lx ,X

Proposition

Let X n ⊂ PN manifold, x ∈ X general. Then

1 If Lx 6= ∅, then Lx ,X is smooth ;

2 If Lx 6= ∅, then for every [L] ∈ Lx we have
dim[L](Lx) = −KX · L− 2.

3 [Mori] X prime Fano with i(X ) ≥ n+1
2 , then Lx ,X 6= ∅.

4 if moreover i(X ) ≥ n+3
2 , then Lx ⊂ Pn−1 is irreducible (and

smooth !).

5 [Hwang] If i(X ) ≥ n+3
2 , then Lx ⊂ Pn−1 is a non-degenerate

manifold of dimension i(X )− 2.
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Example

Example

X n ⊂ Pn+c smooth complete intersection of type (d1, d2, . . . , dc)
with dc ≥ 2. Then :

if n + 1− d > 0, then X is a Fano manifold and
i(X ) = n + 1− d ;

if n ≥ 3, then Pic(X ) ' Z〈O(1)〉 ;

if i(X ) ≥ 2, then Lx 6= ∅,
∀[L] ∈ Lx ,

dim[L](Lx) = (−KX · L)− 2 = i(X )− 2 = n − 1− d ≥ 0;

Lx ⊂ Pn−1 is a smooth complete intersection of type

(2, . . . , d1; 2, . . . , d2; . . . ; 2, . . . dc−1; 2, . . . , dc).
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Beyond [BEL] Main Application

Theorem (Bertram–Ein–Lazarsfeld)

X n ⊂ Pn+c manifold.

If

k ≥ d1 + . . .+ dc − N = d − n and i > 0,

then
H i (IX (k)) = 0.

Remarks

1 X n ⊂ Pn+c is projectively normal if d ≤ n + 1 ;

2 X n ⊂ Pn+c is arithmetically Cohen-Macaulay if d ≤ n.
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Beyond [BEL] Main Application

Proposition

X n ⊂ Pn+c manifold.
Assume d ≤ n − 1 (and also n ≥ c + 2 if X n ⊂ PN is quadratic).
Then :

1 X n ⊂ PN is an arithmetically Cohen-Macaulay Fano manifold
with Pic(X ) ' Z〈O(1)〉 and of index

i(X ) = dim(Lx) + 2 ≥ n + 1− d ≥ 2;

2 Moreover, the following conditions are equivalent :

1 X ⊂ PN is a complete intersection ;
2 Lx ⊂ Pn−1 is a complete intersection of codimension d ;
3 dim(Lx) = n − 1− d.
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Hartshorne Conjecture on Complete Intersections

Conjecture

(Complete Intersection Conjecture, Hartshorne 1974) Let
X n ⊂ Pn+c smooth manifold

If 2c < n(i.e. if c ≤ n− 1

2
), =⇒ X is a complete intersection.
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Hartshorne Conjecture for Quadratic Manifolds

Theorem (Ionescu,–)

Let X n ⊂ Pn+c be a quadratic manifold.

If c ≤ n−1
2 , then

X n ⊂ Pn+c is a complete intersection.

Theorem (Ionescu, –)

Let X n ⊂ P
3n
2 be a quadratic manifold (2c = n). Then X n ⊂ P

3n
2 is

projectively equivalent to one of the following :

1 a complete intersection of quadrics ;

2 G(1, 4) ⊂ P9.

3 S10 ⊂ P15.

In particular G(1, 4) ⊂ P9 and S10 ⊂ P15 are the unique
Hartshorne varieties defined by quadratic equations, modulo
projective equivalence.
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Faltings Theorem

We shall need the following deep result of Faltings :

Theorem (Faltings)

Let X n = V (f1, . . . , fm) ⊂ Pn+c manifold. If m ≤ N
2 , then

X n ⊂ Pn+c is the complete intersection of c = N − n ≤ m
hypersurfaces among the m defining it scheme theoretically.
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Proof

c ≤ n − 1

2

Proof

1 X n ⊂ Pn+c is a Fano manifold of index

i(X ) = dim(Lx) + 2 ≥ n − 1− c + 2 ≥ n + 3

2
.

2 Lx ⊂ Pn−1 is non-degenerate by Hwang’s Theorem.

3 Lx ⊂ Pn−1 smooth, irreducible and scheme theoretically
defined by c linearly independent quadratic forms

4 By Falting’s Lx ⊂ Pn−1 is the complete intersection of r ≤ c
linearly independent quadrics vanishing on it.

5 r = c and dim(Lx) = n − 1− c.

6 −KX = O(n + 1− c) =⇒ X n ⊂ Pn+c complete intersection.
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Open Problems and Conjectures

Conjecture (HCF)

Assume that c ≤ n−1
2 and X n ⊂ Pn+c Fano.

Then X n ⊂ Pn+c is a
complete intersection.
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Open Problems and Conjectures

Conjecture (HCF)

Assume that c ≤ n−1
2 and X n ⊂ Pn+c Fano. Then X n ⊂ Pn+c is a

complete intersection.
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Open Problems and Conjectures

Conjecture (HCL)

X n ⊂ Pn+c covered by lines, i.e. Lx 6= ∅ for x ∈ X general.

dim(Lx) ≥ n−1
2 and T = 〈Lx〉 ⊆ Pn−1.

If
dim(Lx) > 2 codimT (Lx),

then Lx ⊂ Pn−1 is a complete intersection.
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Open Problems and Conjectures

Remarks

When n ≥ 2c + 1, by the Barth–Larsen Theorem
Pic(X ) ∼= Z〈H〉. In particular KX = bH for some integer b.
So, saying that X is Fano means exactly that b < 0 ; this
happens, for instance, if X is covered by lines.

The (HCF) holds when c = 2 by a result of Ballico and
Chiantini.

By the Contraction Theorem for manifolds covered by lines,
the (HCL) concerns Fano manifolds X ⊂ PN with
Pic(X ) ' Z〈H〉 and of index i(X ) ≥ n+3

2 .

Dual defective and LQEL manifolds satisfy the (HCL)
(Ionescu, –).

Prime Fano manifolds of high index tend to be complete
intersections. Note that for complete intersections X n ⊂ Pn+c ,
Lx ⊂ Pn−1 is also a complete intersection.
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Open problems and Conjectures

Conjecture

If X ⊂ PN is covered by lines and Lx ⊂ Pn−1 is a (say smooth
irreducible non-degenerate) complete intersection, then X is a
complete intersection too.

Question

Let X ⊂ PN be as above. If d ≤ n−1
2 , then X n ⊂ Pn+c is a

complete intersection ?
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Barth–Ionescu Conjecture

Manifolds of (very) small degree with respect to their codimension
are known to be complete intersections.

Hartshorne was the first to realize in 1973 that there exists a
function f (deg(X )) such that, for smooth X n ⊂ Pn+c ,

n ≥ f (deg(X )) =⇒ X complete intersection.

Remarks

Barth–Van de Ven, Inv. Math. 1974 : for c = 2 one can take
f (deg(X )) = 4d − 7 ;

Barth, Proc. Int. Congress Math., Vancouver 1974 :
f (deg(X )) = 5 deg(X )(deg(X )−1)

2 ;

Barth remarks that f (deg(X )) ≥ deg(X ) + 1 due to
X n = P1 × Pn−1 ⊂ P2n−1 for which deg(X n) = n.

Barth seems to overlook deg(G(1, 4)) = 5 = n − 1.

Other refinements for c = 2, due to Ran, Ballico–Chiantini,
Holme–Schneider.
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Open problems and Conjectures

Conjecture (Barth–Ionescu)

If deg(X ) ≤ n − 1, then X n ⊂ Pn+c is a complete intersection,
unless it is projectively equivalent to G(1, 4) ⊂ P9.
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On Barth–Ionescu Conjecture

Remarks

Let X n ⊂ Pn+c be a manifold and suppose deg(X ) ≤ n − 1.

If n ≤ c + 1, then

0 ≤ deg(X )− codim(X )− 1 ≤ n − 1− c − 1 < 0.
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On Barth–Ionescu Conjecture

Remarks

If n ≥ c + 2 we have Pic(X ) ' Z〈O(1)〉. To prove that X is
Fano it suffices to prove that pg (X ) = h0(KX ) = 0.

Recall the Harris bound

pg (X ) ≤ c

(
M

n + 1

)
+ ε

(
M

n

)
,

where M = [deg(X )−1
c ] and ε = deg(X )− 1−Mc .

From deg(X ) ≤ n − 1 we deduce

M = [
deg(X )− 1

c
] ≤ 1

n − 2

c
≤ n − 2 < n

and pg (X ) = 0.
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On Barth–Ionescu Conjecture

Remarks

Suppose now c + 2 ≤ n ≤ 2c .

Let −KX = i(X )H so that

2g(X )− 2 = (n − 1− i(X )) deg(X ),

where g(X ) is the sectional genus. The Castelnuovo–Harris
bound implies

g(X ) ≤ M(deg(X )− (
M + 1

2
)c − 1).

Since M ≤ 1 due to n ≤ 2c ,

n − 1− i(X ) ≤ 0, i.e. i(X ) ≥ n − 1.

and X ' G(1, 4) ⊂ P9.
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(HCF) implies Barth–Ionescu

In conclusion if deg(X ) ≤ n − 1 and X 6' G(1, 4) ⊂ P9, then

n > 2c and X n ⊂ Pn+c is a prime Fano manifold. Therefore

(HCF) =⇒ Barth–Ionescu Conjecture.
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