FINAL EXAM after the lecture course

AFFINE ALGEBRAIC SURFACES and the ZARISKI CANCELLATION PROBLEM

by MIKHAIL ZAIDENBERG

1. Epimorphism Theorem

- a) Let Γ ⊂ A² = A²_C be a reduced, irreducible plane affine curve over the base field k = C. Verify that the following conditions are equivalent:
 (i) Γ is isomorphic to the affine line A¹ = A¹_C;
 - (i) Γ is a smooth rational curve with one place at infinity;
 - (ii) Γ is a smooth and $\pi_{i}(\Gamma) = 1$.
 - (iii) Γ is smooth and $\pi_1(\Gamma) = 1$;
 - (iv) Γ is smooth and $e(\Gamma) = 1$, where e stands for the Euler characteristic;
 - (v) Γ admits a parameterization $\Gamma = \varphi(\mathbb{A}^1)$, where $\varphi = (p, q)$ with $p, q \in \mathbb{C}[t]$ separating points of \mathbb{A}^1 and separating directions (that is, p'(t) and q'(t) do not vanish simultaneously);
 - (vi) $\Gamma = \varphi(\mathbb{A}^1)$, where $\varphi = (p,q) \in (\mathbb{C}[t])^2$ with $\mathbb{C}[p,q] = \mathbb{C}[t]$;
 - (vii) $\Gamma = \varphi(\mathbb{A}^1)$, where $\varphi = (p,q) \in (\mathbb{C}[t])^2$ are such that t = f(p(t), q(t)) for some $f \in \mathbb{C}[x, y]$.
- b) Show that the Epimorphism Theorem of Abhyankar-Moh and Suzuki is equivalent to the following assertion. Let k be a field of characteristic π , and let $\gamma \colon k[X, Y] \to k[Z]$ be the k-epimorphism with $\gamma(X) =$ 0 and $\gamma(Y) = Z$. Let $\alpha \colon k[X, Y] \to k[Z]$ be any k-epimorphism such that at least one of deg_Z $\alpha(X)$ and deg_Z $\alpha(Y)$ is not divisible by π . Then there exists an automorphism $\beta \colon k[X, Y] \to k[X, Y]$ such that $\gamma = \alpha \circ \beta$.

2. SIMPLY CONNECTED AFFINE CURVES

- a) Let $\Gamma \subset \mathbb{A}^2 = \mathbb{A}^2_{\mathbb{C}}$ be a reduced, irreducible plane affine curve over $k = \mathbb{C}$. Verify that the following conditions are equivalent:
 - (i) $\pi_1(\Gamma) = 1;$
 - (ii) Γ is homeomorphic to the complex affine line $\mathbb{A}^1 = \mathbb{A}^1_{\mathbb{C}}$;
 - (iii) Γ is a rational curve with one place at infinity and only unibranch singular points;
 - (iv) $e(\Gamma) = 1$, where e stands for the Euler characteristic;
 - (v) Γ admits a parameterization $\Gamma = \varphi(\mathbb{A}^1)$, where $\varphi = (p, q)$ with $p, q \in \mathbb{C}[t]$ separating points of \mathbb{A}^1 .
- b) Verify that the conditions (i)-(v) are fulfilled for the curve $\Gamma = \Gamma_{k,l}$ given in \mathbb{A}^2 by equation $x^k y^l = 0$, where $k, l \in \mathbb{N}$, gcd(k, l) = 1.
- c) Show that any reduced, irreducible, quasihomogeneous affine plane curve Γ different from the coordinate axes coincides with $\Gamma_{k,l}$ for some $k, l \in \mathbb{N}$ with gcd(k, l) = 1.

d) Let $C \subset \mathbb{A}^3 = \mathbb{A}^3_{\mathbb{C}}$ be an affine space curve isomorphic to the affine line \mathbb{A}^1 . Show that if C admits two parallel tangent lines T_PC , T_QC , where $P, Q \in C$, $P \neq Q$, then there is a secant line (S, R), where $S, R \in C, S \neq R$, parallel to T_PC and T_QC .

3. Locally nilpotent derivations

Let A be an integral domain over an algebraically closed field k of characteristic zero, and let $\partial \colon A \to A$ be a locally nilpotent derivation of A.

- a) Show that
 - (i) $A^{\partial} = \ker \partial$ is an inert domain, that is, $a \cdot b \in A^{\partial} \Rightarrow a, b \in A^{\partial}$;
 - (ii) A is an affine domain provided A[t] is;
 - (iii) $(\operatorname{Frac} A)^{\partial} = \operatorname{Frac}(A^{\partial});$
 - (iv) if A is integrally closed in FracA then A^{∂} is integrally closed in Frac (A^{∂}) .
- b) Find an example of an affine domain A such that A^∂ is not an affine domain.
- c) Let A be graded: $A = \bigoplus_{n \in \mathbb{Z}} A_n$. Show that any derivation $\partial \in \text{Der}A$ is a sum of homogeneous derivations: $\partial = \sum_{i=k}^{l} \partial_i$, where deg $\partial_i = i$, and that ∂_k, ∂_l are locally nilpotent provided ∂ is.
- d) Find explicitly a locally nilpotent derivation of the algebra $\mathcal{O}(X)$, where X is the surface given in \mathbb{A}^3 by equation $x^n y p(z) = 0$, where $p \in k[z]$.
- e) Let $S_n = \{x^n y z_2 + 1 = 0\} \subset \mathbb{A}^2$. Show that any locally nilpotent derivation of $\mathcal{O}(S_2)$ is a replica of a fixed such derivation that you will make explicit. Is this true for S_1 ?

4. CANCELLATION

- a) Prove the cancellation for cylinders over smooth affine curves $/\mathbb{C}$.
- b) Show that the strong cancellation does not hold for the affine line \mathbb{A}^1 and holds for any smooth affine curve non-isomorphic to \mathbb{A}^1 .
- c) Show that the strong cancellation does not hold for the cylinder over the surface X as in Exercise 3.d) above.
- d) Prove the Danielewski-Fieseler Theorem in case of the cylinders over the Danielewski surfaces S_1 and S_2 (see Exercise 3.e).

 $\mathbf{2}$