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Orbit method is a kind of damaged treasure map, offering cryptic hints where to find
some (but not all) of the things we’re looking for. (D. Vogan)
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Quantum orbit method

Poisson manifold
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algebra F~(M)

Set of symplectic
leaves SM

Set of irreducible uni-
tary representations of
F~

quantization

quantum orbits
correspondence
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The example you may know - orbit method

(M, π) = (g∗, πlin) U(g) same as Fh(g∗)
gr(U(g)) ' Pol(g∗)

quantization

Sg∗ = coadjoint orbits ∗-irreps of U(g)orbits
correspondence

real irreps of g
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An even simpler case

(M, π) = (M, 0) C(M) identified to Fh(M)
no quantization

SM = points of M; p
∗-irreps of C(M)
ker ρp =
{f ∈ C(M) : f (p) = 0}

p 7→ ρp
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The example you may not know

(K , πK ) standard
compact Poisson-Lie
group

NC associative ∗-
algebra Fq(K ) (quan-
tum function algebra)

quantization

SK = dressing orbits
of K ∗ on K

Set of ∗-irreps of
Fq(K )

quantum orbit relation

Combinatorial data
attached to Wl(K )

Soibelman

Soibelman
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A case in which it does not work, does it?

(T2, θ) invariant symplec-
tic torus; θ 6∈ Q

Fθ(T2) quantum torus
C∗-irrational rotation al-
gebra

whichever quantization

SM = {∗} just one point infinitely many ∗-irreps of
quantum torus (wild)

ALERT!
They don’t match
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Innocent looking questions

Under which constraints on the Poisson manifolds does QOM work?
Which quantization procedure is the right one? Which quantization outcome works
better?
Just bijective correspondence or maybe something more (e.g. topology)?
SM is the roughest Poisson (Morita) invariant: to which other invariants does this apply?
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Quantization via symplectic groupoid

Introduced in the late 80ies (Karasev, Weinstein, Zakrzewski).
Revived by Hawkins 2008.
Outcome is a groupoid (twisted) C∗-algebra.
Relies on geometric quantization: pros= geometric data involved, cons= choices.
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Outline of QSG

Integration
Integrate (M, π) to a symplectic groupoid (Σ, ωπ).

Polarization
Choose a multiplicative Lagrangian fibration L of Σ: projection to leaves Σ→ ΣL is a
groupoid morphism.

Bohr-Sommerfeld
Consider Bohr-Sommerfeld conditions. Under a suitable geometrical constraint the set of BS
leaves ΣBS is a subgroupoid of ΣL.

And finally...
Construct the groupoid C∗-algebra: F~(M) = C∗(ΣBS).
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The dust under the rug

Prequantization
Prequantization of symplectic groupoid was fully understood by Weinstein-Xu (1991). We will
assume that our Poisson manifolds are prequantizable and that the prequantization data
involves a trivial groupoid 2-cocycle, so that the resulting C∗-algebra is not twisted.This
relates to properties of the Poisson cohomology class [π].
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Integration

Integrating a Poisson manifold (M, π) means finding a Lie groupoid Σ⇒M with space of units
M = Σ0, and a multiplicative symplectic form ωΣ on Σ such that the source (resp. target) is a
Poisson (resp. anti Poisson) map.

1 Theoretically almost always possible (R.L.Fernandes, M. Crainic);
2 Explicit integration often difficult;
3 Symplectic leaves of M correspond to orbits of Σ;
4 Trivial case (everybody knows what a symplectic groupoid is): T ∗M → M, (symplectic

groupoid when πM = 0, with s = t = p and Liouville symplectic form).
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Choice of polarization

Real Lagrangian Multiplicative Polarization - Hawkins 2008
A real LMP on a symplectic groupoid (Σ, ω) is an integrable Lagrangian distribution L on Σ
such that m∗L⊥ = (pr∗1 + pr∗2 )L⊥ and inv∗(L) ⊆ L.

m : Σ2 → Σ; m(γ, η) = γη , inv : Σ→ Σ; inv(γ) = γ−1

In a different language a real LMP is a wide sub LA-groupoid of T Σ.

Multiplicativity guarantees that the set of Lagrangian leaves is a quotient groupoid ΣL. Real
LMP does not always exist. We will allow singularities but such that Σ→ ΣL is still a
groupoid fibration (Bonechi, —, Qiu, Tarlini (2013)).
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Bohr-Sommerfeld condition

When Lagrangian leaves are not simply connected, existence of covariantly costant sections
along the leaves is not guaranteed. Connection holonomy along the leaf should be trivial.

Bohr-Sommerfeld
The trivial holonomy condition (under geometrical constraints... BCQT 2013) selects a
subgroupoid ΣBS , called the Bohr-Sommerfeld subgroupoid. We associate to it the quotient of
Bohr-Sommerfeld Lagrangian leaves ΣLBS .

We will take for granted that it is always possible to fix a left Haar system {λ} on the
groupoid ΣLBS and therefore construct a groupoid C∗-algebra C∗(ΣLBS ;λ).

The quantization of (M, π) is the groupoid C∗-algebra C∗(ΣLBS ;λ).
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Why do I have to choose?

Real multiplicative Lagrangian polarizations are not unique. Different choices of polarization
give rise to different subset of Bohr-Sommerfeld leaves. There are no general results granting
indipendence from this choice.

In principle it is possible that different polarizations will behave diferently with respect to
quantum orbit method. QMO can be seen also as selecting well behaved polarizations.
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The trivial case

Let M be a (compact) manifold with zero Poisson structure.

The symplectic groupoid of M is T ∗M, with s = t = pT ∗M and the Liouville symplectic
form.
The vertical polarization is a real multiplicative Lagrangian polarization of T ∗M.
All leaves are simply connected and therefore there are no BS conditions.
The resulting C∗-algebra is the C∗-algebra C0(M).
Unitary irreducible representations of C0(M) are characters and with Jacobson topology
the unitary dual of C0(M) is homemorphic to M.
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The linear case

Let g be a Lie algebra and let M = g∗ with the linear KKS Poisson bracket.

The symplectic groupoid of g∗ is T ∗G , with s = L∗, t = R∗ and the Liouville symplectic
form.
The vertical polarization is a real multiplicative Lagrangian polarization of T ∗G . The
quotient groupoid is G as a groupoid over one point.
All leaves are simply connected and therefore there are no BS conditions.
The resulting C∗-algebra is the group C∗-algebra C∗(G).
It can be shown that C∗(G) is a completion of U(g) (identified with e-supported
distributions).
Under suitable hypothesis Irrep∗(C∗(G)) ' IrrepR

algU(g).
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The standard symplectic case

Let M = R2n with the standard symplectic form ω: let π = ω−1

The symplectic groupoid of R2n is R4n, with pair groupoid structure and standard
symplectic form.
Many possible choices of real multiplicative Lagrangian polarization of R4n: choose a
horizontal one;
All leaves are simply connected and therefore there are no BS conditions.
The resulting C∗-algebra is the C∗-algebra K(L2(R2n)) of compact operators.
Naimark’s theorem: the unitary dual of K(L2(R2n)) consists of only one point.
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groupoid Σ

units M
isotropy group

A groupoid can be seen as a
sort of bundle with varying
isotropy groups (not
isomorphic) over each unit,
constant on orbits.
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Groupoid C ∗-algebra

Let Σ be a topological groupoid and let u ∈ Σ0. Let A be an abelian subgroup of the isotropy
group Σu

u.
Let ρ be a representation of A on Hρ.
Then there is a well defined induced representation Ind(u,A, ρ) of C∗(Σ, λ) on a suitable
Hilbert space completion of Cc(Σu

u)⊗Hρ.
From this you can try to build up a correspondence between irreps of the C∗-algebra and its
orbits.
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Abelian isotropy - Muhly, Renault, Williams 1996
Let Σ be a 2nd -countable locally compact topological groupoid with abelian isotropy:

For any u ∈ Σ0 and χ ∈ Σ̂u
u the representation Ind(u,Σu

u, χ) is irreducible;
If γ ∈ Σu then there is a unitary equivalence

Ind(u,Σu
u, χ) ' Ind(uγ,Σs(γ)

s(γ), χ · γ)

The corresponding map
Ψ; Σ0/Σ→ ̂C∗(Σ, λ)

is injective.
If Σ0/Σ is T2 then Ψ is continuous (overly restrictive but...).
If Σ0/Σ is not even T0 then the C∗-algebra is not postliminal and therefore

̂C∗(Σ, λ) 6' Prim(C∗(Σ, λ)) .
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Topologically principal - Sims and Williams 2015

Let Σ be an amenable, etale, Hausdorff groupoid such that for any X closed invariant subspace
of Σ0 then Σ

∣∣
X is topologically principal (i.e. it has trivial isotropy on a dense subset). Then

C∗(Σ, λ) is type I and the induced representation map Ψ establishes an homeomorphism:

Q(Σ)→ ̂C∗(Σ, λ)

between the quasi-orbit space of Σ and the space of unitary irreps with its natural (Jacobson)
topology.

The space Q(Σ) of quasi-orbits is the quotient of the space of orbits by identifying orbits
having same closure.
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A nice part of the treasure map - I

i) Poisson-Lie group structures on the (3-dim) Heisenberg group can be explicitely
described, together with their symplectic foliation.

ii) A naturally defined quantizing C∗-algebra was built starting from a quantum double
construction (B.J. Khang 2005);

iii) Irreps with Jacobson topology match space of leaves with quotient topology (B,J, Khang
2006);

iv) All the above can be reconstructed via symplectic groupoid quantization (–, in
preparation).
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A nice part of the treasure map - II

I will consider the case of covariant Poisson CPn
t ; when t = 0, 1 it is called standard while

when t ∈]0, 1[ non standard.

Poisson quotient of standard Poisson-Lie SU(n).
In the standard case quantum orbit relation is known to hold (Stokman 1995,
Nevsheyev-Tuset 2013).
Groupoid quantization can be explicitely determined (Bonechi, –, Qiu, Tarlini CMP 2013).
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The standard case

Symplectic foliation: one cell in each even dimension. Topology of the space of leaves:

{∅,S1, {S1,S2}, {S1, S2,S3}, . . . , {S1, . . . ,Sn+1}}

Singular multiplicative Lagrangian polarization + non trivial BS conditions (BCQT 2013).
The groupoid satisfies Sims-Williams hypothesis; this implies QOM holds true (–, Rend.
Sem. Mat. PoliTo 2016).
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The non standard case

Coisotropic quotient of standard Poisson-Lie SU(n).
Neither Stokman or Nevshveyev-Tuset results apply.
Groupoid quantization and singular LMP in (BCQT 2013).
BS groupoid is amenable, etale, topologically principal and with abelian isotropy
(postliminal C∗-algebra).
Have to take into account non trivial isotropy corresponding to S1-families of symplectic
cells (T–leaves).
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At the borders of the treasure map

Let T2 with a right invariant symplectic form θ. The corresponding symplectic groupoid is
T ∗T2 as a symplectic manifold.
There is a natural Lagrangian multiplicative polarization by cylinders such that the
groupoid of Lagrangian leaves is the action groupoid Rn R.
After selecting BS leaves one gets the action groupoid Z nθ S1 where (θ 6∈ Q):

n ·θ x = eiθnx .

The space of orbits has infinitely many points but trivial topology, thus not even T0.

Prim(C∗(T2
θ)) = {P} but Ĉ∗(T2

θ) has infinitely many elements.
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Connes-Landi 3-sphere - Poisson

Let Tk with a right invariant symplectic form θ. Let M be a manifold with a smooh Tk -action.
Consider the Poisson bracket πθ on M given as quotient

M × Tk → (M × Tk)/Tk

Consider T2–action on the 3-sphere. Get the Poisson version of Connes-Landi-Matsumoto
3-sphere.

N. Ciccoli (Università di Perugia) Quantum orbit method Tor Vergata, March 2020 online Seminar 28 / 34



Already in the work of E. Hawkins (2008) geometric quantization of this Poisson structure is
explicitely described.

Symplectic groupoid Σ(S3) is symplectomorphic to T ∗S3;
An explicit real LMP can be chosen;
Bohr-Sommerfeld conditions are partially non trivial;
Quantization C∗-algebra is C∗(Z nθ S2) w.r. to a horizontal action of Z on S2;
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The space of orbits is not T0 hence ̂C∗(Z nθ S2) 6= Prim(C∗(Z nθ S2)).Take Xc = {z = t} to
be a level set: it is a closed invariant subset of the unit space.

Q(T ) = [−1, 1]

The orbit X± (North and South pole) have nontrivial isotropy Z.

Disintegration Theorem
X closed invariant subset of orbit space, then

0→ C∗(Σ
∣∣
X c )→ C∗(Σ)→ C∗(Σ

∣∣
X )→ 0
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C∗(Σ
∣∣
Xt

) ' C∗(Z nθ S1) ' C∗(T2
θ);

For every t ∈ [−1, 1] you have a decomposition:

0→ C∗(Σ
∣∣
X c

t
)→ C∗(Σ)→ C∗(T2

θ)→ 0

There are two S1 families of characters corresponding to isotropy of North and South pole
X±1 (Hopf link);
each irriducible representation factors on a closed invariant subset Xt ;
Jacobson topology on Prim(C∗(Z n S2)) is of the form S1 × [−1, 1]/ ';
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Poisson-Heegaard splitting of S3
θ

t = 1 circle of 0-dim. leaves

t = 1/2 toric 2-dim. leaf

t = 0 toric leaf– gluing

t = −1/2 toric 2-dim leaf

t = −1 circle of 0-dim. leaves
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Hic sunt leones

Three dimensional Poisson-Stokes matrices:

{x , y} = xy − 2z , + cyclic perm.

(Ugaglia, Boalch, Xu, Ciccoli-Gavarini, Klymik)
symplectic groupoid known since work of Bondal (2008) (also Bonechi,-,Staffolani,
Tarlini, JGP 2011);
T0 topology on leaf space. Casimir level sets C = xyz − c(x2 + y2 + z2);
Coexistence of s.connected and non s.connected leaves
multiplicative polarization - still to be determined.
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Thanks for the attention
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