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Supervised learning

Input: Set of observations (xi, yi) ∈ Rd × Rk for i = 1, . . . , N

Goal: Infer the map f : x 7→ y in a fast and reliable way

f(x)x =

Dog 0.43

Mop 0.56

Pole 0.01
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Learning via Feed-forward NNs

In order to compute f we need an ansatz function space

FFNNs are a parametric family of functions that we can write as

f(x;W ) =
{
σℓ ◦Aℓ ◦ · · · ◦ σ1 ◦A1

}
(x)

where

• W = (W1, . . . ,Wℓ) are the parameters
• Ai : RN1 → RNi+1 are “simple mappings”, for instance

• Matrix multiplication Ai(x) = Wix

• Convolution Ai(x) = Wi ∗ x
• Dot product Ai(x) = Wixx

⊤W⊤
i

• σi are entrywise nonlinear activation functions

2



Learning via Feed-forward NNs

In order to compute f we need an ansatz function space

FFNNs are a parametric family of functions that we can write as

f(x;W ) =
{
σℓ ◦Aℓ ◦ · · · ◦ σ1 ◦A1

}
(x)

where

• W = (W1, . . . ,Wℓ) are the parameters
• Ai : RN1 → RNi+1 are “simple mappings”, for instance

• Matrix multiplication Ai(x) = Wix

• Convolution Ai(x) = Wi ∗ x
• Dot product Ai(x) = Wixx

⊤W⊤
i

• σi are entrywise nonlinear activation functions

2



Memory and computation footprints

Each time we do inference, we need to evaluate f on a new point x.

This requires:

• To evaluate ℓ mappings Ai ≈
∑

iNiNi+1

• To evaluate ℓ activations ≈
∑

iNi

• To store ℓ weight matrices Wi ≈
∑

iNiNi+1

Overall, for Ni = N ,

O(ℓN2) operations O(ℓN2) variables
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In practice (examples of ℓN 2)

• AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60+ million parameters
• VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135+ million parameters
• DALL-E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5+ billion parameters
• M-BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4+ billion parameters

(Very) Prohibitive for online-learning and for limited-resource
devices, such as smartphones, drones, satellites, etc.
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Model compression, aka pruning

Constrain the parameter space.

Most common examples:
sparsity: nnz(Wi) = O(

√
NiNi+1);

quantization: (Wi)ij ∈ Z;
low-rank structure: rank(Wi) = ri.

Pruning methods
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Lottery ticket hypothesis

The lottery ticket hypothesis: finding sparse, trainable neural
networks, J Frankle, M Carbin, ICLR 2019

A randomly-initialized dense NN contains a subnetwork that,
when trained in isolation and for the same number of itera-
tions, can match the accuracy of the original full net.

Full network vs pruned network as level of pruning increases on LeNet5 6



In practice

• Train. Train the full network
↓

• Prune. Prune the obtained optimal weights
↓

• Adjust. Fix the obtained constraints space and “fine tune”
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Is this happening by chance?

Proving the lottery ticket hypothesis, E Malach, G Yehudai, S
Shalev-Shwartz, O Shamir, ICML 2020

“A network of depth ℓ can be approximated arbitrarily well by
pruning a network of depth 2ℓ”

Given ε > 0 and a NN f of depth ℓ and width N , there exists:
• a larger network g of depth 2ℓ and width poly(ℓ,N, ε−1)

• a subnetwork f̃ with only O(ℓN2) parameters
such that |f̃ − f | ≤ ε with probability at least (1− ε)

Problem(s): the result is not constructive and it gives no proof of
the existence of winning tickets
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How about the training phase?

Moreover,

This approach completely ignores training costs.

Learning boils down to the following optimization problem,

min
W

loss(W ; x, y) := fit(f(x;W ), y) + reg(W )

which we typically solve via stochastic first-order methods.

For example, for SGD

W (n+1) = W (n) − λn∇W loss(W (n); xbatch(n), ybatch(n))
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Training cost

Computing W (n+1) from W (n) essentially requires

1. At least one evaluation of f(xbatch(n);W (n))

2. At least one evalutation of ∇W loss(W (n); xbatch(n), ybatch(n))

3. Storing at least the current variable W (n) = (W
(n)
1 , . . . ,W

(n)
ℓ )

Overall, for Ni = N (ignoring nonlinearities and batch sizes):

• 1 and 2 cost O(2ℓN2) operations,
• 3 requires to store O(ℓN2) parameters,

per iteration!
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Train and (then) compress

• Train.
↓

• Prune.
↓

• Adjust.

requires

• full training cost
• finding the right constraints

space
• cost of pruning (e.g. projection)

and fine-tuning

We design an approach that overcomes all these issues by
using low-rank constraints
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Low-rank setting

In our approach, we compress by reducing the rank.

Consider the following “low-rank parameter space”

M = Mr1 × · · · ×Mrℓ Mri = {Wi : rank(Wi) = ri}

with ri � min{Ni, Ni+1}, and the associated constrained training

min
W∈M

loss(W ;x, y)
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Complexity comparison

Operations within M are potentially much cheaper due to the
compositional structure of NNs.

For example, if we parametrize Mri as

Mri = {UiSiV
⊤
i : Ui ∼ Ni+1 × ri, Si ∼ ri × ri, Vi ∼ ri ×Ni},

we have

Wi ∈ Mri σi(Wix) costs O(ri(Ni +Ni+1 + ri))

Wi generic σi(Wix) costs O(NiNi+1)

(a similar comparison holds for the memory storage)
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Previous approaches: penalized loss and projected gradient

Impose the constraint W ∈ M by

• projecting the iterations at each step onto M

H Yang et al, CVPR 2020
PM(W ) = argminA∈M ‖A−W ‖2F

• add a penalty term C(W ) to the loss, for example

Y Idelbayev, MA Carreira-Perpiñán, CVPR, 2020
C(W ) =

∑L
i=1 αi rank(Wi)

• Require computing the full-rank flow during training
• Require at least one SVD at each step
• Require to choose the ranks a-priori
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Our approach

We propose a strategy based on Dynamic Low-Rank Approximation
from model order reduction of matrix differential equations.

Main properties:

• Assuming W
(n)
i = UiSiV

⊤
i , computes W

(n+1)
i with the same

structure using only the factors
• Adaptively adjusts the rank ri of Si
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Gradient flow formulation

We can rephrase the training problem as the search of equilibrium
points for the matrix ODE

d

dt
W (t) = −∇W loss(W (t); x, y)

With this notation, for example, GD = Explicit Euler
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Project the whole vector field

Project the whole vector field F := −∇W loss onto the tangent
space TW (t)M of M at the current point W (t)

d

dt
W (t) = −PTW (t)M∇W loss(W (t);x, y)
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Impose Galerkin and Gauge conditions

For each Wi ∈ {W1, . . . ,Wℓ}, assume Wi(t) = Ui(t)Si(t)Vi(t)
⊤,

where Ui(t), Vi(t) are tall and skinny matrices and Si(t) is a small
square invertible matrix (not necessarily diagonal!).

Imposing Galerkin and Gauge conditions on the factorization,
we can rewrite the projected ODE as a system of ODEs for
each of the factors Ui(t), Vi(t), Si(t).

Galerkin:
〈Ẇi(t) +∇Wi loss(Wi(t)), δWi(t)〉 = 0 for all δWi(t) ∈ TWi(t)Mi

Gauge:
Ui(t)

⊤δUi(t) = Vi(t)
⊤δVi(t) = 0 for all i = 1, . . . , ℓ
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System of low-rank ODEs

For each W ∈ {W1, . . . ,Wℓ},
Ṡ = −U⊤∇W loss(W )V

U̇ = −(I − UU⊤)∇W loss(W )V S−1

V̇ = −(I − V V ⊤)∇W loss(W )⊤US−⊤

These ODEs reflect the local curvature of the low-rank manifold,
which is proportional to the inverse of the smallest singular value of
S, and thus are unstable when the singular values of S are small.

Moreover, they still require the full gradient ∇W , which is
computationally inefficient
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Breaking“the curse of the curvature”: KLS parametrization

The simple change of variable

K(t) = U(t)S(t) L(t) = V (t)S(t)⊤

leads to
K̇ = −∇W loss(KV ⊤)V

= −∇K loss(KV ⊤)

L̇ = −∇W loss(UL⊤)⊤U

= −∇Lloss(UL)

Ṡ = −U⊤∇W loss(USV ⊤)V

= −∇S loss(USV ⊤)

which requires no matrix inversions and ....

does not need to
compute the full gradient allowing us to operate only with the
small matrices K,L, S still having access to U, S, V
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Rank-adaptive DLRT Algorithm

Step1 Update the current K(n) = U (n)S(n) and L(n) = V (n)S(n)⊤ by
integrating from t = t0 to t = t1 (in parallel) the ODEsK̇ = −∇K loss(KV ⊤); K(t0) = K(n)

L̇ = −∇Lloss(UL⊤)⊤U ; L(t0) = L(n)

Step2 Form augmented basis Ũ ↔ [K(t1)|U (n)] and Ṽ ↔ [L(t1)|V (n)]

Step3 Lift the current S(n) to S̃ = Ũ⊤U (n)S(n)V (n)⊤Ṽ

Step4 Update the current S̃ by integrating from t0 to t1 the ODE

Ṡ = −∇S loss(ŨSṼ ⊤); S(t0) = S̃

Step5 Form U (n+1), V (n+1), S(n+1) by truncating the singular values of
S(t1) using a threshold ϑ =compression rate, and using the
corresponding sing vecs
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Advantages of the gradient flow formulation

Our approach can be interpreted as a form of Riemaniann
Optimization (RO) scheme with a special retractor. Using the
continuous formulation as a number of advantages

1. The resulting scheme is computationally cheap and
well-conditioned. It allows us to use any numerical integrator

2. It allows us to perform a rank adjustment step in a simple way,
maintaining descent guarantees (while changing the rank of the
manifold is a well-known tough challenge in RO)

3. It allows us to prove guarantees of approximation of the full
network (proof of low-rank lottery ticker hypothesis)
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Main theorem (informal)

W (n) = U (n)S(n)V (n),⊤ computed low-rank flow; W (t) exact flow

Suppose that

1. ∇W loss is locally bounded and locally Lipschitz continuous
2. W (t0) and ∇W loss(W (t0)) are “ε-close” to M
3. the integration step h = t1 − t0 is “small enough”

then

• ‖W (n) −W (nh)‖ ≤ c1ε+ c2h+ c3ϑ/h

• loss(W (n+1);x, y) ≤ loss(W (n);x, y)− c4h+ c5ϑ

where ci are positive constants that do not depend on the
singular values of W (n) nor W (nh)
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Fully-connected on MNIST: Rank evolution

5-layer NN, Ni = 500 for i = 1, 2, 3, 4;
Rank evolution for different compression rates

ϑ = 0.09 ϑ = 0.13

Compression: keep only
(
ϑ
∑

jsingvalj(Wi)
)

sing values
24



Fully-connected on MNIST: Time and accuracy

5-layer NN, Ni = 5k for i = 1, 2, 3, 4; Average over 1k runs
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Convolutional NN (LeNet5) on MNIST

NN metrics Inference Train

method mean test acc. ranks params c.r. params c.r.

LeNet5 98.8%± 0.06 [20, 50, 500, 10] 430500 0% 861000 0%

DL
RT

ϑ = 0.09 98.2%± 0.26 [10, 23, 62, 10] 37445 90.9%± 0.3 532176 35.5%± 1.8

ϑ = 0.11 98.2%± 0.44 [10, 20, 48, 10] 30278 93.1%± 0.45 412898 53.3%± 3.5

ϑ = 0.13 97.9%± 0.49 [9, 16, 37, 10] 24542 94.3%± 0.17 316997 63.2%± 1.1

ϑ = 0.15 98.1%± 0.33 [9, 16, 28, 10] 20033 95.4%± 0.23 251477 71.4%± 1.83

ϑ = 0.2 98.1%± 0.34 [8, 8, 15, 10] 13091 96.9%± 0.16 135536 83.4%± 1.21

ϑ = 0.3 97.5%± 0.48 [4, 6, 8, 10] 9398 97.9%± 0.08 80792 91.2%± 0.59

ϑ = 0.4 96.0%± 0.94 [2, 4, 4, 10] 7250 98.3%± 0.06 47882 94.4%± 0.3

ϑ = 0.45 94.1%± 0.49 [2, 2, 3, 10] 6647 98.4%± 0.07 35654 95.4%± 0.4

(SSL)(ft) 99.18% 110000 74.4% < 0%

(NISP) (ft) 99.0% 100000 76.5% < 0%

(GAL) 98.97% 30000 93.0% < 0%

(LRNN) 98.67% [3, 3, 9, 9] 18075 95.8% < 0%

(SVD prune) 94.0% [2, 5, 89, 10] 123646 71.2% < 0%
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Imagenet1K

Results of adaptive DLRT on Imagenet1K:
≈1 million 256× 256 images; ≈1000 classes

Model test acc. [%] c.r. eval [%] c.r. train [%]

ResNet-50 −0.56 54.1 14.2

VGG16 −2.19 86 78.4

Test accuracy difference to full-rank baseline and compression rate for
ResNet-50 and VGG16 with ϑ = 0.1.
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DLRT vs vanilla low-rank

Suppose I do not use the KLS strategy and perform a “vanilla”
fixed-rank approach by setting W = UV ⊤ and minimizing

min
U,V

loss(UV ⊤;x, y)

with alternate gradient descent over U and V
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Conclusion

• Reducing memory storage requirements as well as computational
cost of deep learning pipelines is very important both in the
inference and in the training phase

• Using low-rank matrix manifold (and in general, structured
matrices) is a very attractive strategy

• The proposed Dynamic Low-Rank Training Algorithm reduces
training and inference costs and memory footprint, maintaining
high accuracy and fast loss descent

S. Schotthöfer, E. Zangrando, J. Kusch, G. Ceruti, F.T.
Low-rank lottery tickets: finding efficient low-rank neural
networks via matrix differential equations, NeurIPS(2022).

Thank you!
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