Efficient training of low-rank neural networks

Francesco Tudisco!
Emanuele Zangrandol, Steffen Schotthéfer2, Jonas Kusch?’, Gianluca Ceruti?

RoMaDS Seminar @ University of Rome “Tor Vergata”
February 8, 2023

GSSI e Gran Sasso Science Institute o L'Aquila (Italy)

' * M universitat)
> = NPT B it EPFL

Karlsruher Institut fir Technologie

Supervised learning

Input: Set of observations (;,1;) € R? x R¥ fori=1,..., N

Goal: Infer the map f : x — y in a fast and reliable way

Dog 0.43
Mop 0.56
Pole 0.01

Learning via Feed-forward NNs

In order to compute f we need an ansatz function space

Learning via Feed-forward NNs

In order to compute f we need an ansatz function space

FFNNs are a parametric family of functions that we can write as
flx; W) = {Ug 0cApo---o00 oAl}(x)
where

e W = (W,...,W,) are the parameters

e A; : RN — RN+t are “simple mappings”, for instance
e Matrix multiplication A4;(z) = W;x
e Convolution A;(x) =W,z
* Dot product A;(x) = Wzx TW,"

® g, are entrywise nonlinear activation functions

Memory and computation footprints

Each time we do inference, we need to evaluate f on a new point x.

This requires:

® To evaluate £ mappings A; ~ > NiNii
® To evaluate ¢ activations ~>uN;
® To store £ weight matrices W; ~ > NiNjqi

Overall, for N; = N,

[O(¢N?) operations O((N?) variables]

In practice (examples of /N?)

o AlexNet 604 million parameters
© VGGL6 ... 1354 million parameters
® DALL-E 3.5+ billion parameters
e M-BERT, 4+ billion parameters

(Very) Prohibitive for online-learning and for limited-resource
devices, such as smartphones, drones, satellites, etc.

Model compression, aka pruning

Constrain the parameter space.

Most common examples:

sparsity: nnz(W;) = O(v/N;N;11);
quantization: (W;);; € Z;
low-rank structure: rank(W;) = r;.

" before quantization after quantization
2 1000
1'I "B 2 800
" I.f- = " 2 150
Lt : o=
ag"s 5100 400
1 :
1 2 50 200 =
" N ", 7) ‘
" mm m s 0 [5 10
weight values
Pruning methods Weight quantization Low-rank layer factorization

Lottery ticket hypothesis

@ The lottery ticket hypothesis: finding sparse, trainable neural
networks, J Frankle, M Carbin, ICLR 2019

A randomly-initialized dense NN contains a subnetwork that,
when trained in isolation and for the same number of itera-
tions, can match the accuracy of the original full net.

0.990

0.983
0.976
0.969 +

0.962

0.955 4

Accuracy at Early-Stop (Test)

0.948

0.941 ———1— —————
100 875 750 62.6 50.1 376 251 12.7
Percent of Weights Remaining

Full network vs pruned network as level of pruning increases on LeNetb 6

In practice

® Train. Train the full network
1l
® Prune. Prune the obtained optimal weights

1

e Adjust. Fix the obtained constraints space and “fine tune”

Is this happening by chance?

ﬁ Proving the lottery ticket hypothesis, E Malach, G Yehudai, S
Shalev-Shwartz, O Shamir, ICML 2020

“A network of depth £ can be approximated arbitrarily well by
pruning a network of depth 20"

Given € > 0 and a NN f of depth ¢ and width [V, there exists:
* a larger network g of depth 2¢ and width poly(¢, N,e~1)
® a subnetwork]?with only O(¢N?) parameters

such that |f — f| < e with probability at least (1 — ¢)

Problem(s): the result is not constructive and it gives no proof of

the existence of winning tickets

How about the training phase?

Moreover,

This approach completely ignores training costs.

How about the training phase?

Moreover,

This approach completely ignores training costs.

Learning boils down to the following optimization problem,

min loss(W; z,y) := fit(f(z; W), y) + reg(W)

which we typically solve via stochastic first-order methods.

For example, for SGD
W(nJrl) = W(n) - An VWIOSS(W(R); Lhatch(n)s ybatch(n))

Computing Wt from W™ essentially requires

1. At least one evaluation of f(Zpatcn(n); w)
2. At least one evalutation of Vyyloss(W () Thatch(n)> Ybatch(n))

3. Storing at least the current variable W™ = (W{" .| Wé"))

Overall, for N; = N (ignoring nonlinearities and batch sizes):

® 1 and 2 cost O(2¢N?) operations,

* 3 requires to store O(¢/N?) parameters,

per iteration!

10

Train and (then) compress

® Train.

® Prune.

® Adjust.

requires

e full training cost

e finding the right constraints
space

® cost of pruning (e.g. projection)

and fine-tuning

11

Train and (then) compress

¢ Train. e full training cost

1 e finding the right constraints
® Prune. requires space

{ ® cost of pruning (e.g. projection)
* Adjust. and fine-tuning

We design an approach that overcomes all these issues by

using low-rank constraints

11

Low-rank setting

In our approach, we compress by reducing the rank.

Consider the following “low-rank parameter space”
M=M; x- - xM,, M, = {W; : rank(W;) = r;}
with 7; < min{N;, N;;1}, and the associated constrained training

in loss(W;
Jpin oss(W;x,y)

12

Complexity comparison

Operations within M are potentially much cheaper due to the
compositional structure of NNs.

For example, if we parametrize M, as
M, = {UiSiVi" 2 Ui ~ Nij1 x 14, Si ~ 13 X 13, Vi ~ 13 x Ni},

we have

W; e M,, O'Z(sz) costs O(Ti(Ni + Niy1 + TZ))
W; generic o;(W;z) costs O(N;N;y1)

(a similar comparison holds for the memory storage)

13

Previous approaches: penalized loss and projected gradient

Impose the constraint W € M by

14

Previous approaches: penalized loss and projected gradient

Impose the constraint W € M by

® projecting the iterations at each step onto M

B H Yang et al, CVPR 2020
P(W) = argmin 4 [|A = W5

14

Previous approaches: penalized loss and projected gradient

Impose the constraint W € M by

® projecting the iterations at each step onto M
B H Yang et al, CVPR 2020
Pm(W) = argmin g |4 — WG
® add a penalty term C(W) to the loss, for example

ﬁ Y Idelbayev, MA Carreira-Perpifian, CVPR, 2020
C(W) = ZiL:1 a; rank (W)

14

Previous approaches: penalized loss and projected gradient

Impose the constraint W € M by

® projecting the iterations at each step onto M
B H Yang et al, CVPR 2020
Pm(W) = argmin g |4 — WG
® add a penalty term C(W) to the loss, for example

ﬁ Y Idelbayev, MA Carreira-Perpifian, CVPR, 2020
C(W) = ZiL:1 a; rank (W)

® Require computing the full-rank flow during training
® Require at least one SVD at each step

® Require to choose the ranks a-priori

14

Our approach

We propose a strategy based on Dynamic Low-Rank Approximation
from model order reduction of matrix differential equations.

Main properties:

® Assuming Wi(") = Uz-SiV;T, computes Wi("ﬂ) with the same
structure using only the factors

e Adaptively adjusts the rank r; of S;

15

Gradient flow formulation

We can rephrase the training problem as the search of equilibrium
points for the matrix ODE

%W(t) = —Vw loss(W(t); z,y)

With this notation, for example, GD = Explicit Euler

16

Project the whole vector field

Project the whole vector field F' := —Vyyloss onto the tangent
space Ty (;)M of M at the current point W (t)

d
£W(t) = —Pry,, MVwloss(W (t); z,y)

17

Impose Galerkin and Gauge conditions

For each W; € {W1,..., Wy}, assume W;(t) = U;(t)S;(t)Vi(t) T,
where U;(t), V;(t) are tall and skinny matrices and S;(t) is a small
square invertible matrix (not necessarily diagonal!).

Imposing Galerkin and Gauge conditions on the factorization,
we can rewrite the projected ODE as a system of ODEs for
each of the factors U;(t), Vi(t), Si(t).

Galerkin:

(Wi(t) + Vw,loss(W;(t)), sWi(t)) = 0 for all 6W;(t) € Ty, M

Gauge:
Ui(t)T6U;(t) = V;(t) ToVi(t) =0 for all i = 1,... ., ¢

18

System of low-rank ODEs

For each W € {W,..., Wy},

S = —U"Vyloss(W)V
U=—(I-UU")Vyloss(W)V S~
V=—(I—-VVHVyloss(W) US~ T

19

System of low-rank ODEs

For each W € {W,..., Wy},

S = —UTVyloss(W)V
U=—(I-UU")Vyloss(W)V 5!
V=—(I—-VVHVyloss(W) US "

These ODEs reflect the local curvature of the low-rank manifold,
which is proportional to the inverse of the smallest singular value of
S, and thus are unstable when the singular values of .S are small.

Moreover, they still require the full gradient V-, which is
computationally inefficient

19

Breaking “the curse of the curvature™ KLS parametrization

The simple change of variable

leads to

K = —Vyloss(KV TV
L=—Vyloss(ULT)TU
S =—U"Vyloss(USV TV

which requires no matrix inversions and

20

Breaking “the curse of the curvature™ KLS parametrization

The simple change of variable

leads to
K = —Vyloss(KVT)V = -V loss(KV'T)
L=—Vyloss(UL")TU = =V loss(UL)
S =-UTVyloss(USVT)V = —Vloss(USVT)

which requires no matrix inversions and does not need to
compute the full gradient allowing us to operate only with the

small matrices /', L. S still having access to U, S,V

20

Rank-adaptive DLRT Algorithm

Stepl Update the current K™ = U 8§ and LW = () g)T by
integrating from ¢ =ty to t = t; (in parallel) the ODEs

K =—Vgloss(KV"); K(tg) = K™
L=—-Viloss(ULT)TU; L(ty) = L™

21

Rank-adaptive DLRT Algorithm

Stepl Update the current K™ = U 8§ and LW = () g)T by
integrating from ¢ =ty to t = t; (in parallel) the ODEs

K =—Vgloss(KV"); K(tg) = K™
L=—-Viloss(ULT)TU; L(ty) = L™

Step2 Form augmented basis U < [K (t1)|U™] and V < [L(t)|V "]

21

Rank-adaptive DLRT Algorithm

Stepl Update the current K™ = U 8§ and LW = () g)T by
integrating from ¢ =ty to t = t; (in parallel) the ODEs

K =—Vgloss(KV"); K(tg) = K™
L=—-Viloss(ULT)TU; L(ty) = L™

Step2 Form augmented basis U < [K (t1)|U™] and V < [L(t)|V "]
Step3 Lift the current S to S=UTumsnymTy

21

Rank-adaptive DLRT Algorithm

Stepl Update the current K™ = (M8 apd L) = y () g)T py
integrating from ¢ =ty to t = t; (in parallel) the ODEs
K = —Vgloss(KVT); K(tg) = K™
L=—-Viloss(ULT)TU; L(ty) = L™

Step2 Form augmented basis U < [K (t1)|U™] and V < [L(t)|V "]
Step3 Lift the current S to S=UTumsmymTy
Step4 Update the current S by integrating from t(to t; the ODE
S =—Vgloss(USV"); S(to) =S
Step5 Form UM+ v (n+1) g(+1) by truncating the singular values of

S(t1) using a threshold ¥} =compression rate, and using the

corresponding sing vecs
21

Advantages of the gradient flow formulation

Our approach can be interpreted as a form of Riemaniann
Optimization (RO) scheme with a special retractor. Using the
continuous formulation as a number of advantages

1. The resulting scheme is computationally cheap and

well-conditioned. It allows us to use any numerical integrator

2. It allows us to perform a rank adjustment step in a simple way,
maintaining descent guarantees (while changing the rank of the
manifold is a well-known tough challenge in RO)

3. It allows us to prove guarantees of approximation of the full
network (proof of low-rank lottery ticker hypothesis)

22

Main theorem (informal)

W = g gy ()T computed low-rank flow; W (t) exact flow
Suppose that

1. Vwloss is locally bounded and locally Lipschitz continuous
2. W(tp) and Vwloss(W(ty)) are “e-close” to M
3. the integration step h = t1 — tg is “small enough”

23

Main theorem (informal)

W = g gy ()T computed low-rank flow; W (t) exact flow
Suppose that

1. Vwloss is locally bounded and locally Lipschitz continuous
2. W(tp) and Vwloss(W(ty)) are “e-close” to M
3. the integration step h = t1 — tg is “small enough”

then

e D

o WM — W(nh)| < cie + cah + c39/h

where ¢; are positive constants that do not depend on the
singular values of W) nor W (nh)

23

Main theorem (informal)

W = g gy ()T computed low-rank flow; W (t) exact flow
Suppose that

1. Vwloss is locally bounded and locally Lipschitz continuous
2. W(tp) and Vwloss(W(ty)) are “e-close” to M
3. the integration step h = t1 — tg is “small enough”

then

e D

o WM — W(nh)| < cie + cah + c39/h
o loss(W™HD: 2 4)) < loss(W™; 2, y) — esh + c59

where ¢; are positive constants that do not depend on the
singular values of W) nor W (nh)

23

Fully-connected on MNIST: Rank evolution

5-layer NN, N; = 500 for i = 1,2, 3,4;
Rank evolution for different compression rates

— rank layer 1 32 — rank layer 1
50 —— rank layer 2 —— rank layer 2
—— rank layer 3 30 —— rank layer 3
— rank layer 4 — rank layer 4
3% 28 %
a5
26
< <
540 52
22
35
20
JE—
18
30
16
1 50 100 150 200 250 1 50 100 150 200 250
epoch epoch

¥ =0.09 ¥ =0.13

Compression: keep only (19 stingvalj(Wi)> sing values
24

Fully-connected on MNIST: Time and accuracy

5-layer NN, N; = 5k for i = 1,2, 3,4; Average over 1k runs

0.8 | —® DLRT 14 /
—— dense reference
1.2
0.6
o)) 1.0
[3
Eoa gos8
=] =]
0.6
0.2 0.4 —e— DLRT
—— dense reference
0.2
50 100 150 200 250 300 500 1000 1500 2000 2500
rank rank
(a) Training timings (b) Prediction timings
98.50
98.25
9
© 98.00
S
g 97.75
©
9750
)
S
97.25
—8— 500 neurons
97.00 | —e— 784 neurons

0 20 40 60 80 25
compression [%]

Convolutional NN (LeNet5) on MNIST

NN metrics Inference Train
method mean test acc. ranks params c.r. params c.r
LeNet5 98.8% +0.06 [20,50,500,10] 430500 0% 861000 0%
9 =0.09 98.2% =+ 0.26 [10,23, 62, 10] 37445 90.9% +0.3 532176 35.5% + 1.8
9 =011 98.2% +0.44 [10,20, 48, 10] 30278 93.1% +0.45 412898 53.3% + 3.5
¥ =013 97.9% +0.49 [9,16,37,10] 24542 94.3% £0.17 316997 63.2% + 1.1
E 9 =015 98.1% +0.33 [9,16,28,10] 20033 95.4% +0.23 251477 71.4% + 1.83
a 9v=02 98.1% + 0.34 [8,8,15,10] 13091 96.9% +0.16 135536 83.4% +1.21
=03 97.5% + 0.48 4,6,8,10] 9398 97.9% +£0.08 80792 91.2% =+ 0.59
9=04 96.0% + 0.94 (2,4,4,10] 7250 98.3% £ 0.06 47882 94.4% + 0.3
9 =045 94.1% +0.49 (2,2,3,10] 6647 98.4% +0.07 35654 95.4% + 0.4
(SSL)(ft) 99.18% 110000 74.4% < 0%
(NISP) (ft) 99.0% 100000 76.5% < 0%
(GAL) 98.97% 30000 93.0% < 0%
(LRNN) 98.67% (3,3,9,9] 18075 95.8% < 0%
(SVD prune) 94.0% [2,5,89,10] 123646 71.2% < 0%

26

Imagenet1K

Results of adaptive DLRT on Imagenet1K:
~1 million 256 x 256 images; ~1000 classes

Model test acc. [%] c.r. eval [%] c.r. train [%]
ResNet-50 —0.56 04.1 14.2
VGG16 —-2.19 86 78.4

Test accuracy difference to full-rank baseline and compression rate for
ResNet-50 and VGG16 with ¥ = 0.1.

27

DLRT wvs vanilla low-rank

Suppose | do not use the K LS strategy and perform a “vanilla”
fixed-rank approach by setting W = UV " and minimizing

minloss(UV "; z,y)

)

with alternate gradient descent over U and V

28

DLRT wvs vanilla low-rank

Suppose | do not use the K LS strategy and perform a “vanilla”
fixed-rank approach by setting W = UV " and minimizing

minloss(UV "; z,y)

)

with alternate gradient descent over U and V

—e— DLRT
—e— UV factorization

—e— DLRT
—e— UV factorization

train loss
train loss

28

Conclusion

¢ Reducing memory storage requirements as well as computational
cost of deep learning pipelines is very important both in the
inference and in the training phase

¢ Using low-rank matrix manifold (and in general, structured
matrices) is a very attractive strategy

® The proposed Dynamic Low-Rank Training Algorithm reduces
training and inference costs and memory footprint, maintaining
high accuracy and fast loss descent

@ S. Schotthoéfer, E. Zangrando, J. Kusch, G. Ceruti, F.T.
Low-rank lottery tickets: finding efficient low-rank neural
networks via matrix differential equations, NeurlPS(2022).

29

Conclusion

¢ Reducing memory storage requirements as well as computational
cost of deep learning pipelines is very important both in the
inference and in the training phase

¢ Using low-rank matrix manifold (and in general, structured
matrices) is a very attractive strategy

® The proposed Dynamic Low-Rank Training Algorithm reduces
training and inference costs and memory footprint, maintaining
high accuracy and fast loss descent

@ S. Schotthoéfer, E. Zangrando, J. Kusch, G. Ceruti, F.T.
Low-rank lottery tickets: finding efficient low-rank neural
networks via matrix differential equations, NeurlPS(2022).

Thank you!

29

