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Laplacian matrix

A matrix L is defined Laplacian if:
I Le = 0, namely the sum of the entries of each row is equal

to zero;
I the entries outside the main diagonal are less or equal

than zero.
The definition implies that the diagonal entries of a Laplacian
are greater or equal than zero and that the matrix is singular.

If A is non negative, the matrix LA = diag(Ae)− A is a Laplacian
defined Laplacian of A. Notice that, given a Laplacian L, if D is
a diagonal matrix such that A = D − L ≥ 0 then

LA = diag(De − Le)− D + L = diag(De)− D + L = L.

Hence, given a Laplacian L there are infinite matrices A such
that L = LA.



Some spectral properties of the Laplacian

Let us denote with µ(A) the spectral abscissa of a matrix A
namely the maximum of the real parts of its eigenvalues.

Theorem
If L is a Laplacian µ(L) ≥ 0 and µ(L) = 0 if and only if L = 0.
Moreover µ(−L) = 0.
Proof Gershgorin theorem implies that all the eigenvalues of L
different from 0 have positive real part, hence µ(L) ≥ 0 and
µ(−L) = 0. If µ(L) = 0 then all the eigenvalues are equal to
zero, then the trace of L is zero, hence the diagonal is made up
of zero entries, hence L = 0.



Opinions dynamic: Abelson continuous model

In continuous models of opinions dynamic all the nodes, or
actors, of a social network have a variable xi(t) representing
their opinions as functions of time, usually abbreviated to xi .
The Abelson model takes the form

ẋi =
n∑

j=1

Ai,j(xj − xi),

where Ai,j ≥ 0 represents a rate at which actor j attempts to
persuade actor i .
The differences of the opinions between the actors is
highlighted: if xj > xi for j 6= i then xi has non negative
derivative.



Opinions dynamic and Laplacian flow

Notice that

ẋi =
n∑

j=1

Ai,j(xj − xi) =
n∑

j=1

Ai,jxj −
( n∑

j=1

Ai,j

)
xi .

In matrix form this becomes

ẋ = Ax − diag(Ae)x = −(diag(Ae)− A)x = −LAx .

I The equation ẋ = −LAx is known as Laplacian flow.
I We are interested in the possible convergence towards

consensus of the Laplacian flow meaning that
asymptotically all the opinions coincide.



Equilibrium points of the Laplacian flow and nullspace
of the Laplacian matrix

I Clearly the equilibrium points of the equation ẋ = −Lx
satisfy Lx = 0, hence it is important to study the nullspace
of L.

I Since Le = 0 the nullspace has dimension at least 1 so
that the maximum rank is n − 1.

Now we discuss a theorem on the rank of the Laplacian. The
case where the rank is n − 1 and the nullspace are just the
multiples of e will be for us of particular importance.



Rank of the Laplacian

Let us observe that if LA = diag(Ae)− A, and D ≥ 0 is a
diagonal matrix then:
I LA+D = diag((A + D)e)− (A + D) = LA;
I LDA = diag(DAe)− DA = DLA.

If A is non-negative let D = diag(I + A). Notice that D is non
singular and that Ā = D−1(I + A) is row stochastic. Hence

LĀ = LD−1(I+A) = D−1LI+A = D−1LA

so that the ranks of LA and LĀ coincide.
In summary for the study of the rank of a Laplacian LA it is
always possible to assume that A is row stochastic.



Equilibrium points of the Laplacian flow and nullspace
of the Laplacian matrix

Theorem
Let A be a row stochastic matrix and let G = D(A). If there are
d sinks in the condensation digraph of G then the rank of
LA = I − A is n − d .
Before the proof of the theorem, recall the condensation
digraph of G, being by construction acyclic, has a unique sink if
and only if it has a globally reachable node but this is true if and
only if G itself has a globally reachable node. Hence, the
theorem implies that the rank of L = I − A is n − 1 if and only if
G has a globally reachable node. In particular the rank is n − 1
if G is strongly connected (A irreducible) but the condition is not
necessary: consider for example

A =

(
0 1
0 1

)
⇒ LA =

(
1 −1
0 0

)
.



Proof

The d sinks in the condensation digraph of G correspond to d
equivalence classes of the nodes of G: notice that a node of a
class corresponding to a sink can only have arcs towards
nodes of the same class. Hence after a suitable permutation of
row and columns the matrix A becomes

A1,1
. . .

Ad ,d
Ad+1,1 · · · Ad+1,d Ad+1,d+1

 .
The matrices Ai,i , for i = 1, . . . ,d are row stochastic and
irreducible , since they are the matrices of equivalence classes
of nodes, and for Perron-Frobenius theorem 1 is a simple
eigenvalue of these matrices. This implies that the dimension of
the nullspace of I − Ai,i is 1.



Proof (continue)

The matrix Ad+1,d+1 cannot be row stochastic since otherwise
its nodes could be partitioned in one or more equivalence
classes corresponding to sinks in the condensation digraph of
G. Hence Ad+1,d+1 is row substochastic and given a node with
out degree equal to one there should be a path from that node
to a node having out degree less than one in Ad+1,d+1. Hence
ρ(Ad+1,d+1) < 1 so that I − Ad+1,d+1 has full rank.



Equilibrium points of the Laplacian flow

We deduce that if G contains a globally reachable node the
only possible equilibrium points of the Laplacian flow are
multiples of e.

It is interesting to observe that we used a similar permutation
technique in the proof about achievement of consensus of the
dynamical system x(k) = Ax(k − 1), in the case where the
condensation digraph of G = D(A) has a unique sink.



Convergence of a matrix in continuous time

As well known, the solution of the system ẋ(t) = Ax(t) given
x(0) is

x(t) = exp(At)x(0),

where

exp(A) =
∞∑

k=0

Ak

k !
.

For this reason a matrix A is defined
I continuous time semi convergent if limt→+∞ exp(At) exists

and is a specific matrix;
I continuous time convergent or Hurwitz if

limt→+∞ exp(At) = 0.



Convergence of a matrix in continuous time

By means of JCF (or more easily if A can be diagonalized) it is
not difficult to prove that

σ(exp(A)) = {exp(λ)|λ ∈ σ(A)},

and moreover

Theorem
I A is continuous time convergent if and only if µ(A) < 0;
I A continuous time semi convergent if and only if it is

convergent or µ(A) = 0 and 0 is a semisimple eigenvalue
of A and all the other eigenvalues have negative real part.

if L is a Laplacian matrix this theorem implies that −L cannot be
convergent since µ(−L) = 0, but can be semi-convergent in the
case where 0 is semisimple since all the other eigenvalues
have negative real part.



Rate of convergence
We can obtain a result on rate of convergence analogous to the
one obtained for the discrete systems, in the case where 0 is a
simple eigenvalue of A, the other eigenvalues have negative
real part and A is diagonalizable. Then

At = V
[

0 O
O Λt

]
V−1,

where Λ is a diagonal matrix of order n − 1 containing the
eigenvalues of A different from 0. Clearly

exp(At) = V
[

1 O
O exp(Λt)

]
V−1.

If V = [e, ∗] and (V−1)T = [w , ∗] by proceeding as for the
discrete systems we obtain

‖ exp(At)− ewT‖2 ≤ ‖V‖2‖V−1‖2 exp(µess(A)t),

where µess(A) = µ(Λ) < 0.



Consensus for the Laplacian flow

We now state a theorem about the convergence to consensus
of the Laplacian flow ẋ = −Lx in many respects analogous to
the one regarding the discrete case.

Theorem
Let A be non-negative, let G = D(A) and let L be the Laplacian
of A. The following statements are equivalent:
I 0 is a simple eigenvalue of −L and all other eigenvalues

have negative real part;
I limt→+∞ exp(−Lt) = ewT where w is the left eigenvector of

L with eigenvalue 0 such that eT w = 1;
I G contains a globally reachable node.



Comments

I Notice that it is not required that the subgraph of the
globally reachable nodes of G is aperiodic.

I The theorem can be seen as a sort of extended Perron
theorem for Laplacian matrices.

I A digraph has a globally reachable node if and only if there
is a unique sink in its condensation digraph C(G). Again
consensus is reached if and only if in C(G) there is a
unique sink, but the theorem can be extended to the case
where C(G) has M ≥ 2 sinks. This can be shown to be
equivalent to the case where 0 is a semi simple eigenvalue
of −L of multiplicity M and the remaining eigenvalues have
negative real parts.



Proof (sketch)
We would like to use the theorem about the discrete case. With
this aim let ε > 0 and small as needed so that Bε,L = I − εL is
row stochastic. The proof of the theorem can be obtained by
proving the following three double implications
I 0 is a simple eigenvalue of −L and all other eigenvalues

have negative real part if and only if 1 is a simple
eigenvalue of Bε,L and all other eigenvalues modulus less
than one (suggestion: remember that ε can be chosen
sufficiently small);

I limt→+∞ exp(−Lt) = ewT if and only if limk→+∞ Bk
ε,L = ewT

(suggestion: σ(Bε,L) = 1− εσ(L)).
I G = D(A) contains a globally reachable node if and only if

D(Bε,L) contains a globally reachable node and the set of
globally reachable nodes is aperiodic (suggestion: besides
the weights, the arcs of the two graphs differ possibly for
the presence of the loops that guarantee aperiodicity).



Positive entries of w

Clearly wT L = 0T if and only if wT Bε,L = wT . Notice that
D(Bε,L) = D(A) apart possibly for the loops that do not
influence the globally reachable nodes. Hence the
condensation digraphs of D(A) and D(Bε,L) coincide and have
an unique sink associated with the same equivalence class of
nodes. By virtue of what we proved in the theorem about
achievement of consensus of systems x(k) = Ax(k − 1) the
components of w associated to the nodes of this class are
positive while the remaining are equal to zero (of course if A is
irreducible then w > 0).



Example: opinions dynamic

Let us consider again the application to opinions dynamic. The
theorem tells us that if one of the actors is globally reachable,
hence it can influence, even if indirectly, all the other actors,
then consensus is reached. Moreover the effective value of the
consensus is a convex combination of the initial opinions only
of the actors corresponding to globally reachable nodes.



Z matrices and Metzler, or quasipositive, matrices

I A matrix whose entries outside the main diagonal are less
or equal than zero is known as Z matrix. Hence a
Laplacian is a Z matrix.

I The opposite of a Z matrix is known as a Metzler o
quasipositive matrix.

One of the reasons of the importance of Metzler matrices is
their connection with positive systems.



Metzler matrices and positive systems

A system ẋ = Ax + b is defined to be positive if x(0) ≥ 0
implies x(t) ≥ 0 for t ≥ 0.

Theorem
The system ẋ = Ax + b is positive if and only A is Metzler and
b ≥ 0.
Proof First of all let us assume that ẋ = Ax + b is positive. If
x(0) = 0 then ẋ(0) = b and this implies b ≥ 0. If n > 1 let i 6= j
and Ai,j < 0. Then it is easy to select an initial vector having
xi(0) = 0 and xj(0) > 0 so that ẋi(0) = Ai,jxj(0) + bi < 0, so that
the system cannot be positive.
Now let us assume that A is Metzler and b ≥ 0, if for some t ,
x(t) ≥ 0 and xi(t) = 0 then ẋi(t) ≥ 0 and this guarantees that
the system is positive.

Example Clearly Laplacian flows, ẋ = −LAx , and in particular
Abelson model of opinions dynamic, are positive systems.



Opinions dynamic with stubborn agents

Let us modify Abelson model in such a way that some of actors,
say the first m, are directly influenced by biases of external
individuals that do not change their own opinion. Then for
i = 1, . . . ,m the model, known in this form as Taylor model,
becomes

ẋi =
n∑

j=1

Ai,j(xj − xi) + (ui − xi),

where ui ≥ 0 is known as prejudice of the agent i . In matrix
form we obtain the system

ẋ = −(LA + W )x + u, W =
m∑

i=1

eieT
i

easily recognized as positive, since −(L + W ) is quasipositive
and u ≥ 0.



Opinion dynamics with stubborn agents

The equilibria of the system can be obtained by solving the
linear system of equations

(LA + W )x = u.

I If A is irreducible then LA + W is non-singular. Actually if
LA + W is singular and if γ > 0 is sufficiently large then
ρ(−(L + W ) + γI) ≥ γ but this is impossible since
ρ(−(LA + W ) + γI) < max(−(LA + W ) + γI)e ≤ γ.

I If (LA + W )w(k) = ek then
∑m

k=1 w(k) = e and
x =

∑m
k=1 ukw(k).

If we prove that w(k) ≥ 0 then we would obtain that the
equilibrium, for each actor, is a convex combination of the
prejudices.



Perron and Perron-Frobenius for Metzler matrices

The attribute “quasipositive” for Metzler matrices is justified by
the observation that the fundamental theorems about
non-negative matrices can be applied to them with some
“cosmetics”. Actually if A is quasipositive there exists α ≥ 0
such that αI + A ≥ 0. Notice that

σ(αI + A) = α + σ(A),

while the eigenvectors of the two matrices are the same. Hence
if A is quasipositive
I it has a real eigenvalue λ such that λ > <(ν) for all
ν ∈ σ(A), ν 6= λ, and the left and right eigenvectors
associated to λ can be selected non negative;

I if in addition A is irreducible it has a real simple eigenvalue
λ such that λ > <(ν) for all ν ∈ σ(A), ν 6= λ and the left and
right eigenvectors associated to λ can be selected positive.



A theorem on inverses of Metzler matrices

Theorem
A Metzler matrix A is such that all its eigenvalues have negative
real part if and only if A is non-singular and −A−1 ≥ 0. If in
addition A is irreducible then −A−1 > 0.
Before the proof let us observe that since −A−1 = (−A)−1 the
theorem could be formulated focusing on Z matrices. A Z
matrix having all the eigenvalues with positive real part is known
as non singular M matrix. Hence the theorem could be restated
by saying that a non-singular M matrix has non-negative
inverse which becomes positive if the matrix is irreducible.



Proof
Let us assume that all the eigenvalues of A have negative real
part. This clearly implies that A is nonsingular. Now, let us
exploit quasipositivity as follows: let ε > 0 and let Aε = I + εA.
Of course if ε is sufficiently small then Aε ≥ 0. In addition let
a + ıb, where a < 0 an eigenvalue of A. The corresponding
eigenvalue of Aε is 1 + εa + ıεb and notice that

|1 + εa + ıεb|2 < 1⇔ ε(a2 + b2) < −2a,

and since a < 0, if ε is sufficiently small ρ(Aε) < 1. Hence

(−εA)−1 = (I − Aε)−1 =
∞∑

k=0

Ak
ε ≥ 0.

Hence −A−1 ≥ 0. If in addition A is irreducible and ε is
sufficiently small then Aε is primitive having positive diagonal
entries so that it has a positive power.



Proof

Let us assume that A is non-singular and that −A−1 ≥ 0. Since
A is quasipositive it has a real eigenvalue λ such that λ > <(ν)
for every ν ∈ σ(A), ν 6= λ with associated eigenvector v ≥ 0,
v 6= 0.

Av = λv ⇒ λ(−A−1v) = −v ⇒ λ < 0.



Opinion dynamics with stubborn agents

Let us consider again the system ẋ = −(L + W )x + u. The
matrix −(L + W ) is Metzler and if L is irreducible it is
nonsingular and has eigenvalues with negative real part.
Hence the system has the unique equilibrium
(L + W )−1u = −(−(L + W ))−1u. The matrix (L + W )−1 is
positive so that each element of the equilibrium is a convex
combination of the entries of u. Since the eigenvalues of
−(L + W ) have negative real parts the system converges
towards the equilibrium.



Metzler matrices and compartmental systems

Metzler matrices are important in the study of compartmental
systems, that are characterized by conservation laws (e.g.
mass, fluid, energy) and by the flow of material between units
known as compartments, that store the material. It is natural to
represent these systems by means of a digraph. The nodes
represent the compartments and the arcs the flow of the
material between two compartments.



Example: biokinetic models

Biokinetic models are an example of compartmental models
used to describe the time-dependent distribution and excretion
of radioactive material that enters the human body via
inhalation, ingestion or through wounds.
A typical biokinetic model is composed of a respiratory tract
model, an alimentary tract model and a systemic model (for
material absorbed into blood and distributed systemically to
organs/tissues).
Here we show first a figure that highlights entrance and exit
points in the body of radionuclides and is largely independent
from the specific radioactive element. The second figure
describes a systemic model specific for caesium.



Example: main routes of intake, transfer, and excretion
of radionuclides in the body

Source: International Commission on Radiological Protection.



Example: systemic biokinetic model for caesium

Source: International Commission on Radiological Protection.



Example: biokinetic models

I The compartments represent whole organs or specific
tissues and a biokinetic model for a single radionuclide
may contain up to 70-80 compartments.

I The flows between compartments are linear in the quantity
contained in the compartment. Flows are specified by
transfer rates (fraction per day), to account for the
absorption into blood from the entry point (e.g. the oral
cavity, for ingestion), the distribution via blood to systemic
organs/tissues and finally the excretion via urine and
faeces.

I The physical decay of a radionuclide could be included in
the model (at the price of incrementing the number of
compartments).



Equations of a compartmental system

Let us denote with qi(t) the quantity of material stored in
compartment i at time t . We model the variation of qi by means
of the equation

q̇i(t) =
∑
j 6=i

(
Fj→i − Fi→j

)
− Fi→O + ui ,

where
I Fi→j ≥ 0 represents the mass flow from compartment i to

compartment j , it is assumed that Fi→j = 0 if qi = 0;
I Fi→O ≥ 0 represents the mass flow from compartment i to

the environment, it is assumed that Fi→O = 0 if qi = 0;
I ui ≥ 0 represents the mass flow from environment to

compartment i .



Equations of a compartmental system

Notice that:
I if qi(t) = 0 then q̇i(t) =

∑
j 6=i Fj→i + ui ≥ 0 so that qi does

not become negative;
I
∑

i q̇i(t) = −
∑

i Fi→O +
∑

i ui implying that, without inflows
and outflows, the total mass is constant.



Equations of a linear compartmental system

Now, let us assume that the flows depend linearly from the
stored quantities so that Fi→j = ci,jqi , ci,j ≥ 0, and Fi→O = wiqi ,
wi ≥ 0. The equations of the system become

q̇i =
∑
j 6=i

(
cj,iqj − ci,jqi

)
− wiqi + ui .

Setting C = (ci,j), w = (wi), u = (ui) we can represent the
equations in compact form

q̇ = (CT − diag(Ce))q − diag(w)q + u = Mq + u,

where M = CT − diag(Ce + w) is known as compartmental
matrix.



Properties of compartmental matrices

Notice that M:
I is a Metzler matrix whose diagonal entries are less or

equal than zero (the i-th diagonal entry is zero only if the
i-th compartment is a sink);

I −MT = −C + diag(Ce) + diag(w) is the sum of a Laplacian
and of a non-negative diagonal matrix, so that it is
diagonally dominant by rows;

I it is normally very sparse since the number of edges is
generally a very small multiple of the number of
compartments.

Since M is Metzler and u ≥ 0 the system q̇ = Mq + u is
positive.



A basic property of a linear compartmental system

A compartment i is defined:
I outflow connected if Fi→O > 0 or there exists a directed

path from i to a compartment j such that Fj→O > 0;
I inflow connected if ui > 0 or there exists a directed path

from a compartment j with uj > 0 to i .
It is possible to prove what follows.

Theorem
If the system is outflow connected then M is continuous time
convergent and every solution tends to the unique equilibrium
q∗ = −M−1u ≥ 0. Moreover q∗i > 0 if the compartment i is
inflow connected.



Conclusions

I If A ≥ 0 then the rank of the Laplacian LA is strictly related
to the connection properties of D(A).

I The Laplacian flow ẋ = −LAx converge toward consensus
if and only if D(A) contains a globally reachable node.

I By means of the fundamental theorems about non
negative matrices it is possible to deduce useful spectral
properties of Metzler matrices.

I A non singular Metzler matrix has non positive inverse (as
well as a non singular M matrix has non negative inverse).

I The dynamical system ẋ = Mx + b is positive if and only if
M is Metzler and b ≥ 0.

I Compartmental systems are an important class of positive
systems.
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Exercises

1. Let A ≥ 0 and A = AT . State and prove a theorem on the
rank of LA.

2. State and prove the theorem on positive systems in the
case where n = 1.

3. Let A ≥ 0 and let G = D(A) contain a globally reachable
node. Does this imply that LA + W is non singular?

4. Consider the system q̇ = Mq + u where

M =

−γ 0 1
γ −2 0
0 1 −1

 and u = e1. Draw the graph of the

compartmental system that it describes. Compute q∗.
What happens if γ → 0 and if γ → +∞?

5. Prove the theorem on compartmental systems with the
stronger hypotheses that M is irreducible and wi > 0 for
some i .


