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Summary

▶ Some results on substochastic matrices are a good
starting point for proving a necessary and sufficient
condition for consensus.

▶ If A is row stochastic, the rate of convergence of
x(k + 1) = Ax(k) is related to the essential spectral radius
of A.

▶ If the matrices A(k) are row stochastic then
x(k + 1) = A(k)x(k) is defined time varying averaging
system.

▶ Convergence and rate of convergence of time varying
averaging systems are simpler to study when the graphs
D(A(k)) have good connection properties.

▶ The Massey method has been proposed for ranking
college football teams. A time aware variant of the method
leads to a time varying averaging system.



Substochastic matrices

Definition
A n × n matrix A ≥ 0 is row substochastic if Ae ≤ e and there
exists an index i ∈ {1, . . . ,n} such that eT

i Ae < 1; is column
substochastic if AT is row substochastic.

For definiteness, we will treat the case of row substochastic
matrices. Notice that eT

i Ae is the weighted out degree of the
node i in the graph G = D(A). Of course, if A is row
substochastic and irreducible then
▶ if maxAe < 1, since ρ(A) ≤ maxAe the matrix is

convergent;
▶ if maxAe = 1, since minAe < maxAe we have

ρ(A) < maxAe and the matrix is convergent as well.



A stronger result about convergent substochastic
matrices

It follows that irreducibility is a sufficient condition for
convergence for a substochastic matrix. The following result is
stronger since it individuates a necessary and sufficient
condition.

Theorem
If A is row substochastic then it is convergent if and only if there
is a path from each other node of G = D(A) to some of the
nodes having out-degree less than one.



Preliminaries

Let A be row substochastic.
▶ If Ae ≤ e then A2e = AAe ≤ Ae ≤ e, so that Ake ≤ e.
▶ If eT

i Ae < 1 then eT
i A2e = eT

i AAe ≤ eT
i Ae < 1 so that

eT
i Ake < 1.

▶ It follows that Ak is row substochastic for k ≥ 1.
▶ Let us assume that ai,j > 0 and eT

j Ae < 1. Then

eT
i A2e = eT

i AAe = eT
i A

∑
k

eT
k Ae ek =

∑
k

eT
k Ae ai,k .

But ∑
k

eT
k Ae ai,k ≤

∑
k ̸=j

ai,k + eT
j Ae ai,j < eT

i Ae.

It follows that eT
i A2e < 1.



Preliminaries

What we observed leads us to the following statement.

Lemma
Let A be row substochastic and G = D(A). If in G there is a
simple path of length p between a node i and a node j such
that eT

j Ae < 1 then eT
i Ape < 1.

Proof The proof, that can be obtained by induction, is left as an
exercise.



Convergent Substochastic matrices

Proof of the theorem If there is a path from each other node to
a node having out-degree less than one, by using the lemma
we obtain that there exists an integer m such that maxAme < 1.
Hence ρ(Am) = ρ(A)m < 1 so that ρ(A) < 1. On the other hand,
let A be convergent and let us assume by contradiction that
there exists a set S ̸= ∅ of nodes of G not connected to nodes
having out-degree less than one. Hence we can determine a
permutation matrix P such that separate the nodes of S from

the remaining ones PAPT =

[
A1,1 O
A2,1 A2,2

]
where A1,1 and A2,2

are square and A1,1e = e. This implies 1 = ρ(A1,1) ≤ ρ(A) ≤ 1
so that A cannot be convergent.



Example: Leslie population model

If
∑n

k=1 αk < 1 and βi ≤ 1 for i = 1, . . . ,n − 1 then AL is
convergent even if it fails to be irreducible.



A necessary and sufficient condition to achieve
consensus

Remember that if A is row stochastic and primitive then the
linear system x(k) = Ax(k − 1) achieves consensus. However
primitivity is just a sufficient condition while the following
theorem states a necessary and sufficient condition.

Theorem
Let A be a row stochastic matrix and let G = D(A). The
following statements are equivalent:

(1) ρ(A) = 1 is a simple eigenvalue of A and if
µ ∈ σ(A) and µ ̸= 1 then |µ| < 1.

(2) limk→+∞ Ak = ewT where w ≥ 0 and wT e = 1.
(3) A has a power with a positive column.
(4) G contains a globally reachable node ad the

subgraph of globally reachable nodes is aperiodic.



Comments
▶ It is not difficult to verify that the four statements are always

satisfied for a primitive matrix A.
▶ For stochastic matrices, the theorem can be seen as an

extension of Perron theorem to non primitive and even
reducible matrices such as, for example,

A =

[
0 1
0 1

]
.

▶ A digraph has a globally reachable node if and only if there
is a unique sink in its condensation digraph C(G). Hence
consensus is reached if and only if in C(G) there is a
unique sink that corresponds to an aperiodic subgraph of
G.

▶ The theorem can be extended to the case where C(G) has
M ≥ 2 sinks corresponding to aperiodic subgraphs of G.
This can be shown to be equivalent to the case where 1 is
a semi simple eigenvalue of A of multiplicity M and the
remaining eigenvalues have modulus < 1.



(1)⇔(2)

First of all let us observe that if limk→+∞ Ak = abT , with
a ̸= 0 ̸= b then Aa = a, bT A = bT and bT a = 1.

As we know, A is semi-convergent if and only if 1 is a semi
simple eigenvalue and all other eigenvalues have modulus less
than 1. However, limk→+∞ Ak has rank one if and only if 1 is
simple and the other eigenvalues have modulus < 1.



(2)⇒(3)

Since wT e = 1 the vector w has some positive entry. Let j be
such that wj > 0, then limk→+∞ Akej = ewT ej = wje > 0. This
means that there exists an integer K such that AK ej > 0.



(3)⇒(4)

Let K be such that AK ej > 0. Then the j-th node of G = D(A) is
globally reachable. Moreover, since A is row stochastic
Akej > 0 for k ≥ K . Let us consider the subgraph of G made of
the globally reachable nodes and let us assume, by
contradiction, that it is periodic of period p > 1. Since AK

j,j > 0
and AK+1

j,j > 0 there are two paths of K + 1 and K + 2 ordered
nodes starting and ending with node j , that, by virtue of our
assumption, cannot have a loop. These nodes are the
endpoints of K and K + 1 edges respectively. We can trasform
these two paths in simple paths by eliminating from them all the
cycles connecting intermediate repeated nodes thus obtaining
two cycles of K −αp and K + 1− βp edges, and distinct nodes,
where α and β are suitable integers. Clearly p > 1 cannot be a
common divisor of these two numbers, since their difference is
1 + (α− β)p. It follows that necessarily p = 1.



(4)⇒(2)

Let us assume that G = D(A) contains a globally reachable
node and the subgraph of the globally reachable nodes is
aperiodic. Of course if all the nodes of G would be globally
reachable then G would be strongly connected, and being
aperiodic, it follows that A would be primitive and (2) would be
certainly satisfied. Hence let us assume that there are nodes of
G not globally reachable, so that A is reducible and there exists
a permutation matrix P such that

PAPT =

[
A1,1 O
A2,1 A2,2

]
,

where A1,1 is the adjacency matrix of the subgraph of the
globally reachable nodes. Since A1,1 is irreducible and
aperiodic it is primitive, and being row stochastic
limk→+∞ Ak

1,1 = ewT
1 where w1 > 0 and wT

1 e = 1.



(4)⇒(2)
Clearly A2,1 has some positive entry so that A2,2 is row
substochastic. In addition, let us consider the subgraph of G
whose adjacency matrix is A2,2. Every node of this subgraph
has a path towards a node having out-degree less that one
because these are the nodes that give access to the globally
reachable nodes. It follows that A2,2 is convergent so that PAPT

is semi convergent and

lim
k→+∞

(PAPT )k = lim
k→+∞

(PAkPT ) = lim
k→+∞

[
Ak

1,1 O
X (k) Ak

2,2

]
=

[
ewT

1 O
X O

]
.

Being A2,2 convergent and A1,1 primitive the limit has to be a
row stochastic matrix of rank one and the only possibility is

lim
k→+∞

(PAPT )k = ewT

where w =

[
w1
O

]
.



Nodes not globally reachable

It is interesting to observe that the entries of w corresponding
to the nodes globally reachable are positive while the remaining
are equal to zero. If x(k) = Ax(k − 1) then

lim
k→+∞

x(k) = (wT x(0))e

so that the initial values of xi(0) of all nodes i not globally
reachable have no effect on the final convergence value.



Example: Leslie population model

Let us assume βi = 1 for i = 1, . . . ,n − 1,
∑n

k=1 αk = 1,
αq ̸= 0 ̸= αp, with q < p coprimes, αp+1 = . . . = αn = 0. Hence
the nodes from 1 to p are globally reachable and form an
aperiodic subgraph of G(AL). The first p entries of w are
different from zero while the remaining are equal to zero. This
means that only the first p entries of x(0) have influence on the
consensus reached by the dynamical system
x(k) = ALx(k − 1).



Rate of convergence

Of course, besides convergence, the rate of convergence is
fundamental in applications. For simplicity let us consider the
case where 1 is a simple eigenvalue of A, the other eigenvalues
have modulus less than 1 and A is diagonalizable. Then

A = V
[

1 O
O Λ

]
V−1,

where Λ is a diagonal matrix of order n − 1 containing the
eigenvalues of A different from 1. Clearly

Ak = V
[

1 O
O Λk

]
V−1.



Rate of convergence

Let V = [e, ∗] and (V−1)T = [w , ∗]. Then

Ak = V
[

1 O
O O

]
V−1+V

[
O O
O Λk

]
V−1 = ewT+V

[
O O
O Λk

]
V−1,

so that

∥Ak − ewT∥2 = ∥V
[
O O
O Λk

]
V−1∥2 ≤ ∥V∥2∥V−1∥2∥Λ∥k

2.

We define the essential spectral radius of A as ρess(A) = ρ(Λ)
hence

∥Ak − ewT∥2 ≤ ∥V∥2∥V−1∥2ρess(A)k .



Time-varying averaging systems

The dynamical system

x(k + 1) = A(k)x(k), k ≥ 0

where the matrices A(k) are row stochastic and x(0) ≥ 0 is
known as time-varying averaging system. Notice that,
A(k)e = e so that x(0) = e implies x(k) = e for every k ≥ 0.
For these systems it is important to obtain:
▶ conditions for convergence to consensus, i.e.,

convergence of x(k) to a suitable multiple of e;
▶ some form of estimate of the asymptotic rate of

convergence.
The simplest theorems involve properties of connection of the
graphs of each of the A(k). However, if these properties are not
satisfied, it is necessary to examine also the products of the
A(k).



The case where A(k) are symmetric

Theorem
For k ≥ 0 let A(k) be a sequence of symmetric row stochastic
matrices of order n such that:

(1) there exists ϵ > 0 such that, for every k , all the
nonzero entries of A(k) belong to the interval [ϵ,1];

(2) for k ≥ 0 the digraph D(A(k)) is strongly
connected and aperiodic (namely A(k) is
primitive).

Then the time-varying averaging system x(k + 1) = A(k)x(k)
converges to average consensus 1

n eT x(0)e and the rate of
convergence is the supremum of the set of the essential
spectral radii of all the possible A(k).



The case where A(k) are symmetric
Proof Let us start with the algebraic part of the theorem. We
perform the change of variable δ(k) = x(k)− eT x(0)

n e. Then

x(k + 1) = A(k)x(k)

⇔ x(k + 1)− eT x(0)
n

e = A(k)(x(k)− eT x(0)
n

e)

⇔ δ(k + 1) = A(k)δ(k).

Since A(k) is symmetric eT A(k) = eT so that

eT x(k) = eT A(k − 1)x(k − 1) = eT x(k − 1) = . . . = eT x(0),

so that
eT δ(k) = eT x(k)− eT x(0) = 0,

hence
δ(k + 1) = (A(k)− 1

n
eeT )δ(k).



The case where A(k) are symmetric

Since A(k) is symmetric and primitive it turns out that there
exists an orthogonal matrix V (k) such that
A(k) = V (k)Λ(k)V T (k) where V (k)e1 = e√

n and

Λ(k) =


1 0 · · · 0

0 λ2(k)
...

...
. . . 0

0 · · · 0 λn(k)

 ,

where ρess(A(k)) = max{λ2(k), . . . , λn(k)} < 1.



The case where A(k) are symmetric

Hence

∥A(k)− 1
n

eeT∥2 = ∥V (k)Λ(k)V (k)T − V (k)e1eT
1 V (k)T∥2

= ∥Λ− e1eT
1 ∥2 = ∥


0 0 · · · 0

0 λ2(k)
...

...
. . . 0

0 · · · 0 λn(k)

 ∥2 = ρess(A(k)).

Hence

∥δ(k + 1)∥2 = ∥(A(k)− 1
n

eeT )δ(k)∥2 ≤ ρess(A(k))∥δ(k)∥2.

Now we need to show that there is a constant c < 1 such that
supk ρess(A(k)) < c.



The case where A(k) are symmetric

Because each D(A(k)) is strongly connected and aperiodic,
A(k) is primitive and has essential spectral radius strictly less
than 1.
For fixed n, there exists only a finite number of possible
unweighted strongly connected aperiodic graphs with n nodes,
and for each given graph the set of the symmetric matrices with
weights in the interval [ϵ,1] is closed and limited, and the finite
union closed and limited sets is again closed an limited. Each of
these matrices essential has spectral radius strictly less than 1.
It is known that the function from the entries of a matrix and its
eigenvalues and the function from n − 1 numbers and their
maximum are continuous. Hence ρess attains on the matrices of
the set a maximum value and this maximum of has to be less
than 1.
It follows that there exists c < 1 such that supk ρess(A(k)) ≤ c.



Union of digraphs

Given two digraphs G = (V ,E) and G′ = (V ′,E ′) their union is
defined as G ∪ G′ = (V ∪ V ′,E ∪ E ′). Clearly if V = V ′ then the
union is essentially defined by the union of the edge sets. If A
and A′ are two non-negative matrices of the same order with
positive diagonal entries and G = D(A), G′ = D(A′) then E ∪ E ′

is contained in the edge set of D(AA′).
The following theorem has mainly theoretical interest: it shows
that, if the graphs D(A(k)) are not connected, the union of their
digraphs can nevertheless have useful connection properties.



Connection over times

In the following theorem a suitable hypothesis of connection is
made on the union of the digraphs of the matrices.

Theorem
Let A(k) for k ≥ 0 be a sequence of row stochastic matrices of
order n with positive diagonal entries and let G(k) = D(A(k)).
Let us assume that:

(1) there exists ϵ > 0 such that for k ≥ 0 each
non-zero entry of A(k) belongs to the interval [ϵ,1];

(2) there exists an integer δ > 0 such that for each
k ≥ 0 the digraph G(k) ∪ . . . ∪ G(k + δ − 1)
contains a globally reachable node.

Then the time-varying averaging system x(k + 1) = A(k)x(k)
converges to consensus, and to average consensus if the A(k)
are doubly stochastic.



The Massey method

In 1997, Kenneth Massey proposed a method for ranking
college football teams. Massey’s method rates a given team
according to the point spread of the team (the difference
between points for and against the team) and the ratings of the
other teams matched so far in a tournament.



The Massey method
Let di be the number of the matches played by team i , let ai,j
the number of the matches played by team i against team j and
let pi be the difference between the points made and suffered
by the team i . Then the rating ri of team i according to
Massey’s method is given by

ri =
1
di

∑
j

ai,j rj +
pi

di
.

Notice that ri is the sum of two components
▶ the mean rating of teams that i has matched:

r (1)i =
1
di

∑
j

ai,j rj ;

▶ the mean point spread of team i in the played matches:

r (2)i =
pi

di
.



The time-aware Massey method

Recently, a time-aware version of the Massey method has been
proposed. The idea of for incorporating time in the method is
simple: to take into account the strength of the teams at the
time when the match is played. In order to simplify the
presentation let us consider the case where the tournament is
arranged as in the italian serie A competition: if there are n
teams, n assumed to be even for simplicity, at each day k of the
sport season, for k = 1, . . . ,n − 1, each team competes against
a team not matched before.



The time-aware Massey method
The rating of team i at season day k is:

ri(k) =
1
k

k∑
j=1

rπi (j)(j − 1) +
pi(k)

k
,

where 1 ≤ k ≤ n − 1, πi(j) is the team that competes against i
at day j , pi(k) is the point spread of team i at day k , and
ri(0) = 0 for all teams. This means that the rating ri(k) of team i
at day k is the sum r (1)i (k) + r (2)i (k) of two components:
▶ the mean historical rating of teams that i has matched:

r (1)i (k) =
1
k

k∑
j=1

rπi (j)(j − 1);

▶ the mean point spread of team i at day k :

r (2)i (k) =
pi(k)

k
.



The time-aware Massey method in matrix form

It is convenient to write the previous equation in an alternative
compact matrix form. First of all we need a family of symmetric
permutation matrices P(k), k = 1, . . . ,n − 1 that embody the
tournament calendar. Since in a round-robin tournament each
team must compete against every other team the permutation
matrices P(k) satisfy the constraint

n−1∑
k=1

P(k) = eeT − I =


0 1 · · · 1

1
. . . . . .

...
...

. . . . . . 1
1 · · · 1 0

 .



The time-aware Massey method in matrix form

Now, let s(t) be a vector such that si(t) is equal to the points
realized by the team i in the match played at time t . We can
describe the temporal Massey method as

r(k) =
1
k

k∑
t=1

P(t)r(t − 1) +
1
k

k∑
t=1

(I − P(t))s(t),

where k = 1, . . . ,n − 1. Here we assume r(0) = [0, . . . ,0]T ,
i.e., zero initial rating for each team, but other choices could be
considered.



The time-aware Massey method in matrix form

It is possible rewrite the last equation in order to express r(k)
as a function of r(k − 1). Observe that, for k = 1, . . . ,n − 1:

r(k) =
1
k

k∑
t=1

(
P(t)r(t − 1) + (I − P(t))s(t)

)
=

k − 1
k

1
k − 1

k−1∑
t=1

(
P(t)r(t − 1) + (I − P(t))s(t)

)
+

1
k
(
P(k)r(k − 1) + (I − P(k))s(k)

)
=

k − 1
k

r(k − 1) +
1
k
(
P(k)r(k − 1) + (I − P(k))s(k)

)
=

1
k
(
(k − 1)I + P(k)

)
r(k − 1) +

1
k
(I − P(k))s(k).



The time-aware Massey method in matrix form

Let us set
C(k) =

1
k

P(k) +
k − 1

k
I.

Notice that C(k) ≥ 0 and

C(k)e =
1
k

P(k)e +
k − 1

k
e =

1
k

e +
k − 1

k
e = e

hence these matrices are row stochastic, besides being
symmetric due to the symmetry of the permutations P(k).



The time-aware Massey method in matrix form

By using the C(k) we obtain

r(k) =
1
k
(
(k − 1)I + P(k)

)
r(k − 1) +

1
k
(I − P(k))s(k)

= C(k)r(k − 1)− C(k)s(k) + s(k).

This suggests the change of variable q(k) = r(k)− s(k) that
yields

q(k) = C(k)q(k − 1) + C(k)(s(k − 1)− s(k)).



The perfect season

The dynamical system

q(k) = C(k)q(k − 1) + C(k)(s(k − 1)− s(k))

falls outside the framework discussed so far. We discuss an
important particular case, theoretically very interesting, known
as perfect season. In the perfect season, if i competes with j
then the point difference is j − i (hence i defeats j in the case
where i < j). In order to model these results it is sufficient to set
si(t) = n − i . With this assumption
s(t) = s = [n − 1,n − 2, . . . ,0]T becomes independent from t
and s(k − 1)− s(k) = 0. Hence in the perfect season we have
to study the time-varying averaging system

q(k) = C(k)q(k − 1) where q(0) = s.



Why the perfect season is important?

The perfect season has been introduced in the literature as a
first step for the study of the sensitivity (variation of the output
as a consequence of a small variation of the input) of a ranking
method. For example, it can be shown that the original (not
time aware) Massey method at the end of the perfect season
produces the expected ranking, where team i precedes team
i + 1 for i = 1, . . . ,n − 1, and in addition the rating of the teams
are evenly spaced. Actually, a more detailed analysis shows
that the original Massey’s method has excellent sensitivity
properties. Can we obtain the same results for time-aware
Massey method? Let us start from an asymptotic result that we
can deduce without too many effort from the theory developed
so far on time-varying averaging systems.



Asymptotic convergence

For the matrices C(k) unfortunately G(k) = D(C(k)) is not
connected, so that we are forced to consider their products.
Notice that

(1) The smallest nonzero entry of the C(k) is 1
n−1 .

(2) Each of the G(k) has a self loop at each node.
(3) The digraph G(1) ∪ . . . ∪ G(n − 1) not only

contains a globally reachable node but actually it
is complete.

We conclude that if the tournament were repeated many times
then q(k) would converge to average consensus
1
n eT q(0)e = −1

n eT se = 1−n
2 e. Since r(k) = q(k) + s we obtain

that r(k) converges to s + 1−n
2 e a vector of evenly spaced

ratings.



Rating and ranking at the end of one tournament

It is clear that here an asymptotic result is not satisfying and
that we need to obtain some result that can be compared with
what known for the classical Massey method, that holds at the
end of just one tournament. A first simple observation is that
the ratings depend from the sequence of the matches. In
addition, if for n = 4 and n = 6 the time aware method always
produces the expected ranking, for n = 8 there are
tournaments that not always end with this result.



Example
For k = 1, . . . ,8, let the row k of the following table represent
the match calendar of the team k

4 8 5 7 6 2 3
5 6 3 8 7 1 4
8 7 2 4 5 6 1
1 5 6 3 8 7 2
2 4 1 6 3 8 7
7 2 4 5 1 3 8
6 3 8 1 2 4 5
3 1 7 2 4 5 6

,

then the obtained ratings approximated to the second decimal
digit are respectively

3.13 3.24 1.80 0.486 −1.19 −1.86 −2.14 −3.47 ,

so that team 2 wins the perfect season despite the fact that is
defeated by team 1. Why?



Example
The reason is that the match between team 1 and team 2 is
located towards the end of the tournament (more precisely in
the sixth day of the perfect season). Team 2 arrives to the
match with a higher rating since it defeats in the first days of the
season teams that are stronger of the teams defeated by 1 in
the same days. When team 2 is defeated by team 1, the
difference between the two ratings decreases, but the rating of
2 remains higher.
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Rate of convergence

What obtained so far suggests that the dynamical system
q(k) = C(k)q(k − 1) converges but the convergence speed
does not guarantee that the expected ranking is reached at the
end of one tournament. In order to characterize the
convergence speed it is useful to introduce the concept of
paracontraction. A matrix A is a paracontraction with respect to
a given norm ∥ ◦ ∥ if Ax ̸= x implies ∥Ax∥ < ∥x∥. This means
that there are only two possibilities for a vector x : or Ax = x or
the norm of x is reduced by the application of A. It is not difficult
to show that the matrices C(k) are paracontractions with
respect to the Euclidean norm ∥ ◦ ∥2.



Rate of convergence

By exploiting this property it is possible to obtain a good
description of the observed deviation from the expected
ranking.
In the figure the solid line is a measure of the deviation from the
expected ranking obtained experimentally by a mean over 1000
perfect seasons of 20 teams (left) and 80 teams (right), while
the dashed line is obtained by exploiting paracontractivity.
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Conclusions

▶ A substochastic matrix A is convergent if and only if in
D(A) there is a path from every node to a node having out
degree less than 1 (condition weaker than irreducibility).

▶ A dynamical system x(k + 1) = Ax(k) with A row
stochastic, reach consensus if and only if D(A) contains a
globally reachable nodes and the subset of globally
reachable nodes is aperiodic (condition weaker than
primitivity).

▶ Rate of convergence depends on essential spectral radius
of A.



Conclusions

▶ For time varying averaging systems x(k) = A(k)x(k − 1),
obtain conditions for convergence and estimate for the rate
of convergence can be difficult.

▶ The simplest theorems involve properties of connection of
the graphs of each of the A(k). However, if these
properties are not satisfied, it is necessary to examine also
the products of the A(k).

▶ Time aware Massey method leads, in the simple setting of
perfect season, to a time varying averaging system.

▶ It is simple to prove the asymptotic convergence of the
method. Only preliminary results on the rate of
convergence have been obtained.



Suggested readings
F. Bullo
Lectures on network systems
Create space, 2018.

T. Chartier, E. Kreutzer, A. Langville, and K. Pendings
Sensitivity and stability of ranking vectors
SIAM Journal on Scientific and Statistical Computing, 33,
pp. 1077–1102, 2011.

M. Franceschet, E. B., P. Vidoni
The temporalized Massey’s method
Journal of quantitative analysis of sports, 13(2), pp. 37–48,
2017.

E. B., P. Vidoni, M. Franceschet,
A parametric family of Massey-type methods: inference,
prediction and sensitivity
Journal of Quantitative Analysis of Sports, 16(3), 2020, pp.
255–269.



Exercises

1. Prove the lemma on substochastic matrices.

2. Let A =

(
α1 α2

1 0

)
≥ 0. Prove that ρ(A) < 1 if and only if A is row

substochastic.

3. Prove that if limk→+∞ Ak = abT , with a ̸= 0 ̸= b then Aa = a, bT A = bT

and bT a = 1.

4. Notice that, in order to obtain the ratings in the original Massey method
it is necessary to solve a linear system. (a) Write explicitly the system
Lr = p that relates ratings and points. (b) Prove that L is singular. (c)
Write explicitly the system Lr = p in the perfect season with n teams.
(d) Assuming that the rank of L is n − 1 show that the system is solvable
and propose a strategy to solve it.

5. Prove that the matrices C(k) are paracontractions in the Euclidean
norm.


