Applications of numerical linear algebra for the study of complex networks and systems

Digraphs, non negative matrices, eigenvalues

enrico.bozzo@uniud.it

Roma Tor Vergata, November 22-23-24 2022

Summary

- Neighbours, connectivity, condensation digraph, periodicity.
- Adjacency matrix. Irreducible matrices and their graph characterization.
- Powers of non negative adjacency matrices.
- Primitive matrices and their graph characterization.
- Convergent and semi convergent matrices.
- Perron and Perron-Frobenius theorems and the dominant eigenvalue and eigenvector of primitive and irreducible matrices.
- Stochastic matrices: consensus and average consensus.
- Examples.

Nodes, edges, endpoints, neighbors, degree, source, sink

A digraph of order *n* is an ordered pair G = (V, E), where *V* is a set with *n* elements called nodes and $E \subseteq V \times V$ is a set of ordered pairs of nodes called edges. If (u, v) is an edge, then the nodes *u* and *v* are defined endpoints of the edge. If $v \in V$ then:

- Nⁱⁿ(v) = {u ∈ V|(u, v) ∈ E} is defined the set of in-neighbors of v and dⁱⁿ(v) = |Nⁱⁿ(v)| is defined the in-degree of v. If dⁱⁿ(v) = 0, then v is defined source;
- N^{out}(v) = {u ∈ V|(v, u) ∈ E} is defined the set of out-neighbors of v and d^{out}(v) = |N^{out}(v)| is defined the out-degree of v. If d^{out}(v) = 0, then v is defined sink.

Notice that if $(v, v) \in E$ then v cannot be a source or a sink since $d^{in}(v) \neq 0 \neq d^{out}(v)$.

Connectivity

- An oriented path of a digraph is an ordered sequence of at least two nodes such that any ordered pair of consecutive nodes in the sequence is an edge of the digraph.
- An oriented path is simple if the nodes in the sequence are distinct except possibly for the first and the last node in the sequence. The length of a simple path is the number of its distinct nodes.
- If the first and the last node of a simple oriented path coincide, the path is defined cycle. The cycles of length 1 are called loops.
- A digraph is acyclic if it contains no cycles.

Strongly connected digraph

- G possesses a globally reachable node if one of its nodes can be reached from any other node by traversing an oriented path. Notice that the condition is empty for a graph having just one node.
- If v, w ∈ V are two nodes of a digraph G then v ≡ w if v = w or there is an oriented path from v to w and an oriented path from w to v. This defines an equivalence relation on V whose classes are known as strongly connected components of G. If G has globally reachable nodes then they necessarily belong to the same strongly connected component.
- If V is the only equivalence class of the relation then G is defined strongly connected.
- ▶ Notice that if |V| = 1 then *G* is always strongly connected.

Condensation digraph

- ► The condensation digraph of a digraph *G*, denoted with C(G), is the digraph whose nodes are the strongly connected components (classes of equivalence of the relation \equiv) of *G*. There is an edge between two different nodes (equivalence classes) *u* and *v* of C(G) if and only if there is an edge in *G* between one of the nodes of *u* and one of the nodes of *v*. C(G) does not have loops.
- C(G) is, by construction, acyclic. Moreover G contains a globally reachable node w if and only if C(G) contains a globally reachable node (the class of equivalence of its globally reachable nodes).
- An acyclic digraph is the condensation graph of itself.

Acyclic digraphs

The following theorem holds in particular for condensation digraphs.

Theorem

An acyclic digraph *G* contains a globally reachable node if and only if it contains a unique sink.

Proof If *G* contains a globally reachable node this, due to acyclicity, has to be unique and has to be a sink. On the other hand, let *G* contain a unique sink, then this node has to be globally reachable. Actually, all the nodes from which the sink cannot be reached have out-degree different from zero (since they are not sinks) and some of them have to form a cycle and this is impossible in an acyclic digraph.

Periodicity

- ▶ If *G* is digraph with *n* nodes then it has only a finite number of cycles bounded by $\sum_{k=1}^{n} (k-1)! \binom{n}{k}$. The bound can be reached if $E = V \times V$.
- A digraph is aperiodic if there is no integer p > 1 that divides the length of every cycle of the digraph, otherwise periodic. As a trivial example, a digraph with a loop is aperiodic. The period of a digraph is defined as the maximum common divisor of the lengths of its cycles.
- An acyclic digraph is not aperiodic (the above condition becomes empty) and we can conventionally assume that its period is ∞.

Weighted digraphs

- If A is a square matrix of order n, let D(A) the digraph such that V = {1,..., n} and (i, j) ∈ E if a_{i,j} ≠ 0. Sometimes it is useful associate a_{i,j} with the edge (i, j). More formally the triple G = (E, V, A) is defined weighted digraph, and a_{i,j} weight of the edge (i, j). The matrix A is known as adjacency matrix of G.
- The two vectors Ae and A^Te contain, respectively, the weighted out-degrees and in-degrees of the nodes of G.

Irreducible matrices

- If G = D(A) is strongly connected the matrix A is defined irreducible and reducible otherwise. Notice that when n = 1 the graph G is always strongly connected so that the matrix A is always irreducible. Hence, when dealing with irreducible matrices, it is customary to assume that n ≥ 2.
- ► A is irreducible if and only if A^T is irreducible.
- In the case where G is not strongly connected it can be shown that there exists a permutation matrix P such that PAP^T has a block upper triangular form with irreducible square diagonal blocks corresponding to the nodes that made up the strongly connected components of G.

Example

As an example consider the following graph G

G has two strongly connected components namely $\{1,3,4\}$ and $\{2,5\}$. Notice that G = D(A) where

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}, P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow PAP^{T} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Hence A is reducible. It is worth to observe that, in addition, it is aperiodic.

Non negative matrices

Definition

A real matrix A is non negative (positive) if $a_{i,j} \ge 0$ ($a_{i,j} > 0$) for i = 1, ..., n and j = 1, ..., m. A real vector v is non-negative (positive) if $v_i \ge 0$ ($v_i > 0$) for i = 1, ..., n.

With $A \ge 0$ (A > 0), and $v \ge 0$ (v > 0) we denote respectively a non negative (positive) matrix A and vector v.

Powers of non negative adjacency matrices

If G = D(A) and $A \ge 0$ the powers of A are strictly related to the oriented paths of G. The relation becomes stronger if the entries of A are in $\{0, 1\}$ (binary adjacency matrix).

Theorem

Let G = D(A) and let $k \ge 1$:

- If A ≥ 0 then the (i, j) entry of A^k is positive if and only if there is a path (not necessarily simple) in G made up of a sequence of k + 1 nodes, starting from i and ending with j;
- ▶ if the entries of A are in {0, 1} then the (i, j) entry of A^k is the number of paths (not necessarily simple) in G of k + 1 nodes, starting from node i and ending with node j.

This theorem is certainly one of the reasons of the importance of non negative matrices.

Example

For the graph *G* of the previous example

one obtains

As an example, notice that the two paths from node 1 to node 4 made up by a sequence of four nodes (red entry in A^3) are not simple, while the analogous path from 1 to 5 (green entry) is simple.

Classes of non negative matrices

Definition

A matrix *A* is primitive if $A \ge 0$ and there exists $k \in \mathbb{N}$ such that $A^k > 0$.

If *A* is primitive certainly there exists a path (not necessarily simple) between two arbitrary chosen nodes *i* and *j* of G = D(A) made up of a sequence of k + 1 nodes, starting from *i* and ending with *j*. Hence *G* is strongly connected and *A* irreducible. On the other hand, a matrix can be irreducible without being primitive. A simple example is the matrix

 $J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$

Graph characterization of primitive matrices

We know that a matrix *A* is irreducible if G = D(A) is strongly connected. The following theorem furnishes a graph characterization for primitive matrices.

Theorem

Let $A \ge 0$ a matrix of order *n* and let G = D(A). The matrix *A* is primitive if and only if *G* is strongly connected and aperiodic. Notice that, when n = 1, *G* is strongly connected, and is aperiodic when $A \ne [0]$ (*G* is acyclic when A = [0]) so that the theorem holds. Hence, in the following we will consider the case where $n \ge 2$.

Frobenius number

In order to prove the previous result we need a lemma that recalls Bezout identity (the gcd of two integers is their integer linear combination). Given a set $S = \{a_1, \ldots, a_n\}$ of positive integers, an integer M is said to be representable by S if there exists non-negative integers $\{\alpha_1, \ldots, \alpha_n\}$ such that $M = \sum_{k=1}^n \alpha_k a_k$.

Lemma

The elements of *S* are coprime (gcd = 1) if and only if there exists a largest unrepresentable integer, known as the Frobenius number of *S*.

If the elements of S have a nontrivial gcd then the Frobenius number cannot exist, so that the interesting implication is the other one.

Frobenius number

First of all let us prove the lemma in the case where n = 2. Let $S = \{a, b\}$ with gcd(a, b) = 1. The Bezout identity states that there exist two integers u > 0 and $v \ge 0$ such that, say, au - bv = 1. Hence, for every integer $k \ge 1$ we have aku - bkv = k. In order to "control" the dependence form k of the coefficient of b, we perform a division with remainder and we obtain kv = aq + r, where $0 \le r < a$. Hence a(ku - bq) - br = k and ku - bq > 0, otherwise $a(ku - bq) - br \le 0$ while k > 0. It follows that

$$a(ku - bq) + b(a - r) = ab + k.$$

Summarizing, since all the integers > ab are representable, the Frobenius number of *S* is $\le ab$ and in the linear combination the coefficient of *b* can be chosen $\le a$.

Frobenius number

In the case where n > 2 it is possible to proceed by induction. To illustrate the idea, let us consider as an example the case where $S = \{6, 10, 15\}$. We want to find three nonnegative integers x, y, z such that 6x + 10y + 15z = n, for every integer *n* above a certain bound. Since 6x + 10y = 2(3x + 5y) we can set 3x + 5y = w. The inductive hypothesis tell us that we can find non-negative x and y in order to satisfy this equation if w is above a certain bound, say 15. Now, let us consider the equation 2w + 15z = n. If n is above a certain bound, say 30, we can solve this equation and with $z \leq 2$. But if we choose $(n-15\cdot 2)/2 > 15$, i.e., n > 60, we are sure that exist x and y that give us the needed value of w.

Characterization of primitive matrices

Of course if $A \ge 0$ is primitive then every row of A has at least a positive entry. Hence, $A^k > 0$ implies $A^m > 0$ for every $m \ge k$. This implies that, for every m above a certain bound, there is a path with m successive edges from any node of G = D(A) and itself. This is impossible if G is periodic, since these paths would be the combinations of cycles having gcd > 1 and thus m should be a multiple of that gcd.

Characterization of primitive matrices

Now, let us assume that G = D(A) is strongly connected and aperiodic. Given two nodes *i* and *j* of *G* there is an oriented path from *i* to *j* that contains a node of every cycle of *G* (remember that *G* has a finite number of cycles). Hence we can construct a new path from *i* to *j* by repeating each of the cycles arbitrarily. By using the lemma on Frobenius number we see than we can construct paths from *i* to *j* made up by a sequence of nodes above a certain bound M(i, j). By taking the maximum over *i* and *j* of these bounds we obtain the thesis.

Example: Leslie population model

The Leslie population model is used to model the changes in a population of organisms over a period of time. The population is divided in $n \ge 2$ age classes indexed from i = 1 (the newborns) to i = n. The number of individuals in the *i*-th class at time *k* is denoted with $x_i(k)$. At every time step the $x_i(k)$ individuals (a) produce $\alpha_i x_i(k)$ offsprings, where $\alpha_i \ge 0$ is a fecundity rate and (b) progress to the next class with a survival rate $\beta_i \in [0, 1]$. The model can be described by the discrete time linear dynamical system $x(k) = A_L x(k - 1)$ with

$$A_{L} = \begin{bmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n-1} & \alpha_{n} \\ \beta_{1} & 0 & \cdots & 0 & 0 \\ 0 & \beta_{2} & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \vdots & \beta_{n-1} & 0 \end{bmatrix}$$

Example: Leslie population model

The graph $G = D(A_L)$ immediately suggests that A_L is irreducible if and only if $\alpha_n \neq 0$ and $\beta_i \neq 0$ for i = 1, ..., n - 1. The matrix A_L is primitive if and only if, besides being irreducible, there are $\alpha_i \neq 0$ and $\alpha_j \neq 0$ such that *i* and *j* are coprimes (this includes the case where i = j = 1).

Convergent and semi convergent matrices

Clearly, $x(k) = A_L x(k-1)$ implies $x(k) = A_L^k x(0)$. Hence, in order to obtain information on the evolution of x(k), it is useful to study the behaviour of the powers of a matrix. Remember that a matrix *A* is defined:

- ► semi convergent if lim_{k→+∞} A^k exists and is a specific matrix;
- convergent if it is semi-convergent and the limit is the zero matrix;
- not convergent otherwise.

Eigenvalues, spectrum, spectral radius

In order to decide between these possibilities the set

 $\sigma(\mathbf{A}) = \{\lambda | \lambda \text{ is an eigenvalue of } \mathbf{A}\},\$

defined spectrum of *A*, is important. Frequently $\sigma(A)$ is not completely known but useful information can be obtained on

$$\rho(\mathbf{A}) = \max\{|\lambda||\lambda \in \sigma(\mathbf{A})\},$$

defined spectral radius of A.

Remember that an eigenvalue is

- semisimple if its algebraic and geometric multiplicities coincide,
- simple if it is semisimple and the two multiplicities are equal to 1.

Non negative matrix technology

By means of the Jordan Canonical Form (JCF) it can be shown that

- A is convergent if and only if $\rho(A) < 1$;
- A is semi convergent if and only if ρ(A) = 1, 1 is a semisimple eigenvalue of A and if λ ∈ σ(A) and λ ≠ 1 then |λ| < 1.</p>

For non negative matrices important information on the spectral radius, can be obtained by means of Perron and Perron-Frobenius theorems. They are the cornerstones of what we can define as non negative matrix technology.

Perron theorem

For the sake of synthesis we state Perron theorem in a slightly generalized form.

Perron Theorem

- 1. If $A \ge 0$ then
 - there exists $\lambda \in \sigma(A)$ such that $\lambda = \rho(A) \ge 0$;
 - there exists a vector $0 \neq v \ge 0$ such that $Av = \lambda v$.
- 2. If A is primitive (in particular if A > 0), then
 - there exists $\lambda \in \sigma(A)$ such that $\lambda = \rho(A) > 0$;
 - \blacktriangleright λ is simple;
 - if $\mu \in \sigma(A)$ and $\mu \neq \lambda$ then $\lambda > |\mu|$;
 - there exists a vector v > 0 such that $Av = \lambda v$.

The first part of the theorem has the weakest possible hypothesis and a somewhat weak thesis. The second part has strong hypothesis and thesis.

Perron-Frobenius theorem for irreducible matrices

For irreducible matrices an intermediate result holds.

Perron-Frobenius Theorem

If $A \ge 0$ is an irreducible matrix of order $n \ge 2$ then

- there exists $\lambda \in \sigma(A)$ such that $\lambda = \rho(A) > 0$;
- λ is simple;
- there exists a vector v > 0 such that $Av = \lambda(A)v$.

Notice that the condition $n \ge 2$ is necessary since A = [0] is irreducible having order 1. Actually an irreducible but non primitive matrix can have eigenvalues different from $\lambda = \rho(A)$ but with the same modulus. For example $\sigma(J) = \{1, -1\}$ so that $1 = \rho(J) = |-1|$.

Example

As an example of application of these theorems, let us prove a useful double inequality on the spectral radius of a non-negative matrix.

Theorem (double inequality)

If $A \ge 0$ then min $Ae \le \rho(A) \le \max Ae$. Moreover if A is irreducible and min $Ae < \max Ae$ then min $Ae < \rho(A) < \max Ae$.

Proof First of all let us use Perron Theorem for non-negative matrices. As we know $\rho(A)$ is an eigenvalue of A and of A^T . Let $v \ge 0$ be an eigenvector of A^T associated to $\rho(A)$ and let us assume $v^T e = 1$. Hence

$$v^{T}A = \rho(A)v^{T} \Rightarrow v^{T}Ae = \rho(A).$$

Notice that $v^T Ae$ is a convex combination of the entries of Ae so that min $Ae \le \rho(A) \le \max Ae$. If A is irreducible then v > 0. Let $(Ae)_i = \min Ae < \max Ae = (Ae)_j$. Since v > 0 it follows that $(Ae)_i < v^T Ae = \rho(A) < (Ae)_i$.

Example: Leslie population model

- If β_i = 1 for i = 1,..., n − 1 and ∑ⁿ_{k=1} α_k > 1 then ρ(A_L) ≥ 1 and ρ(A_L) > 1 if A_L is irreducible (this means that A_L is not convergent and that it is possible to choose x(0) in such a way that ||x(k)|| → +∞).
- If β_i < 1 for some i and ∑ⁿ_{k=1} α_k ≤ 1 then the inequality ρ(A_L) ≤ max A_Le implies ρ(A_L) ≤ 1 and ρ(A_L) < 1 if A_L is irreducible (this means that A_L is convergent so that ||x(k)|| → 0 for every choice of x(0)).

If $\beta_i = 1$ for i = 1, ..., n-1 and $\sum_{k=1}^{n} \alpha_k = 1$, the matrix A_L belongs to the important class of row stochastic matrices.

Stochastic matrices

Definitions

Let *e* be a vector whose *n* entries are all equal to one. A real square matrix $A \ge 0$ of order *n* is

- 1. row stochastic if Ae = e;
- 2. column stochastic if A^{T} is row stochastic;
- 3. doubly stochastic if row and column stochastic.

If $v \ge 0$ and $e^T v = \sum_i v_i = 1$, then v is defined probability vector since its entries are between 0 and 1 and can be interpreted as probabilities.

Spectral properties of stochastic matrices

If A is row (or column) stochastic:

► 1 ∈
$$\sigma(A) = \sigma(A^T)$$
;

- the double inequality theorem implies $\rho(A) = 1 = \rho(A^T)$;
- if A is primitive 1 is simple and $1 \neq \lambda \in \sigma(A)$ implies $|\lambda| < 1.$

Hence A cannot be convergent but can be semi convergent, and this happens in particular if A is primitive. For example

 $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is doubly stochastic and semi-convergent,

- $J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is doubly stochastic and not convergent. $A = \begin{bmatrix} 1/2 & 1/2 \\ 1 & 0 \end{bmatrix}$ is primitive and thus semi-convergent.

Primitive stochastic matrices

If *A* is row stochastic and primitive, by means of JCF (or with a simpler proof if *A* is diagonalizable) we obtain an "explicit" formula for $\lim_k A^k$ by using the vector w > 0 is such that $w^T A = w^T$ normalized in such a way that $w^T e = 1$.

If A is primitive and row stochastic then

$$\lim_{k\to+\infty}A^k=ew^T.$$

If A is primitive and column stochastic then

$$\lim_{k \to +\infty} \mathbf{A}^k = \lim_{k \to +\infty} ((\mathbf{A}^T)^k)^T = \mathbf{w} \mathbf{e}^T.$$

▶ If A is primitive and doubly stochastic then w = e/n so that

$$\lim_{k\to+\infty}A^k=\frac{1}{n}ee^T.$$

Consensus and average consensus

If $x(k) = A^k x(0)$ then:

if A is primitive and row stochastic

$$\lim_{k\to+\infty} x(k) = ew^T x(0) = (w^T x(0))e,$$

the system reach consensus (all the entries of x converge to the same convex combination of the entries of x(0));

▶ if A is primitive and doubly stochastic

$$\lim_{k\to+\infty} x(k) = \frac{1}{n} e e^T x_0 = \frac{e^T x(0)}{n} e,$$

the system reach average consensus (all the entries of x converge to the arithmetic mean of the entries of x(0)).

Example: Leslie population model

If A_L is row stochastic and irreducible ($\alpha_n \neq 0$) then a simple direct computation shows that

$$w_i = \frac{\sum_{k=i}^n \alpha_k}{\sum_{k=1}^n k \alpha_k}$$

This is the positive eigenvector whose existence is guaranteed by Perron-Frobenius theorem. Notice that

$$w_1 \geq w_2 \geq \ldots \geq w_n.$$

If A_L is primitive and we consider the system $x(k) = A_L x(k-1) = A_L^k x(0)$ then

$$\lim_{k\to+\infty} x(k) = (w^T x(0))e,$$

so that all the age classes converge towards the same number of individuals, and the first entries of x(0) are the more important for the determination of this number.

Example: n-bugs system

A group of *n* robots, informally called "bugs", are restricted to move on a circle of unit radius. The bugs are numbered with i = 1, ..., n and their positions on the circle are individuated by angles $0 \le \theta_i < 2\pi$ measured counterclockwise from the positive horizontal axis. In this setting it is easy to express the separation between two successive bugs as

$$d_i = \operatorname{mod}(\theta_{i+1} - \theta_i, 2\pi), \qquad i = 1, \dots, n$$

where it is understood that n + 1 has to be identified with 1.

Example: n-bugs system

We consider a situation where each bug feels an attraction towards its nearest counterclockwise neighbor proportional to their separation so that

$$\theta_i(k+1) = \operatorname{mod}(\theta_i(k) + \gamma d_i(k), 2\pi),$$

where $0 \le \gamma \le 1$ is a suitable constant. It is interesting to rewrite the dynamical system in terms only of pairwise separations. We have

$$d_{i}(k+1) = \operatorname{mod}(\theta_{i+1}(k+1) - \theta_{i}(k+1), 2\pi) = \operatorname{mod}(\theta_{i+1}(k) + \gamma d_{i+1}(k) - \theta_{i}(k) - \gamma d_{i}(k), 2\pi) = \operatorname{mod}((1-\gamma)d_{i}(k) + \gamma d_{i+1}(k), 2\pi) = (1-\gamma)d_{i}(k) + \gamma d_{i+1}(k),$$

where the last equality is justified since a convex combination of two numbers in $[0, 2\pi)$ results in a number in the same interval.

Example: n-bugs system

In matrix form we obtain the system d(k) = Ad(k - 1) where

$$A = \begin{bmatrix} 1 - \gamma & \gamma & \cdots & 0 & 0 \\ 0 & 1 - \gamma & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & 1 - \gamma & \gamma \\ \gamma & 0 & \cdots & 0 & 1 - \gamma \end{bmatrix}$$

The matrix *A* is doubly-stochastic. If $\gamma = 0$ then A = I and the bugs remain in their initial position. If $0 < \gamma < 1$ then it is not difficult to show that *A* is primitive in such a way that the system reach average consensus: the limiting separations between the bugs are all equal to the mean of the original separations. If $\gamma = 1$ then *A* is irreducible but not semi convergent.

Invariant probability vector

In the case where *A* is column stochastic the recurrence x(k) = Ax(k-1) implies $e^T x(k) = e^T x(k-1)$. Hence if x(0) is a probability vector then x(k) is a probability vector for every *k*. This kind of recurrences are important in the study of Markov chains where the entries of x(k) are the probabilities with which a random walker is in the various states after *k* transitions. Clearly if x(0) is a probability vector then

$$\lim_{k\to+\infty} x(k) = w e^T x(0) = w.$$

The vector *w* is known as invariant probability vector and its entries can be interpreted as the probabilities with which a random walker is in the various states in the long run. For this reason they are frequently exploited for measuring the importance, or centrality, of the states.

Conclusions

- There are important graph interpretations of certain matrix properties, in particular for non-negative matrices.
- In order to decide of the evolution of a system x(k) = Ax(k - 1) it is useful to understand the behaviour of the powers of A, that depends on its spectral properties.
- Perron and Perron-Frobenius theorems are fundamental tools for the study of spectral properties of primitive and irreducible matrices respectively.
- Stochastic matrices are a very important subclass of non-negative matrices.
 - ► If A is row stochastic the system x(k) = Ax(k 1) can evolve to consensus.
 - If A is column stochastic and x(0) is a probability vector the system x(k) = Ax(k 1) can evolve to a vector known, in Markov chain theory, as invariant probability vector.

Suggested readings

嗪 F. Bullo

Lectures on network systems Create space, 2018.

Never C. D. Meyer

Matrix analysis and applied linear algebra SIAM, 2010.

Exercises

- 1. Explain the formula that expresses the bound on the number of cycles in a directed graph.
- 2. Prove that if A is reducible then all its powers are reducible.
- Let A ≥ 0 be irreducible. (a) If A is periodic can it have an aperiodic power? (b) If A is aperiodic can it have a periodic power?
- 4. Explain how induction can be applied in order to prove the lemma on Frobenius number if $S = \{a_1, \ldots, a_n\}$.

5. Why the matrix
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 is primitive? Determine its

first positive power.

- 6. Prove the formula for the vector w such that $w^T A_L = w^T$ if A_L is row stochastic and irreducible.
- 7. What happens in $\gamma = 1$ for the *n*-bugs system?