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Summary

I Neighbours, connectivity, condensation digraph, periodicity.
I Adjacency matrix. Irreducible matrices and their graph

characterization.
I Powers of non negative adjacency matrices.
I Primitive matrices and their graph characterization.
I Convergent and semi convergent matrices.
I Perron and Perron-Frobenius theorems and the dominant

eigenvalue and eigenvector of primitive and irreducible
matrices.

I Stochastic matrices: consensus and average consensus.
I Examples.



Nodes, edges, endpoints, neighbors, degree, source,
sink

A digraph of order n is an ordered pair G = (V ,E), where V is
a set with n elements called nodes and E ⊆ V × V is a set of
ordered pairs of nodes called edges. If (u, v) is an edge, then
the nodes u and v are defined endpoints of the edge.
If v ∈ V then:
I N in(v) = {u ∈ V |(u, v) ∈ E} is defined the set of

in-neighbors of v and d in(v) = |N in(v)| is defined the
in-degree of v . If d in(v) = 0, then v is defined source;

I Nout(v) = {u ∈ V |(v ,u) ∈ E} is defined the set of
out-neighbors of v and dout(v) = |Nout(v)| is defined the
out-degree of v . If dout(v) = 0, then v is defined sink.

Notice that if (v , v) ∈ E then v cannot be a source or a sink
since d in(v) 6= 0 6= dout(v).



Connectivity

I An oriented path of a digraph is an ordered sequence of at
least two nodes such that any ordered pair of consecutive
nodes in the sequence is an edge of the digraph.

I An oriented path is simple if the nodes in the sequence are
distinct except possibly for the first and the last node in the
sequence. The length of a simple path is the number of its
distinct nodes.

I If the first and the last node of a simple oriented path
coincide, the path is defined cycle. The cycles of length 1
are called loops.

I A digraph is acyclic if it contains no cycles.



Strongly connected digraph

I G possesses a globally reachable node if one of its nodes
can be reached from any other node by traversing an
oriented path. Notice that the condition is empty for a
graph having just one node.

I If v ,w ∈ V are two nodes of a digraph G then v ≡ w if
v = w or there is an oriented path from v to w and an
oriented path from w to v . This defines an equivalence
relation on V whose classes are known as strongly
connected components of G. If G has globally reachable
nodes then they necessarily belong to the same strongly
connected component.

I If V is the only equivalence class of the relation then G is
defined strongly connected.

I Notice that if |V | = 1 then G is always strongly connected.



Condensation digraph

I The condensation digraph of a digraph G, denoted with
C(G), is the digraph whose nodes are the strongly
connected components (classes of equivalence of the
relation ≡) of G. There is an edge between two different
nodes (equivalence classes) u and v of C(G) if and only if
there is an edge in G between one of the nodes of u and
one of the nodes of v . C(G) does not have loops.

I C(G) is, by construction, acyclic. Moreover G contains a
globally reachable node w if and only if C(G) contains a
globally reachable node (the class of equivalence of its
globally reachable nodes).

I An acyclic digraph is the condensation graph of itself.



Acyclic digraphs

The following theorem holds in particular for condensation
digraphs.

Theorem
An acyclic digraph G contains a globally reachable node if and
only if it contains a unique sink.
Proof If G contains a globally reachable node this, due to
acyclicity, has to be unique and has to be a sink. On the other
hand, let G contain a unique sink, then this node has to be
globally reachable. Actually, all the nodes from which the sink
cannot be reached have out-degree different from zero (since
they are not sinks) and some of them have to form a cycle and
this is impossible in an acyclic digraph.



Periodicity

I If G is digraph with n nodes then it has only a finite number
of cycles bounded by

∑n
k=1(k − 1)!

(n
k

)
. The bound can be

reached if E = V × V .
I A digraph is aperiodic if there is no integer p > 1 that

divides the length of every cycle of the digraph, otherwise
periodic. As a trivial example, a digraph with a loop is
aperiodic. The period of a digraph is defined as the
maximum common divisor of the lengths of its cycles.

I An acyclic digraph is not aperiodic (the above condition
becomes empty) and we can conventionally assume that
its period is∞.



Weighted digraphs

I If A is a square matrix of order n, let D(A) the digraph such
that V = {1, . . . ,n} and (i , j) ∈ E if ai,j 6= 0. Sometimes it is
useful associate ai,j with the edge (i , j). More formally the
triple G = (E ,V ,A) is defined weighted digraph, and ai,j
weight of the edge (i , j). The matrix A is known as
adjacency matrix of G.

I The two vectors Ae and AT e contain, respectively, the
weighted out-degrees and in-degrees of the nodes of G.



Irreducible matrices

I If G = D(A) is strongly connected the matrix A is defined
irreducible and reducible otherwise. Notice that when
n = 1 the graph G is always strongly connected so that the
matrix A is always irreducible. Hence, when dealing with
irreducible matrices, it is customary to assume that n ≥ 2.

I A is irreducible if and only if AT is irreducible.
I In the case where G is not strongly connected it can be

shown that there exists a permutation matrix P such that
PAPT has a block upper triangular form with irreducible
square diagonal blocks corresponding to the nodes that
made up the strongly connected components of G.



Example

As an example consider the following graph G

G has two strongly connected components namely {1, 3, 4} and {2, 5}.
Notice that G = D(A) where

A =


0 0 1 1 0
0 0 0 0 1
0 0 0 1 0
1 1 1 0 0
0 1 0 0 0

 ,P =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

 ⇒ PAPT =


0 1 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 0 0 1
0 0 0 1 0


Hence A is reducible. It is worth to observe that, in addition, it is aperiodic.



Non negative matrices

Definition
A real matrix A is non negative (positive) if ai,j ≥ 0 (ai,j > 0) for
i = 1, . . . ,n and j = 1, . . . ,m. A real vector v is non-negative
(positive) if vi ≥ 0 (vi > 0) for i = 1, . . . ,n.
With A ≥ 0 (A > 0), and v ≥ 0 (v > 0) we denote respectively a
non negative (positive) matrix A and vector v .



Powers of non negative adjacency matrices

If G = D(A) and A ≥ 0 the powers of A are strictly related to the
oriented paths of G. The relation becomes stronger if the
entries of A are in {0, 1} (binary adjacency matrix).

Theorem
Let G = D(A) and let k ≥ 1:
I if A ≥ 0 then the (i , j) entry of Ak is positive if and only if

there is a path (not necessarily simple) in G made up of a
sequence of k + 1 nodes, starting from i and ending with j ;

I if the entries of A are in {0, 1} then the (i , j) entry of Ak is
the number of paths (not necessarily simple) in G of k + 1
nodes, starting from node i and ending with node j .

This theorem is certainly one of the reasons of the importance
of non negative matrices.



Example

For the graph G of the previous example

one obtains

A2 =


1 1 1 1 0
0 1 0 0 0
1 1 1 0 0
0 0 1 2 1
0 0 0 0 1

 , and A3 =


1 1 2 2 1
0 0 0 0 1
0 0 1 2 1
2 3 2 1 0
0 1 0 0 0

 .

As an example, notice that the two paths from node 1 to node 4 made up by a
sequence of four nodes (red entry in A3) are not simple, while the analogous
path from 1 to 5 (green entry) is simple.



Classes of non negative matrices
Definition
A matrix A is primitive if A ≥ 0 and there exists k ∈ N such that
Ak > 0.
If A is primitive certainly there exists a path (not necessarily
simple) between two arbitrary chosen nodes i and j of
G = D(A) made up of a sequence of k + 1 nodes, starting from
i and ending with j . Hence G is strongly connected and A
irreducible. On the other hand, a matrix can be irreducible
without being primitive. A simple example is the matrix

J =

[
0 1
1 0

]
.



Graph characterization of primitive matrices

We know that a matrix A is irreducible if G = D(A) is strongly
connected. The following theorem furnishes a graph
characterization for primitive matrices.

Theorem
Let A ≥ 0 a matrix of order n and let G = D(A). The matrix A is
primitive if and only if G is strongly connected and aperiodic.
Notice that, when n = 1, G is strongly connected, and is
aperiodic when A 6= [0] (G is acyclic when A = [0]) so that the
theorem holds. Hence, in the following we will consider the
case where n ≥ 2.



Frobenius number

In order to prove the previous result we need a lemma that
recalls Bezout identity (the gcd of two integers is their integer
linear combination). Given a set S = {a1, . . . ,an} of positive
integers, an integer M is said to be representable by S if there
exists non-negative integers {α1, . . . , αn} such that
M =

∑n
k=1 αkak .

Lemma
The elements of S are coprime (gcd = 1) if and only if there
exists a largest unrepresentable integer, known as the
Frobenius number of S.
If the elements of S have a nontrivial gcd then the Frobenius
number cannot exist, so that the interesting implication is the
other one.



Frobenius number

First of all let us prove the lemma in the case where n = 2. Let
S = {a,b} with gcd(a,b) = 1. The Bezout identity states that
there exist two integers u > 0 and v ≥ 0 such that, say,
au − bv = 1. Hence, for every integer k ≥ 1 we have
aku − bkv = k . In order to “control” the dependence form k of
the coefficient of b, we perform a division with remainder and
we obtain kv = aq + r , where 0 ≤ r < a. Hence
a(ku − bq)− br = k and ku − bq > 0, otherwise
a(ku − bq)− br ≤ 0 while k > 0. It follows that

a(ku − bq) + b(a− r) = ab + k .

Summarizing, since all the integers > ab are representable, the
Frobenius number of S is ≤ ab and in the linear combination
the coefficient of b can be chosen ≤ a.



Frobenius number

In the case where n > 2 it is possible to proceed by induction.
To illustrate the idea, let us consider as an example the case
where S = {6,10,15}. We want to find three nonnegative
integers x , y , z such that 6x + 10y + 15z = n, for every integer
n above a certain bound. Since 6x + 10y = 2(3x + 5y) we can
set 3x + 5y = w . The inductive hypothesis tell us that we can
find non-negative x and y in order to satisfy this equation if w is
above a certain bound, say 15. Now, let us consider the
equation 2w + 15z = n. If n is above a certain bound, say 30,
we can solve this equation and with z ≤ 2. But if we choose
(n − 15 · 2)/2 > 15, i.e., n > 60, we are sure that exist x and y
that give us the needed value of w .



Characterization of primitive matrices

Of course if A ≥ 0 is primitive then every row of A has at least a
positive entry. Hence, Ak > 0 implies Am > 0 for every m ≥ k .
This implies that, for every m above a certain bound, there is a
path with m successive edges from any node of G = D(A) and
itself. This is impossible if G is periodic, since these paths
would be the combinations of cycles having gcd > 1 and thus m
should be a multiple of that gcd.



Characterization of primitive matrices

Now, let us assume that G = D(A) is strongly connected and
aperiodic. Given two nodes i and j of G there is an oriented
path from i to j that contains a node of every cycle of G
(remember that G has a finite number of cycles). Hence we can
construct a new path from i to j by repeating each of the cycles
arbitrarily. By using the lemma on Frobenius number we see
than we can construct paths from i to j made up by a sequence
of nodes above a certain bound M(i , j). By taking the maximum
over i and j of these bounds we obtain the thesis.



Example: Leslie population model
The Leslie population model is used to model the changes in a
population of organisms over a period of time. The population
is divided in n ≥ 2 age classes indexed from i = 1 (the
newborns) to i = n. The number of individuals in the i-th class
at time k is denoted with xi(k). At every time step the xi(k)
individuals (a) produce αixi(k) offsprings, where αi ≥ 0 is a
fecundity rate and (b) progress to the next class with a survival
rate βi ∈ [0,1]. The model can be described by the discrete
time linear dynamical system x(k) = ALx(k − 1) with

AL =



α1 α2 · · · αn−1 αn
β1 0 · · · 0 0

0 β2
. . . . . . 0

...
. . . . . . . . .

...

0 0
... βn−1 0


.



Example: Leslie population model
The graph G = D(AL) immediately suggests that AL is
irreducible if and only if αn 6= 0 and βi 6= 0 for i = 1, . . . ,n − 1.
The matrix AL is primitive if and only if, besides being
irreducible, there are αi 6= 0 and αj 6= 0 such that i and j are
coprimes (this includes the case where i = j = 1).



Convergent and semi convergent matrices

Clearly, x(k) = ALx(k − 1) implies x(k) = Ak
Lx(0). Hence, in

order to obtain information on the evolution of x(k), it is useful
to study the behaviour of the powers of a matrix. Remember
that a matrix A is defined:
I semi convergent if limk→+∞ Ak exists and is a specific

matrix;
I convergent if it is semi-convergent and the limit is the zero

matrix;
I not convergent otherwise.



Eigenvalues, spectrum, spectral radius

In order to decide between these possibilities the set

σ(A) = {λ|λ is an eigenvalue of A},

defined spectrum of A, is important. Frequently σ(A) is not
completely known but useful information can be obtained on

ρ(A) = max{|λ||λ ∈ σ(A)},

defined spectral radius of A.

Remember that an eigenvalue is
I semisimple if its algebraic and geometric multiplicities

coincide,
I simple if it is semisimple and the two multiplicities are

equal to 1.



Non negative matrix technology

By means of the Jordan Canonical Form (JCF) it can be shown
that
I A is convergent if and only if ρ(A) < 1;
I A is semi convergent if and only if ρ(A) = 1, 1 is a

semisimple eigenvalue of A and if λ ∈ σ(A) and λ 6= 1 then
|λ| < 1.

For non negative matrices important information on the spectral
radius, can be obtained by means of Perron and
Perron-Frobenius theorems. They are the cornerstones of what
we can define as non negative matrix technology.



Perron theorem

For the sake of synthesis we state Perron theorem in a slightly
generalized form.

Perron Theorem
1. If A ≥ 0 then

I there exists λ ∈ σ(A) such that λ = ρ(A) ≥ 0;
I there exists a vector 0 6= v ≥ 0 such that Av = λv .

2. If A is primitive (in particular if A > 0), then
I there exists λ ∈ σ(A) such that λ = ρ(A) > 0;
I λ is simple;
I if µ ∈ σ(A) and µ 6= λ then λ > |µ|;
I there exists a vector v > 0 such that Av = λv .

The first part of the theorem has the weakest possible
hypothesis and a somewhat weak thesis. The second part has
strong hypothesis and thesis.



Perron-Frobenius theorem for irreducible matrices

For irreducible matrices an intermediate result holds.

Perron-Frobenius Theorem
If A ≥ 0 is an irreducible matrix of order n ≥ 2 then
I there exists λ ∈ σ(A) such that λ = ρ(A) > 0;
I λ is simple;
I there exists a vector v > 0 such that Av = λ(A)v .

Notice that the condition n ≥ 2 is necessary since A = [0] is
irreducible having order 1. Actually an irreducible but non
primitive matrix can have eigenvalues different from λ = ρ(A)
but with the same modulus. For example σ(J) = {1, −1} so
that 1 = ρ(J) = | − 1|.



Example
As an example of application of these theorems, let us prove a
useful double inequality on the spectral radius of a
non-negative matrix.

Theorem (double inequality)
If A ≥ 0 then minAe ≤ ρ(A) ≤ maxAe. Moreover if A is
irreducible and minAe < maxAe then minAe < ρ(A) < maxAe.
Proof First of all let us use Perron Theorem for non-negative
matrices. As we know ρ(A) is an eigenvalue of A and of AT . Let
v ≥ 0 be an eigenvector of AT associated to ρ(A) and let us
assume vT e = 1. Hence

vT A = ρ(A)vT ⇒ vT Ae = ρ(A).

Notice that vT Ae is a convex combination of the entries of Ae
so that minAe ≤ ρ(A) ≤ maxAe. If A is irreducible then v > 0.
Let (Ae)i = minAe < maxAe = (Ae)j . Since v > 0 it follows
that (Ae)i < vT Ae = ρ(A) < (Ae)j .



Example: Leslie population model

I If βi = 1 for i = 1, . . . ,n − 1 and
∑n

k=1 αk > 1 then
ρ(AL) ≥ 1 and ρ(AL) > 1 if AL is irreducible (this means
that AL is not convergent and that it is possible to choose
x(0) in such a way that ‖x(k)‖ → +∞).

I If βi < 1 for some i and
∑n

k=1 αk ≤ 1 then the inequality
ρ(AL) ≤ maxALe implies ρ(AL) ≤ 1 and ρ(AL) < 1 if AL is
irreducible (this means that AL is convergent so that
‖x(k)‖ → 0 for every choice of x(0)).

If βi = 1 for i = 1, . . . ,n − 1 and
∑n

k=1 αk = 1, the matrix AL
belongs to the important class of row stochastic matrices.



Stochastic matrices

Definitions
Let e be a vector whose n entries are all equal to one. A real
square matrix A ≥ 0 of order n is

1. row stochastic if Ae = e;
2. column stochastic if AT is row stochastic;
3. doubly stochastic if row and column stochastic.

If v ≥ 0 and eT v =
∑

i vi = 1, then v is defined probability
vector since its entries are between 0 and 1 and can be
interpreted as probabilities.



Spectral properties of stochastic matrices

If A is row (or column) stochastic:
I 1 ∈ σ(A) = σ(AT );
I the double inequality theorem implies ρ(A) = 1 = ρ(AT );
I if A is primitive 1 is simple and 1 6= λ ∈ σ(A) implies
|λ| < 1.

Hence A cannot be convergent but can be semi convergent,
and this happens in particular if A is primitive. For example

I =
[
1 0
0 1

]
is doubly stochastic and semi-convergent,

J =

[
0 1
1 0

]
is doubly stochastic and not convergent.

A =

[
1/2 1/2
1 0

]
is primitive and thus semi-convergent.



Primitive stochastic matrices
If A is row stochastic and primitive, by means of JCF (or with a
simpler proof if A is diagonalizable) we obtain an “explicit”
formula for limk Ak by using the vector w > 0 is such that
wT A = wT normalized in such a way that wT e = 1.
I If A is primitive and row stochastic then

lim
k→+∞

Ak = ewT .

I If A is primitive and column stochastic then

lim
k→+∞

Ak = lim
k→+∞

((AT )k )T = weT .

I If A is primitive and doubly stochastic then w = e/n so that

lim
k→+∞

Ak =
1
n

eeT .



Consensus and average consensus

If x(k) = Akx(0) then:
I if A is primitive and row stochastic

lim
k→+∞

x(k) = ewT x(0) = (wT x(0))e,

the system reach consensus (all the entries of x converge
to the same convex combination of the entries of x(0));

I if A is primitive and doubly stochastic

lim
k→+∞

x(k) =
1
n

eeT x0 =
eT x(0)

n
e,

the system reach average consensus (all the entries of x
converge to the arithmetic mean of the entries of x(0)).



Example: Leslie population model
If AL is row stochastic and irreducible (αn 6= 0) then a simple
direct computation shows that

wi =

∑n
k=i αk∑n

k=1 kαk
.

This is the positive eigenvector whose existence is guaranteed
by Perron-Frobenius theorem. Notice that

w1 ≥ w2 ≥ . . . ≥ wn.

If AL is primitive and we consider the system
x(k) = ALx(k − 1) = Ak

Lx(0) then

lim
k→+∞

x(k) = (wT x(0))e,

so that all the age classes converge towards the same number
of individuals, and the first entries of x(0) are the more
important for the determination of this number.



Example: n-bugs system
A group of n robots, informally called “bugs”, are restricted to
move on a circle of unit radius. The bugs are numbered with
i = 1, . . . ,n and their positions on the circle are individuated by
angles 0 ≤ θi < 2π measured counterclockwise from the
positive horizontal axis. In this setting it is easy to express the
separation between two successive bugs as

di = mod(θi+1 − θi ,2π), i = 1, . . . ,n

where it is understood that n + 1 has to be identified with 1.



Example: n-bugs system
We consider a situation where each bug feels an attraction
towards its nearest counterclockwise neighbor proportional to
their separation so that

θi(k + 1) = mod(θi(k) + γdi(k),2π),

where 0 ≤ γ ≤ 1 is a suitable constant. It is interesting to
rewrite the dynamical system in terms only of pairwise
separations. We have

di(k + 1) = mod(θi+1(k + 1)− θi(k + 1),2π)
= mod(θi+1(k) + γdi+1(k)− θi(k)− γdi(k),2π)
= mod((1− γ)di(k) + γdi+1(k),2π)
= (1− γ)di(k) + γdi+1(k),

where the last equality is justified since a convex combination of
two numbers in [0,2π) results in a number in the same interval.



Example: n-bugs system

In matrix form we obtain the system d(k) = Ad(k − 1) where

A =



1− γ γ · · · 0 0

0 1− γ . . . . . . 0
...

. . . . . . . . . 0

0
. . . . . . 1− γ γ

γ 0 · · · 0 1− γ


.

The matrix A is doubly-stochastic. If γ = 0 then A = I and the
bugs remain in their initial position. If 0 < γ < 1 then it is not
difficult to show that A is primitive in such a way that the system
reach average consensus: the limiting separations between the
bugs are all equal to the mean of the original separations. If
γ = 1 then A is irreducible but not semi convergent.



Invariant probability vector

In the case where A is column stochastic the recurrence
x(k) = Ax(k − 1) implies eT x(k) = eT x(k − 1). Hence if x(0)
is a probability vector then x(k) is a probability vector for every
k . This kind of recurrences are important in the study of Markov
chains where the entries of x(k) are the probabilities with which
a random walker is in the various states after k transitions.
Clearly if x(0) is a probability vector then

lim
k→+∞

x(k) = weT x(0) = w .

The vector w is known as invariant probability vector and its
entries can be interpreted as the probabilities with which a
random walker is in the various states in the long run. For this
reason they are frequently exploited for measuring the
importance, or centrality, of the states.



Conclusions

I There are important graph interpretations of certain matrix
properties, in particular for non-negative matrices.

I In order to decide of the evolution of a system
x(k) = Ax(k − 1) it is useful to understand the behaviour
of the powers of A, that depends on its spectral properties.

I Perron and Perron-Frobenius theorems are fundamental
tools for the study of spectral properties of primitive and
irreducible matrices respectively.

I Stochastic matrices are a very important subclass of
non-negative matrices.
I If A is row stochastic the system x(k) = Ax(k − 1) can

evolve to consensus.
I If A is column stochastic and x(0) is a probability vector the

system x(k) = Ax(k − 1) can evolve to a vector known, in
Markov chain theory, as invariant probability vector.



Suggested readings

F. Bullo
Lectures on network systems
Create space, 2018.

C. D. Meyer
Matrix analysis and applied linear algebra
SIAM, 2010.



Exercises

1. Explain the formula that expresses the bound on the
number of cycles in a directed graph.

2. Prove that if A is reducible then all its powers are reducible.
3. Let A ≥ 0 be irreducible. (a) If A is periodic can it have an

aperiodic power? (b) If A is aperiodic can it have a periodic
power?

4. Explain how induction can be applied in order to prove the
lemma on Frobenius number if S = {a1, . . . ,an}.

5. Why the matrix A =

0 1 1
1 0 0
0 1 0

 is primitive? Determine its

first positive power.
6. Prove the formula for the vector w such that wT AL = wT if

AL is row stochastic and irreducible.
7. What happens in γ = 1 for the n-bugs system?


