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SAT solvers and average-case complexity

• SAT solvers work well on very large-scale instances coming from 
program verification, VLSI, etc
• For most applications, it is important to be able to certify 

unsatisfiability of unsatisfiable formulas

• Average-case complexity does not provide an explanation for 
feasibility of solving SAT in practice



Refuting random k-SAT

• Pick a random k-SAT formula with n variables, m clauses

• If 𝑚 > 𝑐!𝑛, formula is unsatisfiable whp

• Seems hard to find proof of unsatisfiability when m is, say, O(n log n)

• Feige proposed it as a complexity assumption

• Problem becomes easier for larger m. When is it poly-time?



Refuting random k-SAT
• Easy to see: if 𝑚 > 𝑐!𝑛!"# there is, whp, an efficiently constructable refutation by tree-

like resolution

• More work: same if 𝑚 > 𝑐!𝑛!"#/ log 𝑛

• By spectral methods: whp efficiently constructable  refutation if 𝑚 > 𝑐!𝑛 !/% &'(#)

[Goerdt, Krivelevich 2001]

• By more sophisticated spectral methods: whp strong refutation if

𝑚 > #
*!
𝑐!𝑛

"
! if k is even

𝑚 > #
*!
𝑐!𝑛

"
! polylog 𝑛 if k is odd

[Friedman, Goerdt 2001] . . . [Allen, O’Donnell, Witmer 2015]



Our result

• Efficiently computable strong refutation if

𝑚 > !
"+
𝑐#𝑛#/% if k is even

𝑚 > !
"+
𝑐#𝑛#/% polylog 𝑛 if k is odd

[Friedman, Goerdt 2001] . . . [Allen, O’Donnell, Witmer 2015]

• Our result:

𝑚 > !
"+
𝑐#𝑛#/% even if k odd



“Refuting” the existence of a large max cut

• Sample 𝐺 ∼ 𝒢
",!"

• Whp, max cut ≤ $
%
+ &

'

Proof: Chernoff bounds + union bound

• Whp, there is efficiently computable proof that max cut ≤ $
%
+ &(

'

Proof: [Feige, Ofek 2005] or Grothendieck’s inequality + Chernoff bounds



“Refuting” the existence of a large max cut

• Sample 𝐺 ∼ 𝒢&,,-
• Sample 𝐺 so that each edge has probability  (

&
and

edges are polylogn-wise independent

• Can we certify whp that max cut ≤ !
%
+ )

(
?

• Is it even true whp?

(If distribution has entropy 𝑜(𝑛), we cannot take union bounds!)



“Refuting” the existence of a large max cut

• Sample 𝐺 so that each edge has probability  ((&)
&

and edges are polylogn-wise independent

• By trace methods, whp non-trivial eigenvalues of
adjacency matrix ≤ 𝑑 𝑛 log 𝑛 in magnitude

• Trace calculation needs only 𝑂(log 𝑛)-wise 
independence of edges

• Whp, max cut is certifiably !
%
+ 𝑐 ,-. &

((&)



Strong refutations of k-SAT

• Refuting random 4-SAT formula with 𝑛 variables, 𝑚 clauses reduces to 
a problem similar to
• Find a certificate that a given random graph with 𝑛% vertices and 𝑚

independent random edges has a max cut ≤ !
%
+ 𝜖

• Refuting random 3-SAT formula with 𝑛 variables, 𝑚 clauses reduces to 
a problem similar to
• Find a certificate that a given random graph with 𝑛% vertices and /

+

&
random-but-correlated edges has a max cut ≤ !

%
+ 𝜖



Strong refutations of k-SAT, k even

• Refuting random 4-SAT formula with 𝑛 variables, 𝑚 clauses reduces to 
a problem similar to
• Find a certificate that a given random graph with 𝑛% vertices and 𝑚

independent random edges has a max cut ≤ !
%
+ 𝜖

• Refuting random k-SAT (k even) formula with 𝑛 variables, 𝑚 clauses 
reduces to a problem similar to
• Find a certificate that a given random graph with 𝑛#/% vertices and 𝑚

independent random edges has a max cut ≤ !
%
+ 𝜖

• Can do if 𝑚 > )
0+
𝑛#/%



Strong refutations of k-SAT

• Refuting random 3-SAT formula with 𝑛 variables, 𝑚 clauses reduces to 
a problem similar to
• Find a certificate that a given random graph with 𝑛% vertices and /

+

&
random-but-correlated edges has a max cut ≤ !

%
+ 𝜖

• Refuting random k-SAT formula (k odd) with 𝑛 variables, 𝑚 clauses 
reduces to a problem similar to
• Find a certificate that a given random graph with 𝑛(#1!)/% vertices and 

/+

&(./0)/+
random-but-correlated edges has a max cut ≤ !

%
+ 𝜖



Strong refutations of k-SAT

• Refuting random 3-SAT formula with 𝑛 variables, 𝑚 clauses reduces to a 
problem similar to
• Find a certificate that a given random graph with 𝑛! vertices and "

!

#
random-

but-correlated edges has a max cut ≤ $
!+ 𝜖

• Refuting random k-SAT formula (k odd) with 𝑛 variables, 𝑚 clauses reduces 
to a problem similar to
• Find a certificate that a given random graph with 𝑛(&'$)/! vertices and "!

#(#$%)/!
random-but-correlated edges has a max cut ≤ $

!+ 𝜖

• Can do if 𝑚 > *
+!
𝑛&/!polylog 𝑛



Strong refutations of random 4-SAT

• Enough to provide strong refutation of random 4-XOR [Feige 2002] +... 

• To find strong refutation of random 4-XOR problem, we can apply trivial 
(and seemingly not useful) reduction to 2-XOR:

Max # satisfiable constraints in 

𝑥!𝑥"𝑥#𝑥$ = 1
𝑥%𝑥"𝑥&𝑥$ = −1
𝑥!𝑥'𝑥#𝑥$ = 1
…

𝑥!, … , 𝑥( ∈ 1,−1 (

Max # satisfiable constraints in 

𝑦!,"𝑦#,$ = 1
𝑦%,"𝑦&,$ = −1
𝑦!,'𝑦#,$ = 1
…

𝑦!,!, … , 𝑦(,( ∈ 1,−1 (!

≤



Reduction to random 2-XOR

• Strong refutation of random 4-XOR with n variables, m constraints reduces to 
proving that the optimum is small in
• A random 2-XOR problem with 𝑛! clauses, 𝑚 constraints
• Equivalently, a random correlation clustering problem in a graph with 𝑛! vertices, 𝑚

random edges

Max # satisfiable constraints in 

𝑦!,"𝑦#,$ = 1
𝑦%,"𝑦&,$ = −1
𝑦!,'𝑦#,$ = 1
…

𝑦!,!, … , 𝑦(,( ∈ 1,−1 (!

1,3

5,7

1,4

2,3 6,7



Reduction to random 2-XOR

• Strong refutation of random 4-XOR with n variables, m constraints reduces to 
proving that

max
20,0,...,2-,- ∈ 5!,! -+

𝑦6𝑀𝑦 ≤ 𝜀𝑚

where 

𝑀7,8,9,# =

1 if 𝑥7𝑥8𝑥9𝑥# = 1 is a constraint
−1 if 𝑥7𝑥8𝑥9𝑥# = −1 is a constraint
0 otherwise



Reduction to random 2-XOR

• Want to prove that

max
,%,%,...,,),) ∈ 0$,$ )!

𝑦1𝑀𝑦 ≤ 𝜀𝑚

Proof:

max
*",",...,*$,$ ∈ -!,! $!

𝑦.𝑀𝑦

≤ max
*",",...,*$,$ ∈ -!,! $!

/"," ,…,/$,$∈ -!,! $!

𝑦.𝑀𝑧

= 𝑀 1→!
≤ 𝑚𝑛% whp



Strong refutations of random 4-SAT

• Enough to provide strong refutation of random 4-XOR [Feige 2002] +... 

• Can write random 4-XOR formula with 𝑛 variables and 𝑚 constraints as

• max
;#…;"∈ <$,$ "

=
%
+ $

%
∑>,?,!,@ 𝑏>,?,!,@𝑥>𝑥?𝑥!𝑥@

• Where m of the 𝑏7,8,#,9 are non-zero, and each is equally likely to be ±1



How to deal with random 3-XOR

• Strong refutation of random 3-XOR with n variables, 𝑚 constraints means 
proving that

max
:0,…,:-∈ 5!,! -L𝑇7,8,#𝑥7𝑥8𝑥# ≤ 𝜀𝑚

where 

𝑇7,8,# =

1 if 𝑥7𝑥8𝑥# = 1 is a constraint
−1 if 𝑥7𝑥8𝑥# = −1 is a constraint
0 otherwise



How to deal with random 3-XOR

max
;#,…,;"∈ <$,$ "0𝑇>,?,!𝑥>𝑥?𝑥!

≤ max
;#,…,;"∈ <$,$ " 0

>

𝑥>% 0
>

0
?,!

𝑇>,?,!𝑥?𝑥!
%

,

= 𝑛 4 max
;#,…,;"∈ <$,$ " 0

>,A,B,&,'

𝑇>,A,B𝑇>,&,'𝑥A𝑥B𝑥&𝑥'



How to deal with random 3-XOR

Enough to prove

max
;#,…,;"∈ <$,$ " 0

>,A,B,&,'

𝑇>,A,B𝑇>,&,'𝑥A𝑥B𝑥&𝑥' ≤
𝜀%𝑚
𝑛



How to deal with random 3-XOR

max
;#,…,;"∈ <$,$ " 0

>,A,B,&,'

𝑇>,A,B𝑇>,&,'𝑥A𝑥B𝑥&𝑥'

.

= max
;#,…,;"∈ <$,$ " 0

A,B,&,'

𝑥A𝑥& 0
>

𝑇>,A,B𝑇>,&,' 𝑥B𝑥'

.
≤ max

C#,#,…,C","∈ <$,$ "%
𝑦D𝑀𝑦

where 𝑀A,&,B,' = ∑> 𝑇>,A,B𝑇>,&,'



How to deal with random 3-XOR

max
20,0,…,2-,-∈ 5!,! -+

𝑦6𝑀𝑦

where 𝑀<,),=,( = ∑7 𝑇7,<,=𝑇7,),(

𝑀 is an 𝑛%×𝑛% matrix where we expect to see ≈ /+

&
non-zero entries

With trace methods, possible to prove spectral bounds sufficient for our goal 
when m is 𝑛!.>poly log 𝑛
[Allen, O’Donnell, Witmer 2015]



“Refuting” the existence of a large max cut

• Sample 𝐺 ∼ 𝒢&,,-
• Sample 𝐺 so that each edge has probability  (

&
and

edges are polylogn-wise independent

• Can we certify whp that max cut ≤ !
%
+ )

(
?

• Is it even true whp?

Yes, implicit in [Bordenave, Lelarge, Massoulié 2015] + [Fan, Montanari 2017]



Non-backtracking operator

• Given undirected graph 𝐺 = (𝑉, 𝐸)

• Non-backtracking operator 𝐵 is a 2 𝐸 ×2 𝐸
Boolean 0/1 matrix such that

𝐵 E,F , F,G = 1 iff
𝑢, 𝑣 ∈ 𝐸,
𝑣, 𝑧 ∈ 𝐸,
𝑢 ≠ 𝑧



Non-backtracking operator

• Sample 𝐺 ∼ 𝒢",!"

• Whp:
• Largest real e-value of 𝐵 is 1 + 𝑜 1 R 𝑑
• All others are ≤ (1 + 𝑜 1 ) R 𝑑 in magnitude

[Bordenave, Lelarge, Massoulié 2015]



Ihara-Bass formula

• If 𝐺 = (𝑉, 𝐸) is an undirected graph
• 𝐴 is the adjacency matrix
• 𝐷 is the diagonal matrix such that 𝐷F,F = degree(𝑣)
• 𝐵 is the non-backtracking operator

Then

det 𝐼 − 𝑥𝐵 = 1 − 𝑥% H <|J|det(𝐼 − 𝑥𝐴 + 𝑥% 𝐷 − 𝐼 )



Fan-Montanari

• If 𝐺 = (𝑉, 𝐸) is an undirected graph
• 𝐴 is the adjacency matrix of 𝐺
• 𝐵 is the non-backtracking operator of 𝐺
• 𝜆KLM is the smallest (most negative) real eigenvalue of 𝐵

Then

𝐴 ≽ − 𝜆KLM 4 𝐼 −
1

|𝜆KLM|
4 (𝐷 − 𝐼)



“Refuting” the existence of a large max cut

• Sample 𝐺 ∼ 𝒢#,*)
• By combining [Bordenave, Lelarge, Massoulié 2015] + [Fan, Montanari 2017]:

𝐴 ≽ −(1 + 𝑜 1 𝑑 < 𝐼 + (1 + 𝑜 1 < 𝐷/ 𝑑

• Enough to imply:

max cut ≤ $
!+

$'2($)
3

Goemans-Williamson relaxation can certify it

• [FM17] works for all graphs, [BLM15] works in random graphs with polylogn-wise 
independent edges and constant 𝑑



Our technical contributions

• Give a definition of non-backtracking operator B associated to an 
arbitrary symmetric matrix A (with arbitrary positive and negative 
entries)

• Prove a Ihara-Bass formula

• Prove a Fan-Montanari type result

• Prove a Bordenave-Leland-Massoulié type result for the matrices 
coming from the 3-XOR reduction



Our Ihara-Bass type formula

• We give a definition of a non-backtracking operator 𝐵 associated to 
an arbitrary symmetric 𝑛×𝑛 matrix 𝐴 with 𝑚 non-zero entries (which 
can be arbitrary positive and negative numbers) such that

det 𝐼 − 𝑥𝐵 + 𝑥𝐿 − 𝑥𝐽 = 1 − 𝑥%
=
%<" 4 det(𝐼 − 𝑥𝐴 + 𝑥% 𝐷 − 𝐼 )

• Where 𝐷 is the analog of the matrix of degrees and 𝐿, 𝐽 are matrices 
associated to 𝐴 that are equal if 𝐴 is Boolean

• A Fan-Montanari type result can be proved from the above formula



Our Bordenave-Leland-Massoulié type bound

• Take a random 3-XOR formula with n variables and m constraints
• Reduce bounding the max 3-XOR problem to a quadratic optimization

problem defined by a 𝑛%×𝑛% matrix 𝐴 with /
+

&
non-zero entries

• The non-backtracking operator 𝐵 of 𝐴 satisfies whp
| 𝐵 − 𝐿 + 𝐽 | ≤ 𝑂

𝑚
𝑛!.>

• There is a certificate that in the 3-XOR, at most
𝑚
2
+ 𝑐 𝑛$.4 < 𝑚

constraints can be simultaneously satisfied



Conclusions

• We give an algorithm that, whp, finds strong refutations of random 3XOR and 
random 3SAT problems where the number of constraints/clauses is order of 𝑛$.4

• Breaks long-standing barrier

• Shows that one can analyze random matrices that have an expected constant 
number of non-zero entries per row, and such that the entries are non-
independent

• Generalize the theory of non-backtracking operators to arbitrary matrices (graphs 
with arbitrary positive and negative weights) in a way that recovers both spectral 
bounds and algorithmic applications of the boolean/unweighted case


