A Ihara-Bass Formula for Non-Boolean Matrices and Strong Refutations of Random CSPs

Tommaso d'Orsi

ETH Zurich

ETH zürich

European Research Council Established by the European Commission

Luca Trevisan

Bocconi

Università Bocconi MILANO

SAT solvers and average-case complexity

- SAT solvers work well on very large-scale instances coming from program verification, VLSI, etc
- For most applications, it is important to be able to *certify unsatisfiability of unsatisfiable formulas*
- Average-case complexity does not provide an explanation for feasibility of solving SAT in practice

Refuting random k-SAT

- Pick a random k-SAT formula with n variables, m clauses
- If $m > c_k n$, formula is unsatisfiable whp
- Seems hard to find proof of unsatisfiability when m is, say, O(n log n)
- Feige proposed it as a complexity assumption
- Problem becomes easier for larger m. When is it poly-time?

Refuting random k-SAT

- Easy to see: if $m > c_k n^{k-1}$ there is, whp, an efficiently constructable refutation by *tree-like resolution*
 - More work: same if $m > c_k n^{k-1} / \log n$
- By spectral methods: whp efficiently constructable refutation if $m > c_k n^{\lceil k/2 \rceil + o(1)}$ [Goerdt, Krivelevich 2001]

• By more sophisticated spectral methods: whp strong refutation if

$$\begin{split} m &> \frac{1}{\epsilon^2} c_k n^{\frac{k}{2}} \text{ if k is even} \\ m &> \frac{1}{\epsilon^2} c_k n^{\frac{k}{2}} \text{ polylog } n \text{ if k is odd} \end{split}$$

[Friedman, Goerdt 2001] . . . [Allen, O'Donnell, Witmer 2015]

Our result

• Efficiently computable strong refutation if

$$m > \frac{1}{\epsilon^2} c_k n^{k/2}$$
 if k is even
 $m > \frac{1}{\epsilon^2} c_k n^{k/2}$ polylog n if k is odd
[Friedman, Goerdt 2001] . . . [Allen, O'Donnell, Witmer 2015]

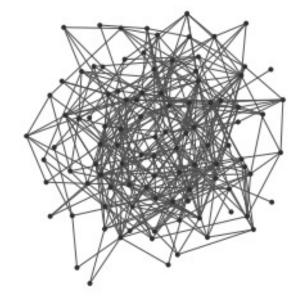
• Our result:

$$m > \frac{1}{\epsilon^2} c_k n^{k/2}$$
 even if k odd

• Sample
$$G \sim \mathcal{G}_{n,\frac{d}{n}}$$

• Whp, max cut $\leq \frac{1}{2} + \frac{c}{\sqrt{d}}$

Proof: Chernoff bounds + union bound

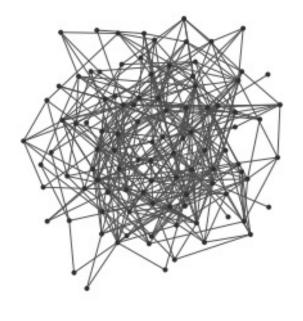


• Whp, there is efficiently computable proof that max cut $\leq \frac{1}{2} + \frac{c'}{\sqrt{d}}$

Proof: [Feige, Ofek 2005] or Grothendieck's inequality + Chernoff bounds

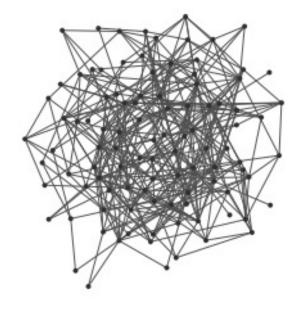
- Sample *G* so that each edge has probability $\frac{a}{n}$ and edges are polylogn-wise independent
- Can we certify whp that max cut $\leq \frac{1}{2} + \frac{c}{\sqrt{d}}$?
- Is it even true whp?

(If distribution has entropy o(n), we cannot take union bounds!)



- Sample G so that each edge has probability $\frac{d(n)}{n}$ and edges are polylogn-wise independent
- By trace methods, whp non-trivial eigenvalues of adjacency matrix $\leq \sqrt{d(n) \log n}$ in magnitude
- Trace calculation needs only O(log n)-wise independence of edges

• Whp, max cut is certifiably
$$\frac{1}{2} + c \frac{\sqrt{\log n}}{\sqrt{d(n)}}$$



Strong refutations of k-SAT

- Refuting random 4-SAT formula with n variables, m clauses reduces to a problem similar to
 - Find a certificate that a given random graph with n^2 vertices and m independent random edges has a max cut $\leq \frac{1}{2} + \epsilon$

- Refuting random 3-SAT formula with n variables, m clauses reduces to a problem similar to
 - Find a certificate that a given random graph with n^2 vertices and $\frac{m^2}{n}$ random-but-correlated edges has a max cut $\leq \frac{1}{2} + \epsilon$

Strong refutations of k-SAT, k even

- Refuting random 4-SAT formula with n variables, m clauses reduces to a problem similar to
 - Find a certificate that a given random graph with n^2 vertices and m independent random edges has a max cut $\leq \frac{1}{2} + \epsilon$
- Refuting random k-SAT (k even) formula with n variables, m clauses reduces to a problem similar to
 - Find a certificate that a given random graph with $n^{k/2}$ vertices and m independent random edges has a max cut $\leq \frac{1}{2} + \epsilon$
 - Can do if $m > \frac{c}{\varepsilon^2} n^{k/2}$

Strong refutations of k-SAT

• Refuting random 3-SAT formula with *n* variables, *m* clauses reduces to a problem similar to

• Find a certificate that a given random graph with n^2 vertices and $\frac{m^2}{n}$ random-but-correlated edges has a max cut $\leq \frac{1}{2} + \epsilon$

- Refuting random k-SAT formula (k odd) with n variables, m clauses reduces to a problem similar to
 - Find a certificate that a given random graph with $n^{(k+1)/2}$ vertices and $\frac{m^2}{n^{(k-1)/2}}$ random-but-correlated edges has a max cut $\leq \frac{1}{2} + \epsilon$

Strong refutations of k-SAT

- Refuting random 3-SAT formula with n variables, m clauses reduces to a problem similar to
 - Find a certificate that a given random graph with n^2 vertices and $\frac{m^2}{n}$ randombut-correlated edges has a max cut $\leq \frac{1}{2} + \epsilon$
- Refuting random k-SAT formula (k odd) with n variables, m clauses reduces to a problem similar to
 - Find a certificate that a given random graph with $n^{(k+1)/2}$ vertices and $\frac{m^2}{n^{(k-1)/2}}$ random-but-correlated edges has a max cut $\leq \frac{1}{2} + \epsilon$

• Can do if
$$m > \frac{c}{\varepsilon^2} n^{k/2} \operatorname{polylog} n$$

Strong refutations of random 4-SAT

- Enough to provide strong refutation of random 4-XOR [Feige 2002] +...
- To find strong refutation of random 4-XOR problem, we can apply trivial (and seemingly not useful) reduction to 2-XOR:

Max # satisfiable constraints in

$$x_{1}x_{3}x_{5}x_{7} = 1 \leq x_{2}x_{3}x_{6}x_{7} = -1 \\ x_{1}x_{4}x_{5}x_{7} = 1 \\ \dots$$

 $x_1,\ldots,x_n \ \in \{1,-1\}^n$

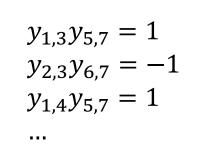
Max # satisfiable constraints in

 $y_{1,3}y_{5,7} = 1$ $y_{2,3}y_{6,7} = -1$ $y_{1,4}y_{5,7} = 1$...

$$y_{1,1}, \dots, y_{n,n} \in \{1, -1\}^{n^2}$$

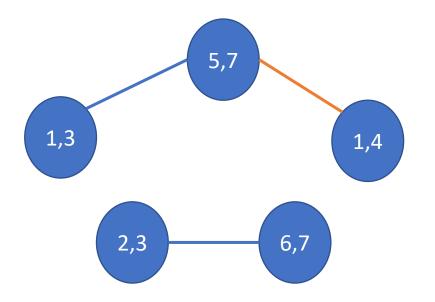
Reduction to random 2-XOR

- Strong refutation of random 4-XOR with n variables, m constraints reduces to proving that the optimum is small in
- A random 2-XOR problem with n^2 clauses, m constraints
- Equivalently, a random correlation clustering problem in a graph with n^2 vertices, m random edges



Max # satisfiable constraints in

$$y_{1,1},\ldots,y_{n,n} \in \{1,-1\}^{n^2}$$



Reduction to random 2-XOR

 Strong refutation of random 4-XOR with n variables, m constraints reduces to proving that

$$\max_{y_{1,1},\dots,y_{n,n} \in \{-1,1\}^{n^2}} y^T M y \le \varepsilon m$$

where

$$M_{i,j,h,k} = \begin{cases} 1 \text{ if } x_i x_j x_h x_k = 1 \text{ is a constraint} \\ -1 \text{ if } x_i x_j x_h x_k = -1 \text{ is a constraint} \\ 0 \text{ otherwise} \end{cases}$$

Reduction to random 2-XOR

• Want to prove that

$$\max_{y_{1,1},\ldots,y_{n,n} \in \{-1,1\}^{n^2}} y^T M y \leq \varepsilon m$$

Proof:

$$\max_{\substack{y_{1,1},\dots,y_{n,n} \in \{-1,1\}^{n^2}}} y^T M y$$

$$\leq \max_{\substack{y_{1,1},\dots,y_{n,n} \in \{-1,1\}^{n^2}}} y^T M z$$

$$= \frac{z_{1,1},\dots,z_{n,n} \in \{-1,1\}^{n^2}}{||M||_{\infty \to 1}}$$

$$\leq \sqrt{mn^2} \text{ whp}$$

Strong refutations of random 4-SAT

- Enough to provide strong refutation of random 4-XOR [Feige 2002] +...
- Can write random 4-XOR formula with n variables and m constraints as

•
$$\max_{x_1...x_n \in \{-1,1\}^n} \frac{m}{2} + \frac{1}{2} \sum_{i,j,k,h} b_{i,j,k,h} x_i x_j x_k x_h$$

• Where m of the $b_{i,j,k,h}$ are non-zero, and each is equally likely to be ± 1

 Strong refutation of random 3-XOR with n variables, m constraints means proving that

$$\max_{x_1,\dots,x_n\in\{-1,1\}^n}\sum T_{i,j,k}x_ix_jx_k\leq\varepsilon m$$

where

$$T_{i,j,k} = \begin{cases} 1 \text{ if } x_i x_j x_k = 1 \text{ is a constraint} \\ -1 \text{ if } x_i x_j x_k = -1 \text{ is a constraint} \\ 0 \text{ otherwise} \end{cases}$$

$$\begin{split} & \max_{x_{1},...,x_{n} \in \{-1,1\}^{n}} \sum T_{i,j,k} x_{i} x_{j} x_{k} \\ & \leq \max_{x_{1},...,x_{n} \in \{-1,1\}^{n}} \sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} \left(\sum_{j,k} T_{i,j,k} x_{j} x_{k}\right)^{2}} \\ & = \sqrt{n} \cdot \max_{x_{1},...,x_{n} \in \{-1,1\}^{n}} \sqrt{\sum_{i,a,b,c,d} T_{i,a,b} T_{i,c,d} x_{a} x_{b} x_{c} x_{d}} \end{split}$$

Enough to prove

$$\max_{\substack{x_1, \dots, x_n \in \{-1,1\}^n \\ i, a, b, c, d}} \sum_{\substack{T_{i,a,b} T_{i,c,d} x_a x_b x_c x_d}} x_b x_c x_d \leq \frac{\varepsilon^2 m}{n}$$

$$\max_{x_{1},...,x_{n}\in\{-1,1\}^{n}}\sum_{i,a,b,c,d}T_{i,a,b}T_{i,c,d}x_{a}x_{b}x_{c}x_{d}$$

$$=\max_{x_{1},...,x_{n}\in\{-1,1\}^{n}}\sum_{a,b,c,d}x_{a}x_{c}\left(\sum_{i}T_{i,a,b}T_{i,c,d}\right)x_{b}x_{d}$$

$$\leq\max_{y_{1,1},...,y_{n,n}\in\{-1,1\}^{n^{2}}}y^{T}My$$

where $M_{a,c,b,d} = \sum_{i} T_{i,a,b} T_{i,c,d}$

$$\max_{y_{1,1},...,y_{n,n} \in \{-1,1\}^{n^2}} y^T M y$$

where $M_{a,c,b,d} = \sum_{i} T_{i,a,b} T_{i,c,d}$

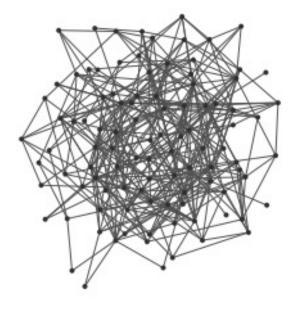
M is an $n^2 \times n^2$ matrix where we expect to see $\approx \frac{m^2}{n}$ non-zero entries

With trace methods, possible to prove spectral bounds sufficient for our goal when m is $n^{1.5} \operatorname{poly} \log n$

[Allen, O'Donnell, Witmer 2015]

- Sample G so that each edge has probability $\frac{a}{n}$ and edges are polylogn-wise independent
- Can we certify whp that max cut $\leq \frac{1}{2} + \frac{c}{\sqrt{d}}$?
- Is it even true whp?

Yes, implicit in [Bordenave, Lelarge, Massoulié 2015] + [Fan, Montanari 2017]

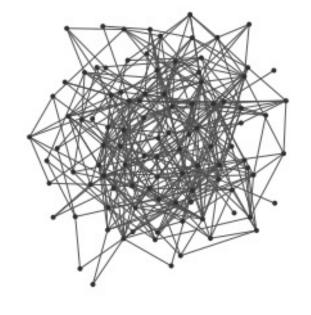


Non-backtracking operator

- Given undirected graph G = (V, E)
- Non-backtracking operator *B* is a $2|E| \times 2|E|$ Boolean 0/1 matrix such that

$$B_{(u,v),(v,z)} = 1$$
 iff

 $(u, v) \in E,$ $(v, z) \in E,$ $u \neq z$

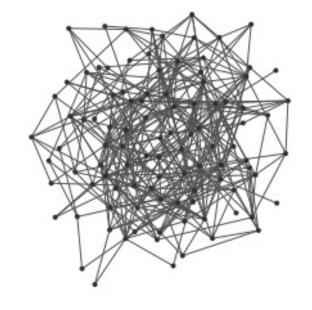


Non-backtracking operator

• Sample
$$G \sim \mathcal{G}_{n,\frac{d}{n}}$$

- Whp:
 - Largest real e-value of B is $(1 + o(1)) \cdot d$
 - All others are $\leq (1 + o(1)) \cdot \sqrt{d}$ in magnitude

[Bordenave, Lelarge, Massoulié 2015]



Ihara-Bass formula

- If G = (V, E) is an undirected graph
- *A* is the adjacency matrix
- **D** is the diagonal matrix such that $D_{v,v} = \text{degree}(v)$
- *B* is the non-backtracking operator

Then

$$\det(I - xB) = (1 - x^2)^{|E| - |V|} \det(I - xA + x^2(D - I))$$

Fan-Montanari

- If G = (V, E) is an undirected graph
- A is the adjacency matrix of G
- B is the non-backtracking operator of G
- λ_{\min} is the smallest (most negative) real eigenvalue of *B*

Then

$$A \ge -|\lambda_{\min}| \cdot I - \frac{1}{|\lambda_{\min}|} \cdot (D - I)$$

- Sample $G \sim \mathcal{G}_{n,\frac{d}{n}}$
- By combining [Bordenave, Lelarge, Massoulié 2015] + [Fan, Montanari 2017]:

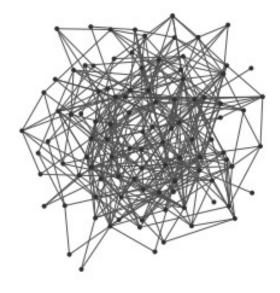
 $A \ge -(1+o(1)\sqrt{d} \cdot I + (1+o(1) \cdot D/\sqrt{d}))$

• Enough to imply:

 $\max \operatorname{cut} \le \frac{1}{2} + \frac{1 + o(1)}{\sqrt{d}}$

Goemans-Williamson relaxation can certify it

• [FM17] works for all graphs, [BLM15] works in random graphs with polylogn-wise independent edges and constant *d*



Our technical contributions

- Give a definition of non-backtracking operator B associated to an arbitrary symmetric matrix A (with arbitrary positive and negative entries)
- Prove a Ihara-Bass formula
- Prove a Fan-Montanari type result
- Prove a Bordenave-Leland-Massoulié type result for the matrices coming from the 3-XOR reduction

Our Ihara-Bass type formula

• We give a definition of a non-backtracking operator B associated to an arbitrary symmetric $n \times n$ matrix A with m non-zero entries (which can be arbitrary positive and negative numbers) such that

$$\det(I - xB + xL - xJ) = (1 - x^2)^{\frac{m}{2} - n} \cdot \det(I - xA + x^2(D - I))$$

- Where *D* is the analog of the matrix of degrees and *L*, *J* are matrices associated to *A* that are equal if *A* is Boolean
- A Fan-Montanari type result can be proved from the above formula

Our Bordenave-Leland-Massoulié type bound

- Take a random 3-XOR formula with n variables and m constraints
- Reduce bounding the max 3-XOR problem to a quadratic optimization problem defined by a $n^2 \times n^2$ matrix A with $\frac{m^2}{n}$ non-zero entries
- The non-backtracking operator *B* of *A* satisfies whp $||B - L + J|| \le O\left(\frac{m}{n^{1.5}}\right)$
- There is a certificate that in the 3-XOR, at most

$$\frac{m}{2} + c\sqrt{n^{1.5} \cdot m}$$

constraints can be simultaneously satisfied

Conclusions

- We give an algorithm that, whp, finds strong refutations of random 3XOR and random 3SAT problems where the number of constraints/clauses is order of $n^{1.5}$
- Breaks long-standing barrier
- Shows that one can analyze random matrices that have an expected constant number of non-zero entries per row, and such that the entries are nonindependent
- Generalize the theory of non-backtracking operators to arbitrary matrices (graphs with arbitrary positive and negative weights) in a way that recovers both spectral bounds and algorithmic applications of the boolean/unweighted case