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SAT solvers and average-case complexity

* SAT solvers work well on very large-scale instances coming from
program verification, VLSI, etc

* For most applications, it is important to be able to certify
unsatisfiability of unsatisfiable formulas

* Average-case complexity does not provide an explanation for
feasibility of solving SAT in practice



Refuting random k-SAT

e Pick a random k-SAT formula with n variables, m clauses

* If m > ¢ n, formula is unsatisfiable whp

* Seems hard to find proof of unsatisfiability when m is, say, O(n log n)
* Feige proposed it as a complexity assumption

* Problem becomes easier for larger m. When is it poly-time?



Refuting random k-SAT

* Easy to see: if m > ¢, n*"! there is, whp, an efficiently constructable refutation by tree-
like resolution

* More work: same if m > ¢, n* ' /logn

« By spectral methods: whp efficiently constructable refutation if m > ¢, n!*/2I+o()

[Goerdt, Krivelevich 2001]

* By more sophisticated spectral methods: whp strong refutation if

k

1 co.
cnz if kis even

m>6—2

k
m > Eizck‘rﬁ polylog n if kis odd

[Friedman, Goerdt 2001] . .. [Allen, O’Donnell, Witmer 2015]



Our result

 Efficiently computable strong refutation if

1

k/2
ZCle/

m > if kK is even

€

1

m > — ¢, n*/? polylog n if k is odd

€

[Friedman, Goerdt 2001] . . . [Allen, O’'Donnell, Witmer 2015]

e Qur result:

even if k odd



“Refuting” the existence of a large max cut

*Sample G ~ G a
n

1 C
° < — _—
Wllp, max cut < 5 + —=

Proof: Chernoff bounds + union bound

c/

Vd
Proof: [Feige, Ofek 2005] or Grothendieck’s inequality + Chernoff bounds

* Whp, there is efficiently computable proof that max cut < % +



“Refuting” the existence of a large max cut

~Sample-G~G 4

1’
n

* Sample G so that each edge has probability %and

edges are polylogn-wise independent

. 1
* Can we certify whp that max cut < S 47

NeR

* |sit even true whp?

(If distribution has entropy o(n), we cannot take union bounds!)



“Refuting” the existence of a large max cut

)
n

* Sample G so that each edge has probability
and edges are polylogn-wise independent

e By trace methods, whp non-trivial eigenvalues of
adjacency matrix < \/d(n) log n in magnitude

* Trace calculation needs only O(log n)-wise
independence of edges

Jiogn
yam)

* Whp, max cut is certifiably % +C



Strong refutations of k-SAT

e Refuting random 4-SAT formula with 7 variables, m clauses reduces to
a problem similar to

* Find a certificate that a given random graph v¥ith n’ vertices and m
independent random edges has a max cut < E + €

e Refuting random 3-SAT formula with 7 variables, m clauses reduces to
a problem similar to
2

* Find a certificate that a given random graph with n? vertices and mT

1
random-but-correlated edges has a max cut < 5 + €



Strong refutations of k-SAT, k even

* Refuting random 4-SAT formula with 7 variables, m clauses reduces to
a problem similar to

* Find a certificate that a given random graph with n? vertices and m
. 1
independent random edges has a max cut < E + €

e Refuting random k-SAT (k even) formula with 7 variables, m clauses
reduces to a problem similar to

* Find a certificate that a given random graph with n’/?

vertices and m

: 1
independent random edges has a max cut < E + €

e Candoif m > 8%71"/2



Strong refutations of k-SAT

e Refuting random 3-SAT formula with 7 variables, m clauses reduces to

a problem similar to
2

* Find a certificate that a given random graph with n? vertices and mT

1
random-but-correlated edges has a max cut < 5 + €

e Refuting random k-SAT formula (k odd) with n variables, m clauses
reduces to a problem similar to

* Find a certificate that a given random graph with n**1)/2 vertices and
mZ
n(k—1)/2

1
random-but-correlated edges has a max cut < 5 + €



Strong refutations of k-SAT

e Refuting random 3-SAT formula with 7 variables, m clauses reduces to a
problem similar to
2

* Find a certificate that a given random graph with n? vertices and mT random-

1
but-correlated edges has a max cut < > + €

* Refuting random k-SAT formula (k odd) with n variables, m clauses reduces

to a problem similar to

mz

n(k=1)/2

(k+1)/2

* Find a certificate that a given random graph with n vertices and

1
random-but-correlated edges has a max cut < 5 + €

e Candoifm > = n*/Zpolylogn

g2



Strong refutations of random 4-SAT

* Enough to provide strong refutation of random 4-XOR [Feige 2002] +...

* To find strong refutation of random 4-XOR problem, we can apply trivial
(and seemingly not useful) reduction to 2-XOR:

Max # satisfiable constraints in Max # satisfiable constraints in
X1X3X5X7 =1 S Y1,3Ys7 =1
X2X3XeX7 = —1 Y2,3Y67 = —1
X1X4X5x7 = 1 V1,4Ys7 =1

—11n 2
X1y 1 Xn € {1, 1} yl,lr m,yn’n = {1,_1}71



Reduction to random 2-XOR

* Strong refutation of random 4-XOR with n variables, m constraints reduces to
proving that the optimum is small in

* A random 2-XOR problem with n? clauses, m constraints

e Equivalently, a random correlation clustering problem in a graph with n? vertices, m
random edges

Max # satisfiable constraints in

Y13Ys57 =1
Y23Ye7 = —1

Y14Ys7 =1

09O

2
yl,li "'ryn,n € {1r _1}n



Reduction to random 2-XOR

e Strong refutation of random 4-XOR with n variables, m constraints reduces to
proving that

max Y My < em
Y1,1-Ynn €{—1,1}"

where . . .
[ 1if X;XjxpX, = 1is a constraint

—1 is a constraint

—1ifx;x;x0x
Mijnk = 3 IRk
0 otherwise

\



Reduction to random 2-XOR

* Want to prove that

max Y My < em
Y1,1Ynn E{—l,l}n

Proof:

max Yy My
yl,l ----- yn,n E{_lll}n

< max Ly Mz
Y1,1,Ynn €1—1,1}7
Zl,l )'-'rZTl,nE{_l;l}nz

=|IM|,_,
< +/mn? whp



Strong refutations of random 4-SAT

* Enough to provide strong refutation of random 4-XOR [Feige 2002] +...

e Can write random 4-XOR formula with n variables and m constraints as

¢ max

m 1
xX1.Xpn€{—1,1}1" 2

gzi,j,k,h bi,j,k,hxixjxkxh

* Where m of the b; ; ;. , are non-zero, and each is equally likely to be +1



How to deal with random 3-XOR

e Strong refutation of random 3-XOR with n variables, m constraints means
proving that

max To o xoxixe < em
xll;an{—l’l}n 2 l)];k L) k

where (O 1if x;ixix = 11is a constraint
. —1if x;x;x, = —1is a constraint
Tije = < .
0 otherwise
\




How to deal with random 3-XOR

max T: xxx
X E{— 11}112 L,j,k k

2
xl""’xne{_l;l}n L l')])k ] k
i jk

N i

\
= 4n - max T: T. X X XX
xl,---,an{_l,l}n z lla’)b l;C;d a b C d
\ iLab,c,d



How to deal with random 3-XOR

Enough to prove

z S - &’m

max ; ; XaXn X Xqg S ——

XX El~1,1}7 L,a,bti,c,d*a*b*rctd n
i,a,b,c,d



How to deal with random 3-XOR

max E T: T. X X XX
xl,...,xne{_ljl}n L,ablicd*a*b*rctd
i,a,b,c,d
X1,--Xn€{—1,1}" z a C(Z L,a,b l,C,d) bXd
a,b,c,d i
< TM
— max y y

2
Y1,1,--Ynn€{—1,1}1

where My cpa = 2iTianTicd



How to deal with random 3-XOR

max Yy My
371,1r---»3/n,ne{_1;1}n

Where Ma)C’b,d — Zl Tl,a,le;CJd

mZ

M is an n? xn? matrix where we expect to see = - non-zero entries

With trace methods, possible to prove spectral bounds sufficient for our goal
when mis n'>poly logn

[Allen, O’Donnell, Witmer 2015]



“Refuting” the existence of a large max cut

~Sample-G~G 4

1’
n

* Sample G so that each edge has probability %and

edges are polylogn-wise independent

. 1
* Can we certify whp that max cut < S 47

Neh

* |sit even true whp?

Yes, implicit in [Bordenave, Lelarge, Massoulié 2015] + [Fan, Montanari 2017]



Non-backtracking operator

-~ -,\

/
* Given undirected graph ¢ = (V,E) : “;‘g{

* Non-backtracking operator B isa 2|E|x2|E|
Boolean 0/1 matrix such that

B(u,v),(v,z) — 1 Iff ( ) s
u,v) e L,
(v,z) € E,
U+ Z



Non-backtracking operator

*Sample G ~ G a

* Whp:
* Largest real e-value of B is (1 + 0(1)) . d
* All othersare < (1 + o0(1)) - \/d in magnitude

[Bordenave, Lelarge, Massoulié 2015]



lhara-Bass formula

e If G = (V,E) is an undirected graph
* A is the adjacency matrix

* D is the diagonal matrix such that D,, ,, = degree(v)

* B is the non-backtracking operator

Then

det(I — xB) = (1 — x?)IEI=VIidet(I — xA + x%(D — 1))



Fan-Montanari

e If G = (V,E) is an undirected graph
* A is the adjacency matrix of -
* B is the non-backtracking operator of &

* Amin IS the smallest (most negative) real eigenvalue of B

Then

A F _l)lminl -l —

- (D —1
Mminl ( )



“Refuting” the existence of a large max cut

Sample G ~ G«

By COmbining [Bordenave, Lelarge, Massoulié 2015] + [Fan, Montanari 2017].
Az —Q+o(Vd-1+ @1 +0(1)-D/Vd

Enough to imply:

1+0(1)

Vd

Goemans-Williamson relaxation can certify it

1
max cut < > —+

[FM17] works for all graphs, [BLM15] works in random graphs with polylogn-wise
Independent edges and constant d



Our technical contributions

* Give a definition of non-backtracking operator B associated to an
arbitrary symmetric matrix A (with arbitrary positive and negative
entries)

* Prove a lhara-Bass formula
* Prove a Fan-Montanari type result

* Prove a Bordenave-Leland-Massoulié type result for the matrices
coming from the 3-XOR reduction



Our lhara-Bass type formula

* We give a definition of a non-backtracking operator B associated to
an arbitrary symmetric nxXn matrix A with m non-zero entries (which
can be arbitrary positive and negative numbers) such that

m
det( —xB+xL—xJ) = (1 —x%)2 " -det(I —xA+ x*(D —1))

* Where D is the analog of the matrix of degrees and L, / are matrices
associated to A that are equal if A is Boolean

* A Fan-Montanari type result can be proved from the above formula



Our Bordenave-Leland-Massoulié type bound

e Take a random 3-XOR formula with n variables and m constraints

* Reduce bounding the max 3-XOR problem to a quadratic optimization
2

problem defined by a n%xn? matrix A with mT non-zero entries

* The non-backtracking operator B of A satisfiersnwhp
1B —L+]Il <0 (=)

 There is a certificate that in the 3-XOR, at most
m

?+ C\/n1-5 -m

constraints can be simultaneously satisfied




Conclusions

* Wegive an that, whp, finds of random 3XOR and
problems where the number of constraints/clauses is order of n'->

* Shows that one can analyze matrices that have an expected
, and such that the entries are

(graphs
with arbitrary positive and negative weights) in a way that recovers both spectral
bounds and algorithmic applications of the boolean/unweighted case



