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Properties of real contact networks
Most large real networks are statistically very similar. If you understand
one, you understand others.

● : node degree distribution has fat tail (e.g. 10% of nodes might
have 90% of connections)
● : All nodes can be reached via a few hops through the network
(e.g. six degrees of separation)
● Clustering, Local communities: nodes form strongly connected
groups based on geographical locations (e.g. cities).
● Hierarchical: most nodes are connected to at least one node with
more connections than they have themselves
● Geometry: nodes have a fixed (or almost fixed) location in space
● Long-range connections: long distance connections are relatively
common (e.g. airplanes, intercontinental fiberoptic cables)

[Adapted from Network Science (2015) by Albert László Barabási]
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Scale-free property

Many real-life networks have power-law degrees.

Power-law paradigm
For some τ > 2, the degree of a uniformly chosen vertex satisfies

P(deg(v) = x) ≍ C
xτ

logP(deg(v) = x) ≍ logC − τ log x

log(proportion of degree x vertices) vs log x is a straight line.
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Power laws

Log-log plot of degree distribution of the router level internet network
from Faloutsos, Faloutsos, Faloutsos. 1999
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Growing networks

A question:

How did the network evolve around the servers of ‘99?
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Small worlds and ultra-small worlds

Kevin Bacon game: Movie networks are small worlds
from Mark Robinson Writes

6 / 37



Small worlds and ultra-small worlds

Definition
A network G on N vertices is a small world if the average distance

dist(G) = 1

(N2)
∑

u,v∈G
dG(u,v) = Θ(logN).

G is an ultrasmall world if dist(G) = o(logn).

Alternative def of ultrasmall:

dist(G) = Θ(log logn)

.
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Scale-free network models

Static network models
Degree distribution is superimposed on the network
● Configuration model
● Inhomogeneous random graphs
● Chung-Lu, Norros-Reitu models

Dynamically growing models
Try to intrinsically explain a property of real life networks
● Original Barabási-Albert model aka Preferential attachment model
● Variable degree Preferential attachment model
● Bianconi-Barabási model aka PA with multiplicative fitness
● PA with additive fitness
● PA with power of choice
● …
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The original Preferential Attachment Model

Definition
● Start with a single vertex

● Vertices enter the network one-by-one at discrete steps N = 1,2, . . .
● New vertex connects to old vertices according to some increasing
function of the degree
● Heuristically:

Prob(vN+1 Ð→ vi)∝ degN(vi)
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The original Preferential Attachment Model

Classic variations
● Fixed outdegree: (1,0) edge/new vertex:

Prob(vN+1 Ð→ vi)∝ degN(vi)

● Fixed outdegree: (1, δ): 1 edge/new vertex.

Prob(vN+1 Ð→ vi)∝ degN(vi) + δ

● Fixed outdegree: (m, δ): m edges/new vertex.

Prob(vN+1
j
Ð→ vi)∝ degN,j(vi) + δ/m

● Variable outdegree: ∀vi ∈ PAN ∶ independently

Prob(vN+1 Ð→ vi)∝ f(degN(vi))
N ,

where f(x) concave with limx→∞ f(x)/x = γf ≤ 1.

Animation
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http://www.networkpages.nl/CustomMedia/Animations/RandomGraph/PrefentialModel/ForceLayoutAnimated.html
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Degree distribution

Theorem (Degree sequence of PA(m,0))
Bollobás, Riordan, Spencer, Tusnády ’01
Limiting degree distribution of Classic PA (m,0)

lim
N→∞

Prob(deg(VN) = k) ≍
1
k3

.

where VN uniformly chosen vertex in PAN.

Generally
Limiting degree distribution is

lim
N→∞

Prob(deg(VN) = k) ≍
1
kτ

,

where
τm,δ = 3 + δ/m τf = 1 + 1/γf.
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Graph distances

Theorem (Distances in PAMs, τ ∈ (2,3))
Dommers, v/d Hofstad, Hoogiemstra ‘10 & Dereich and Mörters ‘13
Let UN,VN be two uniformly chosen vertices (within the giant
component)1. When τ ∈ (2,3),

d(N)G (UN,VN) = (1 + oP(1)) log logN ⋅
4

∣ log(τ − 2)∣

Lower tightness holds.

τ > 3
Dommers, v/d Hofstad, Hoogiemstra ‘10
Typical distance in PA(m, δ) for m ≥ 2, τ > 3:

d(N)G (UN,VN) = Θ(logN).

1d(N)G graph distance within PAN
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Universality

For static models with power law degrees, τ ∈ (2,3)

dG(UN,VN) = (1 + oP(1)) log logN ⋅
2

∣ log(τ − 2)∣
.

For PA models with power law degrees, τ ∈ (2,3)

dG(UN,VN) = (1 + oP(1)) log logN ⋅
4

∣ log(τ − 2)∣
.

Factor 2:
In PA, a high degree vertex tends to be connected via a path of 2 to a
higher degree vertex.
In static network models, directly.

13 / 37



Universality

For static models with power law degrees, τ ∈ (2,3)

dG(UN,VN) = (1 + oP(1)) log logN ⋅
2

∣ log(τ − 2)∣
.

For PA models with power law degrees, τ ∈ (2,3)

dG(UN,VN) = (1 + oP(1)) log logN ⋅
4

∣ log(τ − 2)∣
.

Factor 2:
In PA, a high degree vertex tends to be connected via a path of 2 to a
higher degree vertex.
In static network models, directly.

13 / 37



Universality

For static models with power law degrees, τ ∈ (2,3)

dG(UN,VN) = (1 + oP(1)) log logN ⋅
2

∣ log(τ − 2)∣
.

For PA models with power law degrees, τ ∈ (2,3)

dG(UN,VN) = (1 + oP(1)) log logN ⋅
4

∣ log(τ − 2)∣
.

Factor 2:
In PA, a high degree vertex tends to be connected via a path of 2 to a
higher degree vertex.
In static network models, directly.

13 / 37



Back to the question:

How do distances shrink as time passes?
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Evolution of graph distances

Theorem (Evolution of distances)
Jorritsma, Komjáthy, (AoAP, 22)
Let UN,VN be two uniformly chosen vertices in PAN (within the giant
component). When τ ∈ (2,3), & m ≥ 2, for t > N:

(XN)N≥1 is a tight
sequence of random variables.

Message 1: Fix a ∈ (0,1). Then at t = N exp (ε(logN)a)≪ N1+ε,

d(t)G (UN,VN) ≈ (1 − a) log logN ⋅
4

∣ log(τ − 2)∣
.

Message 2: d(t)G (UN,VN) never leaves a (tight) strip around the main
term.
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d(t)G (UN,VN) ≈ (1 − a) log logN ⋅
4

∣ log(τ − 2)∣
.

Message 2: d(t)G (UN,VN) never leaves a (tight) strip around the main
term.
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Lower bound in growing network

● A path counting method:
A possible path π is a sequence of labelled vertices. The path’s
(potential) arrival time is the youngest vertex on the path. Among
all possible labeled paths πUN,VN ,

●

E[∑
t>N

∑
[πUN,VN too short at t]

1{πUN,VN present in PAt}]
?Ð→ 0.

●
E[ ∑

πUN,VN too short at arrival
1{πUN,VN present in PAt}]

?Ð→ 0.

● A union bound not over time, but over possible paths.
● This still does not tend to zero...
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Bad paths

● A path is bad if it reaches a too old
vertex in too few steps

● i.e., if its k vertex is older than some
threshold
● A bad path in PAt might be already
good at some later time.
● a good path can never turn bad.
● ⇒ Enough to bound:

E[∑
t

∑
π(UN,VN)⊃vt bad

1{π present in PAt}].

i.e., containing the newly added vt.
● This tends to zero⇒ whp
no bad paths present ever.
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Good paths that are too short

● A good path is too short at time t > N if it
is shorter than the [main term−C].

● A too short path may become not too
short as t passes.
● ⇒ Enough to compute:

E[∑
t

∑
π(UN,VN)⊃vt short good

1{π present in PAt}].

i.e., containing the newly added vt.
● This tends to zero⇒ whp
no too short good paths present ever.
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Upper bound
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Local weak limit of PA

● First we understand how the graph looks locally around UN and
around VN.

● Up to some radius RN, these are disjoint trees (whp)
● Limiting distribution: exists. Dereich, Mörters ‘13 & Berger, Borgs,
Chayes, Saberi ‘14
● They are (killed) multitype branching processes.
● We will use this info as a black box.
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Proof outline for fixed N
y-axes=arrival time of vertices; x-axis: graph distance. LWL=limit
distribution of the trees, depth RN (large constant).
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Building the connecting path

y-axes=arrival time of vertices; x-axis: graph distance.
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Greedy path to the core
Core: vertices born before time

√
N. Core has bounded diameter.
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Greedy path to the core

Core: vertices born before time
√
N. Core has bounded diameter.
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Dense core has small diameter
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Extension to the growing network

● We need to track the degree-growth of the vertex that starts the
wedging procedure (via a Móri martingale).

● We redefine the layers for each time t > N
● Careful union bound: summing error probs only where the event
changes
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Thank you for the attention!

Figure: Six instances of an infection spreading on a two-dimensional spatial scale free
networks with different parameters.
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Spreading processes on networks

Susceptible-Infected model:

● At time t = 0 the source node is infected, all
other nodes susceptible.
● if, on an edge {u,v}, u is infected and v is not,
then v becomes infected after a random iid
transmission delay L(u,v).

The epidemic curve
The function that counts the total number of
infected nodes before time t:

I(t) =#{ infected nodes before time t}
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Weighted-network point of view

Pre-sampling all randomness
Add iid weights from distribution L to existing edges.

Spreading time = weighted distance
Edge weight = transmission delay through the edge

The spreading time between two vertices u,v
= the weighted distance:

dL(u,v) = min
π∶path u↔v

sum of Le on edges on π

Epidemic curve:
I(t) =#{v ∶ dL(u,v) ≤ t}.

31 / 37



Weighted-network point of view

Pre-sampling all randomness
Add iid weights from distribution L to existing edges.

Spreading time = weighted distance
Edge weight = transmission delay through the edge

The spreading time between two vertices u,v
= the weighted distance:

dL(u,v) = min
π∶path u↔v

sum of Le on edges on π

Epidemic curve:
I(t) =#{v ∶ dL(u,v) ≤ t}.

31 / 37



Weighted-network point of view

Pre-sampling all randomness
Add iid weights from distribution L to existing edges.

Spreading time = weighted distance
Edge weight = transmission delay through the edge
The spreading time between two vertices u,v
= the weighted distance:

dL(u,v) = min
π∶path u↔v

sum of Le on edges on π

Epidemic curve:
I(t) =#{v ∶ dL(u,v) ≤ t}.

31 / 37



Weighted-network point of view

Pre-sampling all randomness
Add iid weights from distribution L to existing edges.

Spreading time = weighted distance
Edge weight = transmission delay through the edge
The spreading time between two vertices u,v
= the weighted distance:

dL(u,v) = min
π∶path u↔v

sum of Le on edges on π

Epidemic curve:
I(t) =#{v ∶ dL(u,v) ≤ t}.

31 / 37



Weighted-network point of view

Pre-sampling all randomness
Add iid weights from distribution L to existing edges.

Spreading time = weighted distance
Edge weight = transmission delay through the edge
The spreading time between two vertices u,v
= the weighted distance:

dL(u,v) = min
π∶path u↔v

sum of Le on edges on π

Epidemic curve:
I(t) =#{v ∶ dL(u,v) ≤ t}.

31 / 37



Weighted distances in PAMs

L ≡ 1: graph distance
d(N)G (UN,VN) ≍ log logN ⋅ 4

∣ log(τ−2)∣

L ≡ 2:
d(N)G (UN,VN) ≍ log logN ⋅ 8

∣ log(τ−2)∣

L ∼ U[1,2]:
d(N)G (UN,VN) ≍ log logN ⋅ 4

∣ log(τ−2)∣

L ∼ U[0,1]:
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L ∼ U[1,2]:
d(N)G (UN,VN) ≍ log logN ⋅ 4

∣ log(τ−2)∣

L ∼ U[0,1]:
d(N)G (UN,VN) ≍ Θ(1)
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∣ log(τ−2)∣

L ∼ U[1,2]:
d(N)G (UN,VN) ≍ log logN ⋅ 4

∣ log(τ−2)∣

L ∼ U[0,1],
L ∼ Exp(λ),Gamma(λ,k), . . . :
d(N)G (UN,VN)

dÐ→βL
a.s.
< ∞
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Weighted distances on PA

Theorem (Explosion in PA)
Jorritsma, K, ‘20
Consider PA with τ ∈ (2,3), and UN,VN two typical vertices in the giant
component of PAN. Then if

E(L) ∶=
∞
∑
k=1

F(−1)L (1/ee
k
)<∞,

then
d(N)G (UN,VN)

dÐ→ βL
a.s.
< ∞.

If E(L) =∞ then

d(N)G (UN,VN) = 2
2 log logN/∣ log(τ−2)∣

∑
k=1

F(−1)L (1/e1/(τ−2)
k
) +OP(1).
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From small to mini-worlds

● E(L) =∞: fluctuations are tight in most cases. Lower tightness
always, upper tightness under technical condition that holds for
most Ls.

E2(L) =
∞
∑
k=1

1
k
F(−1)L−inf suppL(1/e

ek) <∞

● Fix your favorite 1≪ g(N) =O(log logN). Then one can construct
a distribution L such that

d(N)G (UN,VN) = g(N) +OP(1).

34 / 37



From small to mini-worlds

● E(L) =∞: fluctuations are tight in most cases. Lower tightness
always, upper tightness under technical condition that holds for
most Ls.

E2(L) =
∞
∑
k=1

1
k
F(−1)L−inf suppL(1/e

ek) <∞

● Fix your favorite 1≪ g(N) =O(log logN). Then one can construct
a distribution L such that

d(N)G (UN,VN) = g(N) +OP(1).

34 / 37



Shrinking of weighted distances when I(L) =∞

For graph distances

sup
t′≥t
(d(N

′)
G (UN,VN)−2( log logN−log(1∨log(N′/N)))⋅

2
log(τ − 2)∣

∨1) =OP(1).

Theorem
Jorritsma, K, ‘20
Consider PA with τ ∈ (2,3), and UN,VN two typical vertices in the giant
component of PAN, and I(L) =∞. Then

sup
N′≥N
(d(N

′)
G (UN,VN) − 2

KN,N′

∑
k=1

F(−1)L (1/e1/(τ−2)
k
)) =OP(1)

with KN,N′ = ( log logN − log(1 ∨ log(N′/N))) ⋅ 2
log(τ−2)∣ ∨ 1
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What is explosion?

On infinite networks
A spreading process is explosive on an
infinite network if I(t) =∞ for some t <∞.

On very large but finite networks
A positive fraction of the nodes is infected
within constant time, no matter how large
the network is.

● 1970s: Grey, Harris, Sevastanov:
explosion in Branching processes

● 2010s: Amini, Devroye, Griffith, Olver:
explosion in Branching random walks

● 2017+: Me: explosion on networks
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Explosion in PA

d(N)G (UN,VN)
dÐ→ βL = Y1 + Y2

Then

A deterministic curve with a random constant shift.
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d(N)G (UN,VN)
dÐ→ βL = Y1 + Y2

Then
I(t) = 1

N
#{v ∶ d(N)(UN,v) ≤ t}

= 1
N
∑

v∈PAN

1{dG(Un,v)≤t}

= PVN(dG(Un,Vn) ≤ t ∣ Un)
dÐ→ P(Y2 ≤ t − Y1 ∣ Y1) = g(t − Y1)

A deterministic curve with a random constant shift.
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