Evolution of distances in preferential attachment models

Júlia Komjáthy & Joost Jorritsma

A day on random graphs 30 June 2022

Most large real networks are *statistically very similar*. If you understand one, you understand others.

Most large real networks are *statistically very similar*. If you understand one, you understand others.

• Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- **Small world phenomenon:** All nodes can be reached via a few hops through the network (e.g. six degrees of separation)

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- **Small world phenomenon**: All nodes can be reached via a few hops through the network (e.g. six degrees of separation)
- **Clustering, Local communities**: nodes form strongly connected groups based on geographical locations (e.g. cities).

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- **Small world phenomenon**: All nodes can be reached via a few hops through the network (e.g. six degrees of separation)
- **Clustering, Local communities**: nodes form strongly connected groups based on geographical locations (e.g. cities).
- Hierarchical: most nodes are connected to at least one node with more connections than they have themselves

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- **Small world phenomenon**: All nodes can be reached via a few hops through the network (e.g. six degrees of separation)
- **Clustering, Local communities**: nodes form strongly connected groups based on geographical locations (e.g. cities).
- Hierarchical: most nodes are connected to at least one node with more connections than they have themselves
- Geometry: nodes have a fixed (or almost fixed) location in space

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- **Small world phenomenon**: All nodes can be reached via a few hops through the network (e.g. six degrees of separation)
- **Clustering, Local communities**: nodes form strongly connected groups based on geographical locations (e.g. cities).
- Hierarchical: most nodes are connected to at least one node with more connections than they have themselves
- Geometry: nodes have a fixed (or almost fixed) location in space
- Long-range connections: long distance connections are relatively common (e.g. airplanes, intercontinental fiberoptic cables)

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- **Small world phenomenon**: All nodes can be reached via a few hops through the network (e.g. six degrees of separation)
- **Clustering, Local communities**: nodes form strongly connected groups based on geographical locations (e.g. cities).
- Hierarchical: most nodes are connected to at least one node with more connections than they have themselves
- Geometry: nodes have a fixed (or almost fixed) location in space
- Long-range connections: long distance connections are relatively common (e.g. airplanes, intercontinental fiberoptic cables)

Scale-free property

Many real-life networks have power-law degrees.

Scale-free property

Many real-life networks have power-law degrees.

Power-law paradigm

For some $\tau > 2$, the degree of a uniformly chosen vertex satisfies

$$\mathbb{P}(\deg(v) = x) \asymp \frac{C}{x^{\tau}}$$

Scale-free property

Many real-life networks have power-law degrees.

Power-law paradigm

For some $\tau > 2$, the degree of a uniformly chosen vertex satisfies

$$\mathbb{P}(\deg(v) = x) \asymp \frac{C}{x^{\tau}}$$

$$\log \mathbb{P}(\deg(v) = x) \asymp \log C - \tau \log x$$

log(proportion of degree *x* vertices) vs log *x* is a straight line.

Power laws

Figure 5: The outdegree plots: Log-log plot of frequency f_d versus the outdegree d.

Log-log plot of degree distribution of the router level internet network

from Faloutsos, Faloutsos, Faloutsos. 1999

Growing networks

A question:

How did the network evolve around the servers of '99?

Kevin Bacon game: Movie networks are small worlds

from Mark Robinson Writes

Definition

A network G on N vertices is a *small world* if the average distance

$$\overline{\mathsf{dist}}(G) = \frac{1}{\binom{N}{2}} \sum_{u,v \in G} d_G(u,v) = \Theta(\log N).$$

Definition

A network G on N vertices is a *small world* if the average distance

$$\overline{\mathsf{dist}}(G) = \frac{1}{\binom{N}{2}} \sum_{u,v \in G} d_G(u,v) = \Theta(\log N).$$

G is an *ultrasmall world* if $\overline{\text{dist}(G)} = o(\log n)$.

Definition

.

A network G on N vertices is a *small world* if the average distance

$$\overline{\mathsf{dist}}(G) = \frac{1}{\binom{N}{2}} \sum_{u, v \in G} d_G(u, v) = \Theta(\log N).$$

G is an *ultrasmall world* if $\overline{\text{dist}(G)} = o(\log n)$.

Alternative def of ultrasmall:

 $\overline{\mathsf{dist}(G)} = \Theta(\log \log n)$

Static network models

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Static network models

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Static network models

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Static network models

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Static network models

Degree distribution is superimposed on the network

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Dynamically growing models

- Original Barabási-Albert model aka Preferential attachment model
- Variable degree Preferential attachment model
- Bianconi-Barabási model aka PA with multiplicative fitness
- PA with additive fitness
- PA with power of choice

Static network models

Degree distribution is superimposed on the network

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Dynamically growing models

- Original Barabási-Albert model aka Preferential attachment model
- Variable degree Preferential attachment model
- Bianconi-Barabási model aka PA with multiplicative fitness
- PA with additive fitness
- PA with power of choice

Static network models

Degree distribution is superimposed on the network

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Dynamically growing models

- Original Barabási-Albert model aka Preferential attachment model
- Variable degree Preferential attachment model
- Bianconi-Barabási model aka PA with multiplicative fitness
- PA with additive fitness
- PA with power of choice

Static network models

Degree distribution is superimposed on the network

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Dynamically growing models

- Original Barabási-Albert model aka Preferential attachment model
- Variable degree Preferential attachment model
- Bianconi-Barabási model aka PA with multiplicative fitness
- PA with additive fitness
- PA with power of choice

Static network models

Degree distribution is superimposed on the network

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Dynamically growing models

- Original Barabási-Albert model aka Preferential attachment model
- Variable degree Preferential attachment model
- Bianconi-Barabási model aka PA with multiplicative fitness
- PA with additive fitness
- PA with power of choice

Static network models

Degree distribution is superimposed on the network

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Dynamically growing models

- Original Barabási-Albert model aka Preferential attachment model
- Variable degree Preferential attachment model
- Bianconi-Barabási model aka PA with multiplicative fitness
- PA with additive fitness
- PA with power of choice

Static network models

Degree distribution is superimposed on the network

- Configuration model
- Inhomogeneous random graphs
- Chung-Lu, Norros-Reitu models

Dynamically growing models

- Original Barabási-Albert model aka Preferential attachment model
- Variable degree Preferential attachment model
- Bianconi-Barabási model aka PA with multiplicative fitness
- PA with additive fitness
- PA with power of choice

Definition

• Start with a single vertex

Definition

- Start with a single vertex
- Vertices enter the network one-by-one at discrete steps *N* = 1,2,...

Definition

- Start with a single vertex
- Vertices enter the network one-by-one at discrete steps N = 1, 2, ...
- New vertex connects to old vertices according to some increasing function of the degree

Definition

- Start with a single vertex
- Vertices enter the network one-by-one at discrete steps N = 1, 2, ...
- New vertex connects to old vertices according to some increasing function of the degree
- Heuristically:

 $\operatorname{Prob}(v_{N+1} \longrightarrow v_i) \propto \deg_N(v_i)$

Classic variations

• Fixed outdegree: (1,0) edge/new vertex:

 $\operatorname{Prob}(v_{N+1} \longrightarrow v_i) \propto \deg_N(v_i)$

Classic variations

- Fixed outdegree: (1,0) edge/new vertex: $\operatorname{Prob}(v_{N+1} \longrightarrow v_i) \propto \deg_N(v_i)$
- Fixed outdegree: $(1, \delta)$: 1 edge/new vertex. **Prob** $(v_{N+1} \rightarrow v_i) \propto \deg_N(v_i) + \delta$

Classic variations

- Fixed outdegree: (1,0) edge/new vertex: $\operatorname{Prob}(v_{N+1} \longrightarrow v_i) \propto \deg_N(v_i)$
- Fixed outdegree: $(1, \delta)$: 1 edge/new vertex. **Prob** $(v_{N+1} \longrightarrow v_i) \propto \deg_N(v_i) + \delta$
- Fixed outdegree: (m, δ) : *m* edges/new vertex. **Prob** $(v_{N+1} \xrightarrow{j} v_i) \propto \deg_{N,i}(v_i) + \delta/m$
The original Preferential Attachment Model

Classic variations

- Fixed outdegree: (1,0) edge/new vertex: $\operatorname{Prob}(v_{N+1} \longrightarrow v_i) \propto \deg_N(v_i)$
- Fixed outdegree: $(1, \delta)$: 1 edge/new vertex. **Prob** $(v_{N+1} \longrightarrow v_i) \propto \deg_N(v_i) + \delta$
- Fixed outdegree: (m, δ) : m edges/new vertex. **Prob** $(v_{N+1} \xrightarrow{j} v_i) \propto \deg_{N,j}(v_i) + \delta/m$
- Variable outdegree: $\forall v_i \in \mathsf{PA}_N$: independently $\operatorname{Prob}(v_{N+1} \longrightarrow v_i) \propto \frac{f(\deg_N(v_i))}{N}$, where f(x) concave with $\lim_{x \to \infty} f(x)/x = \gamma_f \leq 1$.

The original Preferential Attachment Model

Classic variations

- Fixed outdegree: (1,0) edge/new vertex: $\operatorname{Prob}(v_{N+1} \longrightarrow v_i) \propto \deg_N(v_i)$
- Fixed outdegree: $(1, \delta)$: 1 edge/new vertex. **Prob** $(v_{N+1} \longrightarrow v_i) \propto \deg_N(v_i) + \delta$
- Fixed outdegree: (m, δ) : m edges/new vertex. **Prob** $(v_{N+1} \xrightarrow{j} v_i) \propto \deg_{N,j}(v_i) + \delta/m$
- Variable outdegree: $\forall v_i \in \mathsf{PA}_N$: independently $\operatorname{Prob}(v_{N+1} \longrightarrow v_i) \propto \frac{f(\deg_N(v_i))}{N}$, where f(x) concave with $\lim_{x \to \infty} f(x)/x = \gamma_f \leq 1$.

Animation

Degree distribution

Theorem (Degree sequence of PA(m,0))

Bollobás, Riordan, Spencer, Tusnády '01 Limiting degree distribution of Classic PA (m,0)

$$\lim_{N\to\infty} \operatorname{Prob}(\operatorname{deg}(V_N)=k) \asymp \frac{1}{k^3}.$$

where V_N uniformly chosen vertex in PA_N .

Degree distribution

Theorem (Degree sequence of PA(m,0))

Bollobás, Riordan, Spencer, Tusnády '01 Limiting degree distribution of Classic PA (m,0)

$$\lim_{N\to\infty} \operatorname{Prob}(\operatorname{deg}(V_N)=k) \asymp \frac{1}{k^3}.$$

where V_N uniformly chosen vertex in PA_N .

Generally

Limiting degree distribution is

$$\lim_{N\to\infty} \mathbf{Prob}(\deg(V_N)=k) \asymp \frac{1}{k^{\tau}},$$

where

$$\tau_{m,\delta} = 3 + \delta/m \qquad \tau_f = 1 + 1/\gamma_f.$$

Graph distances

Theorem (Distances in PAMs, $\tau \in (2,3)$ **)**

Dommers, v/d Hofstad, Hoogiemstra '10 & Dereich and Mörters '13 Let U_N, V_N be two uniformly chosen vertices (within the giant component)¹. When $\tau \in (2,3)$,

$$d_G^{(N)}(U_N, V_N) = (1 + o_{\mathbf{P}}(1)) \log \log N \cdot \frac{4}{|\log(\tau - 2)|}$$

Lower tightness holds.

 $^{{}^{1}}d_{G}^{(N)}$ graph distance within PA_{N}

Graph distances

Theorem (Distances in PAMs, $\tau \in (2,3)$ **)**

Dommers, v/d Hofstad, Hoogiemstra '10 & Dereich and Mörters '13 Let U_N, V_N be two uniformly chosen vertices (within the giant component)¹. When $\tau \in (2,3)$,

$$d_G^{(N)}(U_N, V_N) = (1 + o_{\mathbf{P}}(1)) \log \log N \cdot \frac{4}{|\log(\tau - 2)|}$$

Lower tightness holds.

 $\tau > 3$ Dommers, v/d Hofstad, Hoogiemstra '10 Typical distance in PA(m, δ) for $m \ge 2, \tau > 3$:

$$\mathsf{d}_{\mathsf{G}}^{(\mathsf{N})}(U_N,V_N) = \Theta(\log N).$$

 $^{{}^{1}}d_{G}^{(N)}$ graph distance within PA_{N}

Universality

For static models with power law degrees, $\tau \in (2,3)$

$$d_G(U_N, V_N) = (1 + o_{\mathbf{P}}(1)) \log \log N \cdot \frac{2}{|\log(\tau - 2)|}.$$

For PA models with power law degrees, $\tau \in (2,3)$

$$d_G(U_N, V_N) = (1 + o_{\mathbf{P}}(1)) \log \log N \cdot \frac{4}{|\log(\tau - 2)|}$$

Universality

For static models with power law degrees, $\tau \in (2,3)$

$$d_G(U_N, V_N) = (1 + o_{\mathbf{P}}(1)) \log \log N \cdot \frac{2}{|\log(\tau - 2)|}.$$

For PA models with power law degrees, $\tau \in (2,3)$

$$d_G(U_N, V_N) = (1 + o_{\mathbf{P}}(1)) \log \log N \cdot \frac{4}{|\log(\tau - 2)|}.$$

Universality

For static models with power law degrees, $\tau \in (2,3)$

$$d_G(U_N, V_N) = (1 + o_{\mathbf{P}}(1)) \log \log N \cdot \frac{2}{|\log(\tau - 2)|}.$$

For PA models with power law degrees, $\tau \in (2,3)$

$$d_G(U_N, V_N) = (1 + o_P(1)) \log \log N \cdot \frac{4}{|\log(\tau - 2)|}$$

Factor 2:

In PA, a high degree vertex tends to be connected via a path of 2 to a higher degree vertex.

In static network models, directly.

Back to the question:

How do distances shrink as time passes?

Theorem (Evolution of distances)

Jorritsma, Komjáthy, (AoAP, 22) Let U_N, V_N be two uniformly chosen vertices in PA_N (within the giant component). When $\tau \in (2,3)$, & $m \ge 2$, for t > N:

Theorem (Evolution of distances)

Jorritsma, Komjáthy, (AoAP, 22) Let U_N, V_N be two uniformly chosen vertices in PA_N (within the giant component). When $\tau \in (2,3)$, & $m \ge 2$, for t > N:

 $d_G^{(t)}(U_N,V_N)$

Theorem (Evolution of distances)

Jorritsma, Komjáthy, (AoAP, 22) Let U_N, V_N be two uniformly chosen vertices in PA_N (within the giant component). When $\tau \in (2,3)$, & $m \ge 2$, for t > N:

$$d_G^{(t)}(U_N, V_N) \asymp \left(\log \log N - \log(\log(t/N) \lor 1)\right) \cdot \frac{4}{\log(\tau - 2)|} \lor 2$$

+tightness around the main term.

Theorem (Evolution of distances)

Jorritsma, Komjáthy, (AoAP, 22)

Let U_N , V_N be two uniformly chosen vertices in PA_N (within the giant component). When $\tau \in (2,3)$, & $m \ge 2$, for t > N:

$$X_N \coloneqq \sup_{t>N} \left(d_G^{(t)}(U_N, V_N) - \left[\left(\log \log N - \log(\log(t/N) \vee 1) \right) \cdot \frac{4}{\log(\tau - 2)|} \vee 2 \right] \right)$$

Theorem (Evolution of distances)

Jorritsma, Komjáthy, (AoAP, 22)

Let U_N , V_N be two uniformly chosen vertices in PA_N (within the giant component). When $\tau \in (2,3)$, & $m \ge 2$, for t > N:

$$X_N \coloneqq \sup_{t>N} \left(d_G^{(t)}(U_N, V_N) - \left[\left(\log \log N - \log(\log(t/N) \vee 1) \right) \cdot \frac{4}{\log(\tau - 2)|} \vee 2 \right] \right)$$

 $(X_N)_{N\geq 1}$ is a tight sequence of random variables.

Theorem (Evolution of distances)

Jorritsma, Komjáthy, (AoAP, 22) Let U_N, V_N be two uniformly chosen vertices in PA_N (within the giant component). When $\tau \in (2,3)$, & $m \ge 2$, for t > N:

$$X_N \coloneqq \sup_{t>N} \left(d_G^{(t)}(U_N, V_N) - \left[\left(\log \log N - \log(\log(t/N) \vee 1) \right) \cdot \frac{4}{\log(\tau - 2)|} \vee 2 \right] \right)$$

 $(X_N)_{N \ge 1}$ is a tight sequence of random variables. Message 1: Fix $a \in (0, 1)$. Then at $t = N \exp(\varepsilon (\log N)^a) \ll N^{1+\varepsilon}$,

$$d_G^{(t)}(U_N, V_N) \approx (1-a) \log \log N \cdot \frac{4}{|\log(\tau-2)|}.$$

Message 2: $d_G^{(t)}(U_N, V_N)$ never leaves a (tight) strip around the main term.

Proofs

Lower bound

• A path counting method:

• A path counting method:

$$\mathbb{E}\Big[\sum_{t>N} \sum_{[\pi_{U_N,V_N} \text{too short at } t]} \mathbf{1}\{\pi_{U_N,V_N} \text{ present in } \mathsf{PA}_t\}\Big] \xrightarrow{?} 0.$$

• A path counting method:

$$\mathbb{E}\Big[\sum_{t>N} \sum_{[\pi_{U_N,V_N} \text{too short at } t]} \mathbf{1}\{\pi_{U_N,V_N} \text{ present in } \mathsf{PA}_t\}\Big] \xrightarrow{?} 0.$$

$$\mathbb{E}\Big[\sum_{\pi_{U_N,V_N} \text{too short at arrival}} \mathbf{1}\{\pi_{U_N,V_N} \text{ present in } \mathsf{PA}_t\}\Big] \xrightarrow{?} 0.$$

• A path counting method:

A **possible path** π is a sequence of labelled vertices. The path's (potential) arrival time is the youngest vertex on the path. Among all possible labeled paths π_{U_N,V_N} ,

$$\mathbb{E}\Big[\sum_{t>N} \sum_{[\pi_{U_N,V_N} \text{too short at } t]} \mathbf{1}\{\pi_{U_N,V_N} \text{ present in } \mathsf{PA}_t\}\Big] \xrightarrow{?} 0.$$
$$\mathbb{E}\Big[\sum_{\pi_{U_N,V_N} \text{too short at arrival}} \mathbf{1}\{\pi_{U_N,V_N} \text{ present in } \mathsf{PA}_t\}\Big] \xrightarrow{?} 0.$$

• A union bound not over time, but over possible paths.

• A path counting method:

$$\mathbb{E}\Big[\sum_{t>N} \sum_{[\pi_{U_N,V_N} \text{too short at } t]} \mathbf{1}\{\pi_{U_N,V_N} \text{ present in } \mathsf{PA}_t\}\Big] \xrightarrow{?} 0.$$
$$\mathbb{E}\Big[\sum_{\pi_{U_N,V_N} \text{too short at arrival}} \mathbf{1}\{\pi_{U_N,V_N} \text{ present in } \mathsf{PA}_t\}\Big] \xrightarrow{?} 0.$$

- A union bound not over time, but over possible paths.
- This still does not tend to zero...

• A path is bad if it reaches a too old vertex in too few steps

- A path is **bad** if it reaches a too old vertex in too few steps
- i.e., if its k vertex is older than some threshold ℓ_k

- A path is **bad** if it reaches a too old vertex in too few steps
- i.e., if its *k* vertex is older than some threshold $\ell_{k,t}^{(N)}$

- A path is **bad** if it reaches a too old vertex in too few steps
- i.e., if its k vertex is older than some threshold $\ell_{k,t}^{(N)}$
- A bad path in **PA**_t might be already good at some later time.

- A path is **bad** if it reaches a too old vertex in too few steps
- i.e., if its k vertex is older than some threshold $\ell_{k,t}^{(N)}$
- A bad path in PA_t might be already good at some later time.
- a good path can never turn bad.

- A path is **bad** if it reaches a too old vertex in too few steps
- i.e., if its k vertex is older than some threshold $\ell_{k,t}^{(N)}$
- A bad path in PA_t might be already good at some later time.
- a good path can never turn bad.
- \Rightarrow Enough to bound:

$$\mathbb{E}\Big[\sum_{t}\sum_{\pi(U_N,V_N) \supset v_t \text{ bad}} \mathbf{1}\{\pi \text{ present in } PA_t\}\Big].$$

i.e., containing the newly added v_t .

- A path is **bad** if it reaches a too old vertex in too few steps
- i.e., if its k vertex is older than some threshold $\ell_{k,t}^{(N)}$
- A bad path in PA_t might be already good at some later time.
- a good path can never turn bad.
- \Rightarrow Enough to bound:

$$\mathbb{E}\Big[\sum_{t}\sum_{\pi(U_N,V_N) \ni v_t \text{ bad}} \mathbf{1}\{\pi \text{ present in } PA_t\}\Big].$$

i.e., containing the newly added v_t .

 This tends to zero ⇒ whp no bad paths present ever.

• A good path is too short at time *t* > *N* if it is shorter than the [main term–*C*].

- A good path is too short at time *t* > *N* if it is shorter than the [main term–*C*].
- A too short path may become not too short as *t* passes.

- A good path is too short at time *t* > *N* if it is shorter than the [main term–*C*].
- A too short path may become not too short as *t* passes.
- \Rightarrow Enough to compute:

$$\mathbb{E}\Big[\sum_{t}\sum_{\pi(U_N,V_N) \supset v_t \text{ short good}} \mathbf{1}\{\pi \text{ present in } PA_t\}\Big]$$

i.e., containing the newly added v_t .

- A good path is too short at time *t* > *N* if it is shorter than the [main term–*C*].
- A too short path may become not too short as *t* passes.
- \Rightarrow Enough to compute:

$$\mathbb{E}\Big[\sum_{t}\sum_{\pi(U_N,V_N) \supset v_t \text{ short good}} \mathbf{1}\{\pi \text{ present in } PA_t\}\Big]$$

- i.e., containing the newly added v_t .
- This tends to zero ⇒ whp no too short good paths present ever.

Upper bound
• First we understand how the graph looks locally around U_N and around V_N .

- First we understand how the graph looks locally around U_N and around V_N .
- Up to some radius *R_N*, these are disjoint trees (whp)

- First we understand how the graph looks locally around U_N and around V_N .
- Up to some radius *R_N*, these are disjoint trees (whp)
- Limiting distribution: exists. Dereich, Mörters '13 & Berger, Borgs, Chayes, Saberi '14

- First we understand how the graph looks locally around U_N and around V_N .
- Up to some radius *R_N*, these are disjoint trees (whp)
- Limiting distribution: exists. Dereich, Mörters '13 & Berger, Borgs, Chayes, Saberi '14
- They are (killed) multitype branching processes.

- First we understand how the graph looks locally around U_N and around V_N .
- Up to some radius *R_N*, these are disjoint trees (whp)
- Limiting distribution: exists. Dereich, Mörters '13 & Berger, Borgs, Chayes, Saberi '14
- They are (killed) multitype branching processes.
- We will use this info as a black box.

Proof outline for fixed *N*

y-axes=arrival time of vertices; *x*-axis: graph distance. LWL=limit distribution of the trees, depth R_N (large constant).

Proof outline for fixed *N*

y-axes=arrival time of vertices; *x*-axis: graph distance. LWL=limit distribution of the trees, depth R_N (large constant).

Building the connecting path

y-axes=arrival time of vertices; *x*-axis: graph distance.

Greedy path to the core

Core: vertices born before time \sqrt{N} . Core has bounded diameter.

Greedy path to the core

Core: vertices born before time \sqrt{N} . Core has bounded diameter.

$$K_N \le \frac{\log \log(N)}{|\log(\tau - 2)|} + C$$

- From any vertex in Layer k, there are at least $s_k^{arepsilon_k}$ young wedges to Layer k+1

- "Young" edges ensures independent weights w.r.t. to weighted LWL

Dense core has small diameter

Extension to the growing network

• We need to track the degree-growth of the vertex that starts the wedging procedure (via a Móri martingale).

Extension to the growing network

- We need to track the degree-growth of the vertex that starts the wedging procedure (via a Móri martingale).
- We redefine the layers for each time t > N

Extension to the growing network

- We need to track the degree-growth of the vertex that starts the wedging procedure (via a Móri martingale).
- We redefine the layers for each time t > N
- Careful union bound: summing error probs only where the event changes

Thank you for the attention!

Figure: Six instances of an infection spreading on a two-dimensional spatial scale free networks with different parameters.

Spreading processes on networks

Susceptible-Infected model:

- At time *t* = 0 the source node is infected, all other nodes susceptible.
- if, on an edge {u, v}, u is infected and v is not, then v becomes infected after a random iid transmission delay L_(u,v).

The epidemic curve

The function that counts the total number of infected nodes before time *t*:

 $I(t) = #\{ infected nodes before time t \}$

Pre-sampling all randomness

Add *iid* weights from distribution *L* to existing edges.

Pre-sampling all randomness

Add *iid* weights from distribution *L* to existing edges.

Spreading time = weighted distance

Edge weight = transmission delay through the edge

Pre-sampling all randomness

Add *iid* weights from distribution *L* to existing edges.

Spreading time = weighted distance

Edge weight = transmission delay through the edge The spreading time between two vertices u, v= the weighted distance:

Pre-sampling all randomness

Add *iid* weights from distribution *L* to existing edges.

Spreading time = weighted distance

Edge weight = transmission delay through the edge The spreading time between two vertices u, v= the weighted distance:

$$d_L(u, v) = \min_{\pi: \text{path } u \leftrightarrow v} \text{sum of } L_e \text{ on edges on } \pi$$

Pre-sampling all randomness

Add *iid* weights from distribution *L* to existing edges.

Spreading time = weighted distance

Edge weight = transmission delay through the edge The spreading time between two vertices u, v= the weighted distance:

 $d_L(u, v) = \min_{\pi: \text{path } u \leftrightarrow v} \text{sum of } L_e \text{ on edges on } \pi$

Epidemic curve:

$$I(t) = \#\{v : d_L(u, v) \le t\}.$$

$$L \equiv 1: \text{ graph distance}$$

$$d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{4}{|\log(\tau-2)|}$$

$$L \equiv 2:$$

$$d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{8}{|\log(\tau-2)|}$$

 $L \equiv 1: \text{ graph distance}$ $d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{4}{|\log(\tau-2)|}$ $L \equiv 2:$ $d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{8}{|\log(\tau-2)|}$ $L \sim U[1, 2]:$ $d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{4}{|\log(\tau-2)|}$

 $L \equiv 1: \text{ graph distance}$ $d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{4}{|\log(\tau-2)|}$ $L \equiv 2:$ $d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{8}{|\log(\tau-2)|}$ $L \sim U[1, 2]:$ $d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{4}{|\log(\tau-2)|}$ $L \sim U[0, 1]:$

 $L \equiv 1: \text{ graph distance}$ $d_G^{(N)}(U_N, V_N) \asymp \log \log N \cdot \frac{4}{|\log(\tau-2)|}$ $L \equiv 2:$ $d_G^{(N)}(U_N, V_N) \asymp \log \log N \cdot \frac{8}{|\log(\tau-2)|}$ $L \sim U[1, 2]:$ $d_G^{(N)}(U_N, V_N) \asymp \log \log N \cdot \frac{4}{|\log(\tau-2)|}$ $L \sim U[0, 1]:$ $d_G^{(N)}(U_N, V_N) \asymp \Theta(1)$

$$L \equiv 1: \text{ graph distance}$$

$$d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{4}{|\log(\tau-2)|}$$

$$L \equiv 2:$$

$$d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{8}{|\log(\tau-2)|}$$

$$L \sim U[1, 2]:$$

$$d_{G}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{4}{|\log(\tau-2)|}$$

$$L \sim U[0, 1]:$$

$$d_{G}^{(N)}(U_{N}, V_{N}) \stackrel{d}{\longrightarrow} \beta_{L} \stackrel{a.s.}{<} \infty$$

 $L \equiv 1$: graph distance $d_G^{(N)}(U_N, V_N) \asymp \log \log N \cdot \frac{4}{\lfloor \log(\tau - 2) \rfloor}$ $L \equiv 2: \\ d_{C}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{8}{|\log(\tau-2)|}$ $L \sim U[1,2]$: $d_{C}^{(N)}(U_{N}, V_{N}) \asymp \log \log N \cdot \frac{4}{\lfloor \log(\tau^{-2}) \rfloor}$ $L \sim U[0,1],$ $L \sim \text{Exp}(\lambda), \text{Gamma}(\lambda, k), \dots$: $d_{C}^{(N)}(U_{N},V_{N}) \xrightarrow{d} \beta_{I} \stackrel{a.s.}{<} \infty$

Theorem (Explosion in PA)

1

Jorritsma, K, '20 Consider PA with $\tau \in (2,3)$, and U_N, V_N two typical vertices in the giant component of **PA**_N. Then if

$$E(L) := \sum_{k=1}^{\infty} F_L^{(-1)} (1/\mathbf{e}^{\mathbf{e}^k}) < \infty,$$

then

$$d_G^{(N)}(U_N,V_N) \stackrel{d}{\longrightarrow} \beta_L \stackrel{a.s.}{<} \infty.$$

Theorem (Explosion in PA)

Jorritsma, K, '20 Consider PA with $\tau \in (2,3)$, and U_N, V_N two typical vertices in the giant component of **PA**_N. Then if

$$E(L) := \sum_{k=1}^{\infty} F_L^{(-1)} (1/\mathbf{e}^{\mathbf{e}^k}) < \infty,$$

then

$$d_G^{(N)}(U_N,V_N) \stackrel{d}{\longrightarrow} \beta_L \stackrel{a.s.}{<} \infty.$$

If $E(L) = \infty$ then

$$d_G^{(N)}(U_N, V_N) = 2 \sum_{k=1}^{2 \log \log N/|\log(\tau-2)|} F_L^{(-1)}(1/\mathbf{e}^{1/(\tau-2)^k}) + O_{\mathbb{P}}(1).$$

From small to mini-worlds

E(*L*) = ∞: fluctuations are tight in most cases. Lower tightness always, upper tightness under technical condition that holds for most *L*s.

$$E_{2}(L) = \sum_{k=1}^{\infty} \frac{1}{k} F_{L-\inf \text{supp}L}^{(-1)} (1/e^{e^{k}}) < \infty$$

From small to mini-worlds

• $E(L) = \infty$: fluctuations are tight in most cases. Lower tightness always, upper tightness under technical condition that holds for most *L*s.

$$E_2(L) = \sum_{k=1}^{\infty} \frac{1}{k} F_{L-\inf \operatorname{supp} L}^{(-1)} \left(1/\mathrm{e}^{\mathrm{e}^k} \right) < \infty$$

• Fix your favorite $1 \ll g(N) = O(\log \log N)$. Then one can construct a distribution *L* such that

$$d_G^{(N)}(U_N,V_N)=g(N)+O_{\mathbb{P}}(1).$$

Shrinking of weighted distances when $I(L) = \infty$

For graph distances

$$\sup_{t' \ge t} \left(d_G^{(N')}(U_N, V_N) - 2 \left(\log \log N - \log(1 \vee \log(N'/N)) \right) \cdot \frac{2}{\log(\tau - 2)|} \vee 1 \right) = O_{\mathsf{P}}(1).$$

Shrinking of weighted distances when $I(L) = \infty$

For graph distances

$$\sup_{t' \ge t} \left(d_G^{(N')}(U_N, V_N) - 2 \left(\log \log N - \log(1 \vee \log(N'/N)) \right) \cdot \frac{2}{\log(\tau - 2)|} \vee 1 \right) = O_{\mathsf{P}}(1).$$

Theorem

Jorritsma, K, '20 Consider PA with $\tau \in (2,3)$, and U_N, V_N two typical vertices in the giant component of **PA**_N, and I(L) = ∞ . Then

$$\sup_{N' \ge N} \left(d_G^{(N')}(U_N, V_N) - 2 \sum_{k=1}^{K_{N,N'}} F_L^{(-1)}(1/e^{1/(\tau-2)^k}) \right) = O_{\mathbb{P}}(1)$$

with $K_{N,N'} = \left(\log \log N - \log(1 \vee \log(N'/N))\right) \cdot \frac{2}{\log(\tau-2)|} \vee 1$

What is explosion?

On infinite networks

A spreading process is explosive on an infinite network if $I(t) = \infty$ for some $t < \infty$.

What is explosion?

On infinite networks

A spreading process is explosive on an infinite network if $I(t) = \infty$ for some $t < \infty$.

On very large but finite networks

A *positive fraction* of the nodes is infected within *constant time, no matter how large the network is.*

What is explosion?

On infinite networks

A spreading process is explosive on an infinite network if $I(t) = \infty$ for some $t < \infty$.

On very large but finite networks

A *positive fraction* of the nodes is infected within *constant time, no matter how large the network is.*

• **1970s:** Grey, Harris, Sevastanov: explosion in Branching processes

What is explosion?

On infinite networks

A spreading process is explosive on an infinite network if $I(t) = \infty$ for some $t < \infty$.

On very large but finite networks

A *positive fraction* of the nodes is infected within *constant time, no matter how large the network is.*

- **1970s:** Grey, Harris, Sevastanov: explosion in Branching processes
- **2010s:** Amini, Devroye, Griffith, Olver: explosion in Branching random walks

What is explosion?

On infinite networks

A spreading process is explosive on an infinite network if $I(t) = \infty$ for some $t < \infty$.

On very large but finite networks

A *positive fraction* of the nodes is infected within *constant time, no matter how large the network is.*

- **1970s:** Grey, Harris, Sevastanov: explosion in Branching processes
- **2010s:** Amini, Devroye, Griffith, Olver: explosion in Branching random walks
- 2017+: Me: explosion on networks

E.

$$d_G^{(N)}(U_N,V_N) \stackrel{d}{\longrightarrow} \beta_L = Y_1 + Y_2$$

Then

$$d_G^{(N)}(U_N, V_N) \xrightarrow{d} \beta_L = Y_1 + Y_2$$

$$I(t) = \frac{1}{N} \# \{ v : d^{(N)}(U_N, v) \le t \}$$

$$d_G^{(N)}(U_N,V_N) \stackrel{d}{\longrightarrow} \beta_L = Y_1 + Y_2$$

Then

$$I(t) = \frac{1}{N} \# \{ v : d^{(N)}(U_N, v) \le t \}$$
$$= \frac{1}{N} \sum_{v \in \mathsf{PA}_N} \mathbb{1}_{\{ d_G(U_n, v) \le t \}}$$

$$d_G^{(N)}(U_N,V_N) \stackrel{d}{\longrightarrow} \beta_L = Y_1 + Y_2$$

Then

$$I(t) = \frac{1}{N} \# \{ v : d^{(N)}(U_N, v) \le t \}$$

= $\frac{1}{N} \sum_{v \in \mathsf{PA}_N} \mathbb{1}_{\{ d_G(U_n, v) \le t \}}$
= $\mathbb{P}_{V_N}(d_G(U_n, V_n) \le t \mid U_n)$

$$d_G^{(N)}(U_N,V_N) \stackrel{d}{\longrightarrow} \beta_L = Y_1 + Y_2$$

Then

$$I(t) = \frac{1}{N} \# \{ v : d^{(N)}(U_N, v) \le t \}$$

= $\frac{1}{N} \sum_{v \in \mathsf{PA}_N} \mathbb{1}_{\{ d_G(U_n, v) \le t \}}$
= $\mathbb{P}_{V_N}(d_G(U_n, V_n) \le t \mid U_n)$
 $\xrightarrow{d} \mathbb{P}(Y_2 \le t - Y_1 \mid Y_1) = g(t - Y_1)$