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Scale-free property

Many real-life networks have power-law degrees.
Power-law paradigm

For some 7 > 2, the degree of a uniformly chosen vertex satisfies
P(deg(v) =x) = <
XT

logP(deg(v) = x) < log C - 7 logx

log(proportion of degree x vertices) vs log x is a straight line.
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Power laws
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Log-log plot of degree distribution of the router level internet network
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Growing networks

A question:

How did the network evolve around the servers of ‘99?
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Small worlds and ultra-small worlds

Kevin Bacon game: Movie networks are small worlds
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Small worlds and ultra-small worlds

Definition
A network G on N vertices is a small world if the average distance

FSHC) = 3 de(u,v) = O(logN).

(I;l) u,veG
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Small worlds and ultra-small worlds

Definition
A network G on N vertices is a small world if the average distance

dist(G) = > dg(u,v) =©(logN).

1
G is an ultrasmall world if dist(G) = o(logn).
Alternative def of ultrasmall:

dist(G) = ©(loglogn)

717137



Scale-free network models

Static network models
Degree distribution is superimposed on the network

* Configuration model
* Inhomogeneous random graphs

¢ Chung-Lu, Norros-Reitu models
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The original Preferential Attachment Model

Definition

e Start with a single vertex
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The original Preferential Attachment Model

Definition
¢ Start with a single vertex
* Vertices enter the network one-by-one at discrete steps N=1,2,. ..

* New vertex connects to old vertices according to some increasing
function of the degree
* Heuristically:

Prob(vn.1 — v;) o< degy (v))
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The original Preferential Attachment Model

Classic variations
* Fixed outdegree: (1,0) edge/new vertex:

Prob(vy,1 — v;) o< degy(v;)
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The original Preferential Attachment Model

Classic variations

* Fixed outdegree: (1,0) edge/new vertex:

Prob(vni1 — Vi) oc degy (Vi)

¢ Fixed outdegree: (1,6): 1 edge/new vertex.

Prob(vN+1 — V,') o< deg,\,(vi) +0
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The original Preferential Attachment Model

Classic variations

* Fixed outdegree: (1,0) edge/new vertex:

Prob(vni1 — Vi) o< degy (Vi)

* Fixed outdegree: (1,9): 1 edge/new vertex.

Prob(vys1 — v;) o< degy(vi) + 6

* Fixed outdegree: (m,d): m edges/new vertex.
Prob(vy.1 N V) o< degN_’j(vi) +d/m

* Variable outdegree: Vv; € PAy : independently

Prob(vny — v;) o w/

where f(x) concave with limy_, o, f(x)/x =< 1.

10/37


http://www.networkpages.nl/CustomMedia/Animations/RandomGraph/PrefentialModel/ForceLayoutAnimated.html

The original Preferential Attachment Model

Classic variations

* Fixed outdegree: (1,0) edge/new vertex:

Prob(vni1 — Vi) o< degy (Vi)

* Fixed outdegree: (1,9): 1 edge/new vertex.

PrOb(V/\/+1 — V,‘) o< deg,\,(v,-) +9
* Fixed outdegree: (m,d): m edges/new vertex.
Prob(vis1 — V) oc degy (V) +8/m

® Variable outdegree: Vv; e PAy : independently
PrOb(VN+] — V,') o< 7f(deg,’t}(vi)),
where f(x) concave with limy_. f(x)/x =y < 1.

Animation
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Degree distribution

Theorem (Degree sequence of PA(m,0))

Bollobas, Riordan, Spencer, Tusnady ‘01
Limiting degree distribution of Classic PA (m,0)

. 1
/Jl_rﬂo Prob(deg(Vn) = k) = o

where Vi uniformly chosen vertex in PA.
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Degree distribution

Theorem (Degree sequence of PA(m,0))

Bollobas, Riordan, Spencer, Tusnady ‘01
Limiting degree distribution of Classic PA (m,0)

. 1
Ame Prob(deg(Vy) = k) = R
where Vi uniformly chosen vertex in PAy.

Generally
Limiting degree distribution is

. 1
A"_T,o Prob(deg(Vy) = k) = =

where
Tm’5=3+(5/m Tf=1+1/’yf.
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Graph distances

Theorem (Distances in PAMs, 7 € (2,3))

Dommers, v/d Hofstad, Hoogiemstra ‘10 & Dereich and Mérters 13
Let Un, Viy be two uniformly chosen vertices (within the giant
component)'. When 7€ (2,3),

) _ . S
de ' (Un, V) = (1 +0p(1)) loglog N log(r = 2)|

Lower tightness holds.

1d(CN) graph distance within PAy
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Graph distances

Theorem (Distances in PAMs, 7 ¢ (2,3))

Dommers, v/d Hofstad, Hoogiemstra ‘10 & Dereich and Mérters ‘13
Let Un, Vi be two uniformly chosen vertices (within the giant
component)'. When € (2,3),

4

d™M(u ,Vn) = (1 1)) loglog N -
¢ (Un,Vn) = (1 +0p(1))loglog llog(r —2)]
Lower tightness holds.

T>3
Dommers, v/d Hofstad, Hoogiemstra ‘10
Typical distance in PA(m,¢) form > 2, 7> 3:

d (Un, Vi) = ©(log N).

1d(CN) graph distance within PAy
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Universality

For static models with power law degrees, 7€ (2,3)

dc(Un, V) = (1 +0p(1)) loglog N - |Iog(i——2)|'

For PA models with power law degrees, 7 € (2,3)

de(Un Vi) = (1 + 0p(1)) log log N - ————.
|log(7 —2)|
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Universality

For static models with power law degrees, 7€ (2,3)

dc(UN, V,\/) = (1 +Op(1 )) |Og|OgN #
[log(7 - 2)|

For PA models with power law degrees, 7€ (2,3)

dc(Un, V) = (1 +0p(1)) loglog N - M'
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Universality

For static models with power law degrees, 7€ (2,3)

dc(UN, V/\/) = (1 +Op(1 )) |Og|0g/\/ #
[log(7 - 2)|
For PA models with power law degrees, 7 € (2,3)
4
dc(Un,Vn) = (1 +0p(1))loglogN+ ———.
[log(7 - 2))|

Factor 2:

In PA, a high degree vertex tends to be connected via a path of 2 to a
higher degree vertex.

In static network models, directly.
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Back to the question:

How do distances shrink as time passes?
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Evolution of graph distances

Theorem (Evolution of distances)

Jorritsma, Komjathy, (AoAP, 22)

Let Un, Viy be two uniformly chosen vertices in PAy (within the giant
component). When T € (2,3), &m >2, for t > N:
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Let Un, Viy be two uniformly chosen vertices in PAx (within the giant
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4

g (Un, V) = (loglog N = g (1og(/N) v 1)) - 1oy v 2

+tightness around the main term.
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Evolution of graph distances

Theorem (Evolution of distances)

Jorritsma, Komjathy, (AoAP, 22)

Let Un, Vv be two uniformly chosen vertices in PAy (within the giant
component). When T €(2,3), &m >2, fort> N:

- sp L - st 1) ]

(Xn)ns1 is a tight sequence of random variables.
Message 1: Fix a€ (0,1). Then at t = Nexp (c(log N)?) «< N'*¢,

4

d9(Un, Vi) ~ (1 -a) loglog N - .
¢ [log(7 - 2)]

Message 2: dg)(UN, Vn) never leaves a (tight) strip around the main
term.

15/ 37



Proofs
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Lower bound in growing network

* A path counting method:
A possible path 7 is a sequence of labelled vertices. The path’s
(potential) arrival time is the youngest vertex on the path. Among
all possible labeled paths my,. vy,
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Lower bound in growing network

A path counting method:

A possible path 7 is a sequence of labelled vertices. The path’s
(potential) arrival time is the youngest vertex on the path. Among
all possible labeled paths my, v,

E[ 2. > 1{7y,,v, presentin PAl}] 0.
&N [y, v, too short at t]

]E[ > 1{mu,,vy present in PAt}] 0.

muy,vyt00 short at arrival

A union bound not over time, but over possible paths.
This still does not tend to zero...
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Bad paths

1 ® A path is bad if it reaches a too old
vertex in too few steps
tg Fommmmm o * i.e, if its k vertex is older than some
(N)
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* A bad path in PA; might be already
/\ good at some later time.
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Bad paths

* A path is bad if it reaches a too old
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vertex in too few steps
' e j.e., if its k vertex is older than some
t2 threshold fﬂj)
! * A bad path in PA; might be already
good at some later time.
q * a good path can never turn bad.
(t) .
Kk,h . \\'
(%) P\
£k7t2 ) )
k

20/37



Bad paths

/A * A path is bad if it reaches a too old
t vertex in too few steps
' e j.e., if its k vertex is older than some
t2 threshold Ei{j)
! * A bad path in PA; might be already
good at some later time.
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q * = Enough to bound:
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Bad paths

/A * A path is bad if it reaches a too old
t vertex in too few steps
' e ie., if its k vertex is older than some
t2 threshold é,(({j)
! * A bad path in PA; might be already
good at some later time.
* a good path can never turn bad.
q * = Enough to bound:
E(t) IS E[ Z Z 1{~ present in PA[}].
kyt1 “ ’\l t 7(Un,VN)2Vve bad
a2 A
k.ta i i.e., containing the newly added v;.
* This tends to zero = whp
;{7 > no bad paths present ever.
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* A good path is too short at time ¢t > N if it

is shorter than the [main term-CJ.
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Good paths that are too short

* A good path is too short at time ¢t > N if it
is shorter than the [main term-C].

* A too short path may become not too
short as t passes.
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Good paths that are too short

* A good path is too short at time ¢t > N if it

4 is shorter than the [main term-C].
. * A too short path may become not too
g b
P D / o] short as t passes.
// \ * = Enough to compute:

CR \‘ N

Vv \ // Bv ]E[ > > 1{m present in PA;}
o 1./ t 7 (Un,Vn)ov: short good ’
k,ty ‘/
G, i.e., containing the newly added v;.

k 2k

21/37



Good paths that are too short

A good path is too short at time t > N if it

4 is shorter than the [main term-C].
A * A too short path may become not too
P D / o] short as t passes.
SR * = Enough to compute:
N I/ \ “
Vv ‘\ // Bv ]E[ > > 1{m present in PAt}i
o 1./ t 7 (Un,Vn)av: short good
v
G, i.e., containing the newly added v;.
e This tends to zero = whp

1 2k no too short good paths present ever.
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Upper bound
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Local weak limit of PA

* First we understand how the graph looks locally around Uy and
around Vy.
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Local weak limit of PA

First we understand how the graph looks locally around Uy and
around Vy.

Up to some radius Ry, these are disjoint trees (whp)

Limiting distribution: exists. Dereich, Morters ‘13 & Berger, Borgs,
Chayes, Saberi ‘14

They are (killed) multitype branching processes.
We will use this info as a black box.

23 /37



Proof outline for fixed N

y-axes=arrival time of vertices; x-axis: graph distance. LWL=limit
distribution of the trees, depth Ry (large constant).

Summable weights along

PAN('U,, < RN) >~ LWL(U, < RN)
Infinite tree

24 /37



Proof outline for fixed N

y-axes=arrival time of vertices; x-axis: graph distance. LWL=limit
distribution of the trees, depth Ry (large constant).

Edges arrived
after (1 —§)N

24 /37



Building the connecting path

y-axes=arrival time of vertices; x-axis: graph distance.

Initial (finite) Greedy path of Bridge core of
N rexploration Ky wedges finite diameter -
(1-8NT 1(1 =8N
S(
U é< % v
1 SKn 1
f >
Infection time
u v
() 2Qn(s0) +€ ()
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Greedy path to the core

Core: vertices born before time v/N. Core has bounded diameter.
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Greedy path to the core

Core: vertices born before time v/N. Core has bounded diameter.

No Careful choice of the sequence (s)>1 yields
( 5N - Short path to dense inner core
1— 1
log log(INV
Ky < g log(IV) +C
og(r — 2)

- From any vertex in Layer k, there are
at least SZ’“ young wedges to Layer k + 1
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Dense core has small diameter

Initial (finite) Greedy path of Bridge core of

N rexploration Ky wedges finite diameter N
(1-0)N T +(1=0)N
S(
U <<< % v
Yid! L vr
I SKxn

Infection time

(Lu) 2Qn(s0) +¢ g))

27 /37



Extension to the growing network

* We need to track the degree-growth of the vertex that starts the
wedging procedure (via a Méri martingale).

deg® deg™ deg® deg®
(3)
Core® ao Core
0, SO
~
S
qrol
[
&
qt
..........
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* We redefine the layers for each time t > N

deg® deg™ deg® deg®
(3)
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Core™® ® o RO
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Extension to the growing network

* We need to track the degree-growth of the vertex that starts the
wedging procedure (via a Méri martingale).

* We redefine the layers for each time t > N

e Careful union bound: summing error probs only where the event

changes
deg(o) deg(l) deg(z) deg(S)
(3)
Core® ao Core
Core™® ® o RO
N ‘\‘ 0
S ) gt
S0
Grol
[N
&4
qt
..........
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Thank you for the attention!

|
| S

Figure: Six instances of an infection spreading on a two-dimensional spatial scale free
networks with different parameters.
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Spreading processes on networks

Susceptible-Infected model:
e Attime t = O the source node is infected, all
other nodes susceptible.

e if, on an edge {u, v}, uis infected and v is not,
then v becomes infected after a random iid
transmission delay L(,,,y.

The epidemic curve

The function that counts the total number of
infected nodes before time t:

I(t) = #{ infected nodes before time t}
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Weighted-network point of view

Pre-sampling all randomness
Add iid weights from distribution L to existing edges.
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Weighted-network point of view

Pre-sampling all randomness
Add iid weights from distribution L to existing edges.

Spreading time = weighted distance

Edge weight = transmission delay through the edge
The spreading time between two vertices u, v
= the weighted distance:

di(u,v) =  min sum of L, on edges on 7
m:path uev

Epidemic curve:

I(0) = #{v:di(u,v) <t}.
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Weighted distances in PAMs

L = 1: graph distance

N
d(C )(lJN7 VN) X |Og|OgN ||0g(472)|
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Weighted distances in PAMs

L = 1: graph distance

d(GN)(UN, VN) X |Og|OgN ||0g(472)|
LENZ:
d(C )(UN, VN) X |Og|OgN m
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Weighted distances in PAMs

L = 1: graph distance

d(GN)(UN, V) < loglog N - Ilog(472)l
L=2:

d(CN)(UN, Vn) % loglog N - m
L~U[1,2]:

d(GN)(UN, VN) % loglog N - Ilog(472)l
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Weighted distances in PAMs

L =1: graph distance

d(CN)(UN, Vy) < loglog N - mg(“Tz)l
L=2:

d(GN)(UN7 Vn) % loglog N - m
L~U[1,2]:

d(CN)(UN, Vy) < loglog N - mg(“Tz)l

L~U[0,1]:
dM(Un, Vi) 2 0(1)
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Weighted distances in PAMs

L =1: graph distance

N
d(G )(UN, Vn) 2 loglog N - |Iog(472)|

L=2:
d(CN)(UN, Vn) % loglog N - 8

[log(T-2)|
L~U[1,2]:
d(GN)(UN, Vn) 2 loglog N - |Iog(472)|
L~U[0,1]:

d™ (U, Vi) 58, < oo
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Weighted distances in PAMs

L =1: graph distance
d(GN)(UN, Vn) % loglog N -

L=2:
d(G )(UN, Vy) x loglog N - -—2

[log(T-2)|

L~U[1,2]:

d(GN)(UN, Vn) % loglog N -
L~U[0,1],

L ~Exp(\),Gamma(\, k),... :
d(GN)(UN7 VN) i’ﬂL oo

4
[log(T-2)]

4
[log(T-2)]
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Weighted distances on PA

Theorem (Explosion in PA)

Jorritsma, K, ‘20

Consider PA with T € (2,3), and Uy, Vn two typical vertices in the giant
component of PAy. Then if

E(L) = 3 D (1762 )< oo,
k=1

then
d™ (Un, Vi) =5 8, < oo,
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Weighted distances on PA

Theorem (Explosion in PA)
Jorritsma, K, ‘20

Consider PA with T € (2,3), and Uy, Vn two typical vertices in the giant
component of PAy. Then if

E(L) = S D (1/6%)< oo,
k=1

then
N d _a.s.
d(c\)(u"\"’ VN) — B1 < oo.
If E(L) = oo then
2loglog N/|log(7-2)|

_ _9\k
d(Un, V) =2 3 FCD (1767027 4 0p(1).
k=1
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From small to mini-worlds

® E(L) = oo: fluctuations are tight in most cases. Lower tightness
always, upper tightness under technical condition that holds for
most Ls.

(o)

Tren ‘
E2(L) - kz EF/,—infsuppl,U/ee ) <00
=1
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From small to mini-worlds

® E(L) = oo: fluctuations are tight in most cases. Lower tightness
always, upper tightness under technical condition that holds for
most Ls.

i k
Ex(L) = kZ Elzl,—infsuppl,“/ee ) <00
=1

® Fix your favorite 1 «< g(N) = O(loglog N). Then one can construct
a distribution L such that

dM(Un, Vi) = g(N) + Op(1).
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Shrinking of weighted distances when /(L) =
For graph distances

sup (d‘CN')(UN, V)2 ( log log N-log(1 \/Iog(N’//\/)))~|og(7_2—_2)|v1 ) =0p(1).
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Shrinking of weighted distances when /(L) =

For graph distances

y 2
d™) (U, Vi) -2 (loglog N-log(1viog(N'/N)))-——=——v1) = Op(1).
sup (" (Un, Viv)=2 loglog N-log(1vIog(N'/N)) )1 =—5,v1) = Oe (1)

Theorem

Jorritsma, K, ‘20

Consider PA with T € (2,3), and Uy, Vn two typical vertices in the giant
component of PAy, and I(L) = co. Then

, KN,NI
sup () (U, V) -2 3 FTD(1/e10-21)) = 0p(1)
N'=N 1

with Ky v = (loglog N —log(1 v log(N'/N))) - Iog(72'——2)| v
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What is explosion?

On infinite networks
A spreading process is explosive on an
infinite network if /(t) = co for some t < co.
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What is explosion?

On infinite networks
A spreading process is explosive on an
infinite network if /(t) = co for some t < co.

On very large but finite networks

A positive fraction of the nodes is infected
within constant time, no matter how large
the network is.

® 1970s: Grey, Harris, Sevastanov:
explosion in Branching processes

® 2010s: Amini, Devroye, Criffith, Olver:
explosion in Branching random walks

® 2017+: Me: explosion on networks
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Explosion in PA

d
d™ (U, W) == B = Y1+ Vs
Then

A deterministic curve with a random constant shift.
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Explosion in PA

dE;N)(UN, VN) LB =vi+Y,
Then :
I(t) = N#{V :d™M(Uy,v) <t}

A deterministic curve with a random constant shift.
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Explosion in PA

dE;N)(UN, V) < BL =Y+,

Then :
I(6) = v d™ (Un,v) <)

1

== > L
N vePAN ¢

A deterministic curve with a random constant shift.
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Explosion in PA

dEJN)(UNv VN) LR B =Y1+Y,

Then 1
I(t) = N#{V : d(N)(UN, v) <t}

1

N Z Lde (Unv)<t}
N vePAy ¢

=Py, (dc(Un, Vi) <t| Uy)

A deterministic curve with a random constant shift.
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Explosion in PA

d
d(GN)(UN, VN) — B = Y1+ Y,

Then 1
I(0) = v d™ (Un,v) <8}
1

=< 2 Ldw.mn
NvePAN e '

:PVN(dG(UmVn) St| Un)
P, <t-Yy | Vi) =g(t-Yy)

A deterministic curve with a random constant shift.
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