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Underlying setting: Node Churn

I Time is continuous

I Nodes join and leave the system in each time unit

A set of Vt of nodes in the system at any time t
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Underlying setting: Node Churn

I Time is continuous

I Nodes join and leave the system in each time unit

I Arrivals: Poisson process with rate λ;

I Departures: Nodes’ lifetimes are exponential with parameter µ;

I We set λ = 1 wlog and we let n = 1/µ

Lemma 1 (Pandurangan et al. 2003)

Given λ and µ such that n = λ/µ is sufficiently large, for every fixed real t ≥ 3n:

P (0.9n ≤ |Vt | ≤ 1.1n) ≥ 1− 2e−
√
n . (1)
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Underlying setting: Node Churn

I Time is continuous

I Nodes join and leave the system in each time unit

What if we want to maintain a network over time?
I For every t: Vt is set of nodes, e.g., clients of a P2P network;

I Set Et of edges at time t is the result of an algorithm.
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Maintaining a network

We have a network at some time t ...
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Maintaining a network

I Node u entering the network at time t: to which nodes in Vt should u connect?

I u loses an edge to a node v leaving the network at t. Should u replace the lost
edge?

I Goal: design an algorithm to maintain a network with desired properties
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Desiderata

Analytical models of Topology Dynamics with natural evolution rules

I Homogenous: All agents run the same rule at every time

I Local: Nodes exchange few short messages with few neighbors

I Random: Opportunistic/random interactions among the nodes

I Simple: Natural Algorithms (Chazelle - Comm. ACM 2012).

Properties of interest:

I Connectivity/expansion

I Information Spreading/flooding

Technical challenge: modelling and analyzing (Random) Node Churn in simple
Topology Dynamics
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Dynamics /Evolving Graphs: State of the Art

Since 2008 (Avin et al - ICALP’08, Clementi et al - PODC’08), important theoretical
advances in the area of Dynamic Graphs have been achieved.

I Link-Based Graph Dynamics:

Probabilistic Models: Markovian Evolving Graphs
Deterministic Models: Time-Varying Graphs

I Node-Based Graph Dynamics:

Probabilistic Models: Random Walks, Random Way-Point Models
Adversarial Models: mobile agents over grids and other graph topologies.

Crucial Constraint: Set of partipating nodes does not change.
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Network Formation and Maintanance with Node Churn

Previous Analytical Work

I Dynamic-Graph Protocols with access to Central Servers and/or Random Oracles:

Pandurangan et al. - IEEE FOCS’03
Duchon et al. - LATIN’14

I Dynamic-Graph Protocols based on Random Walks

Cooper et Al - Combinatorics, Probability and Computing 2007
Law and Siu - IEEE INFOCOM’03
Augustine et al - IEEE FOCS’15

Common feature of previous work: no natural dynamics
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Static setting

No node churn, static network
A very simple random graph dynamics:

The d-Random Choice Protocol
I Time t = 0: a set of n nodes/ agents V0 = V ; an empty edge set E0 = ∅.
I Time t = 1: Independently and u.a.r., each node u selects d (out-)neighbors

from V and connects to each of them (discarding multi-edges). Each selected
edge is added to E1 = Et ,∀t ≥ 1.

Random Oracle
The d-Random Choice Protocol requires a simple PULL mechanism that each node
can call to select one random node in the graph.
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The d-Random Choice Protocol in the Static Setting

Figure: d-Random Choice Protocol

11/ 69



May 30, 2022

The d-Random Choice Protocol in the Static Setting

Figure: d-Random Choice Protocol

?

?

?

?

?

?

??
?

?

?

?
?

?

12/ 69



May 30, 2022

The d-Random Choice Protocol in the Static Setting

Figure: d-Random Choice Protocol

13/ 69



May 30, 2022

The d-Random Choice Protocol in the Static Setting

Figure: d-Random Choice Protocol

14/ 69



May 30, 2022

A Key notion: Vertex Expansion of a Graph

Outer boundary

Let G = (V ,E ) be a graph of n nodes. For each S ⊆ V , ∂out(S) is the outer boundary
of S , i.e. the set of nodes in V − S with at least one neighbor in S .

S

∂out(S)
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A Key notion: Vertex Expansion of a Graph

Outer boundary

Let G = (V ,E ) be a graph of n nodes. For each S ⊆ V , ∂out(S) is the outer boundary
of S , i.e. the set of nodes in V − S with at least one neighbor in S .

Vertex isoperimetric number

hout(G ) = min
0≤|S |≤n/2

|∂out(S)|
|S |

(1)

Vertex expansion

Let ε > 0 be an arbitrary constant. Then, G is a ε-expander if hout(G ) ≥ ε.
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d-Random Choice Protocol: expansion properties

Theorem 1
For sufficiently large n, for any d ≥ 3, the random graph G (V ,E ) is a Θ(1)-Expander,
with high probability (for short, w.h.p.).

Proof Ingredients:

Mutually-Independent Random Choices, Standard Counting Arguments, Union Bound

COROLLARY
The diameter of G and its Flooding/Rumor-Spreading Time is O(log n), w.h.p..

17/ 69



May 30, 2022

d-Random Choice Protocol: expansion properties

Theorem 1
For sufficiently large n, for any d ≥ 3, the random graph G (V ,E ) is a Θ(1)-Expander,
with high probability (for short, w.h.p.).

Proof Ingredients:

Mutually-Independent Random Choices, Standard Counting Arguments, Union Bound

COROLLARY
The diameter of G and its Flooding/Rumor-Spreading Time is O(log n), w.h.p..

17/ 69



May 30, 2022

d-Random Choice Protocol: expansion properties

Theorem 1
For sufficiently large n, for any d ≥ 3, the random graph G (V ,E ) is a Θ(1)-Expander,
with high probability (for short, w.h.p.).

Proof Ingredients:

Mutually-Independent Random Choices, Standard Counting Arguments, Union Bound

COROLLARY
The diameter of G and its Flooding/Rumor-Spreading Time is O(log n), w.h.p..

17/ 69



May 30, 2022

Introduction
Setting and Problem(s)
Related work

Preliminaries
Key notions
Graph dynamics with node churn

Contribution
Overview of results
Vertex expansion with edge regeneration
Flooding without edge regeneration
Remarks and conclusions

18/ 69



May 30, 2022

Models

Topology Dynamics

We adapt the d-Random Choice Dynamics to a Dynamic Framework where:

I Churn: nodes join/leave the network according to Poisson arrivals/exponential
departure times.

I Edges incident to leaving nodes disappear;
I Topology dynamics: do active nodes replace disappeared edges?

I Yes → edge regeneration
I No

Caveat
I Edges are undirected but ...

I We speak of the outgoing edges of a node u as those edges that resulted from u’s
connections requests (consistently, we speak of v ’s out-degree).
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Poisson Dynamics with(out) Edge Regeneration - PDGR(PDG)

A PDGR (PDG) G(λ, µ, d) is a stochastic process {Gt = (Vt ,Et) : t ∈ R+}, where:

Node Churn
I V0 = ∅. Nodes joining Vt follow a sequential Poisson process with mean λ.

I Once in Vt the life time of a node has exponential distribution with parameter µ.

Topology: d-Random Choice Dynamics.

I Initially, E0 = ∅. For t > 0, a node joinining the network at time t selects d
(out-)neighbors from Vt independently and u.a.r.

I If node v leaves the graph at time t, then:

1. All edges incident to v disappear;
2. Regeneration: Each node in Vt losing outgoing edges to v selects new neighbours

from Vt (independently and u.a.r) to restore its out-degree to d . Hence, after any
node churn, every node has exactly d out-edges.
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Poisson Dynamics with edge Regeneration - PDGR

Figure: Poisson Model
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Poisson Dynamics with edge Regeneration - PDGR
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Simplified streaming model used in this presentation

A Streaming Dynamic Graph with(out) edge Regeneration SDGR (SDG) G(n, d) is a
stochastic process {Gt = (Vt ,Et), t ≥ 1} defined as follows.

I Node Churn Events. V0 = ∅. At each round t ≥ 1, a new node joins Vt and it
stays alive up to round t + n, then it leaves the network. So, at every t ≥ n, the
oldest node v leaves the network and a new node u joins it, i.e.,
Vt := (Vt−1 \ {v}) ∪ {u}.

I Topology: The d-Random Choice Dynamics. Et evolves as follows:
i) All edges incident to leaving node v disappear;
ii) The new node u selects d (out-)neighbors from Nt independently and u.a.r.;
iii) Regeneration: Nodes in Vt that lose any out-going edges to v , select new
neighbours (independently and u.a.r from Vt) to restore their (out-)degrees to d .
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Streaming Model: SDGR G(n, d)

Figure: Streaming Model
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Vertex expansion with edge regeneration

Edge regeneration affords expansion w.h.p.

Theorem 2
I Streaming Model SDGR G(n, d). For any sufficiently large d (i.e. d ≥ 14), and

for any t ≥ Ω(n), the snapshot Gt(Vt ,Et) is a (1/10)-expander, with probability
1− 1/nΘ(d).

I Poisson Model PDGR G(λ, µ, d). Let λ = 1 and n = 1/µ, and let d ≥ 35. Then,
for any t ≥ Ω(n log n), the snapshot Gt(Vt ,Et) is a (1/10)-expander, with
probability 1− 1/nΘ(1).
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Vertex expansion without edge regeneration

For every t ≥ n: fraction Ω(e−d) isolated nodes w.h.p. but ...

Lemma 3 (Expansion of large subsets)

For every constant d ≥ 20 and for every sufficiently large n, let
{Gt = (Vt ,Et) : t ∈ N} be an SDG sampled from G(n, d). For every fixed t ≥ n,
w.h.p. the snapshot Gt satisfies the following:

min
S⊆Nt : ne−d/10≤|S |≤n/2

|∂out(S)|
|S |

≥ 0.1 .

Similar result for PDGR.
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Flooding (SDGR)
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Flooding in the Streaming Model

Set of informed nodes
Consider a SDGR G(n, d) = {Gt = (Vt ,Et), t ≥ 0}. Let s be the informed node
joining the graph at round t0 and let I0 = {s} ⊆ Vt0

Then, at each round t ≥ t0, after applying the d-Random Choice Dynamics, define
It iteratively as follows:

It =
(
It−1

⋃
I ′t

)⋂
Vt , where I ′t = {v ∈ Vt−1|∃u ∈ It−1 : (u, v) ∈ Et−1}
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Flooding with Edge Regeneration

Flooding completes in O(log n) rounds whp

Theorem 4
I Streaming Model SDGR G(n, d). For any sufficiently large d (i.e. d ≥ 14), and

for any t ≥ Ω(n). Then, if an informed node joins in step t, after O(log n) time
steps, all nodes of the network will be informed, w.h.p.

I Poisson Model PDGR G(λ, µ, d). Let λ = 1 and n = 1/µ, and let d ≥ 35. Then,
for any t ≥ Ω(n log n), if an informed node joins at step t, after O(log n) flooding
steps, all nodes of the network will be informed, w.h.p.
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Flooding without Edge Regeneration

Flooding can take long to complete → Ωd(m) rounds whp ...

but most nodes informed
quickly most of the times:

Theorem 5
For constant d sufficiently large, for every sufficiently large n and for every fixed
t0 ≥ n, there exists τ = O(log n/ log d + d), such that the flooding over SDG G(n, d)
starting at t0 satisfies the following:

P
(
|It0+τ | ≥ (1− e−d/10)n

)
≥ 1− e−Ω(d) ,
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Streaming Model SDGR Technical proofs

Expansion of Gt = (Vt ,Et): main issues and key steps

Technical Issue. Differences in life times of nodes in Vt induce i) correlations among
edges in Et and ii) non uniform edge probabilities → Edges incident to old nodes are
more likely to belong to Et .

Lemma 6
Let k ≤ t − 1 and let u be the node with age k + 1. Then, if node v ∈ Vt was born
before u, probability that a specific out-going edge from u has destination v is

1

n − 1

(
1 +

1

n − 1

)k

. (2)

If v was born after u, above probability is always ≤ 1
n−1 .

Good News. Since k ≤ n, Eq. (2) is ≤ Θ(1/n).
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Streaming Model SDGR Technical proofs

Theorem 7
Let n be sufficiently large and d ≥ 21. Then, for any t ≥ n, the snapshot Gt of a
SDGR G(n, d) is a vertex expander with parameter ε ≥ 0.1, w.h.p.

Proof Strategy

We consider two cases:
Case 1. Small subsets, i.e., |S | ≤ n/4 ,
Case 2. Large subsets, i.e., n/4 ≤ |S | ≤ n/2 ,

Remark
In both cases, the S expansion is obtained by only looking at the out-going edges of
set S , i.e., those edges determined by the d random choices of each node in S .
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Streaming Model SDGR Technical proofs

Lemma (Case 2)

For every pair of vertex subsets (S ,T ) with |S | ≤ n/4 and |T | = 0.1|S |, such that
S ∩ T = ∅, the event “all the out-neighbors of S are in T”, i.e. ∂out(S) ⊆ T , does
happen with negligible probability, i.e., with probability O(1/nΘ(1)).

Proof
For any S and any T ⊆ Nt − S , we define the event AS ,T = {∂out(S) ⊆ T} So, we
have that

Pr

(
min

n/4≤|S |≤n/2

|∂out(S)|
|S |

≤ 0.1

)
≤

∑
n/4≤|S|≤n/2
|T |=0.1|S |

Pr (AS ,T ) . (3)

The next step is to upper bound Pr (AS ,T ).
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Streaming Model SDGR Technical proofs

Lemma (Case 2)

Pr (AS ,T ) is upper bounded by the probability that each outgoing edge of each node in
S has destination in S ∪ T .
From Lemma 6, since k ≤ n − 1, the probability that any outgoing edge of u has
destination some node v is at most e/(n − 1).
Since ∂out(S) ⊆ T implies that every outgoing edge of u ∈ S has destination in S ∪ T
we have:

Pr (AS,T ) ≤
(

e

n− 1
· |S ∪ T |

)d |S|
. (4)

So, from (3) and (4), for any d ≥ 21, and standard calculus,

Pr

(
min

1≤|S |≤n/4

|∂out(S)|
|S |

≤ 0.1

)
≤

n/4∑
s=1

(
n

s

)(
n − s

0.1s

)(
1.1s · e
n − 1

)ds

≤ 1

n4
. (5)
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Alternating paths argument

Node demographics

With respect to node s joining at round t0:

I Young nodes: age ≤ n/2;

I Old nodes: n/2 < age ≤ n/2− ln n;

I Very old nodes: age > ln n.

s n
2

n
2 − lnnYoung nodes Old nodes

Key ingredients: i) we only consider outgoing edges from young to old nodes; ii) we
neglect edges from young nodes to very old ones; iii) we neglect nodes arriving after s.
Remark: i), ii) and iii) =⇒ we establish a subset of the edges that will exist in the
window [t0, t0 + ln n].
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Alternating paths argument

We iteratively add edges. At the end of the k-th phase:

I Yk : subset of young nodes that can be reached from s along an alternating path
of length 2k ;

I Ok : subset of old nodes that can be reached from s along an alternating path of
length 2k + 1.

s
n
2

n
2 − lnn

d = 2

Y0 O0
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We iteratively add edges. At the end of the k-th phase:

I Yk : subset of young nodes that can be reached from s along an alternating path
of length 2k ;

I Ok : subset of old nodes that can be reached from s along an alternating path of
length 2k + 1.

s
n
2

n
2 − lnn

d = 2

Y2 O1
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Alternating paths argument

We iteratively add edges. At the end of the k-th phase:

I Yk : subset of young nodes that can be reached from s along an alternating path
of length 2k ;

I Ok : subset of old nodes that can be reached from s along an alternating path of
length 2k + 1.

s
n
2

n
2 − lnn

d = 2
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Alternating paths argument

We iteratively add edges. At the end of the k-th phase:

I Yk : subset of young nodes that can be reached from s along an alternating path
of length 2k ;

I Ok : subset of old nodes that can be reached from s along an alternating path of
length 2k + 1.

Young nodes Old nodes

Ok

Ok−1Yk−1

Yk
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Proof: informing Ω(n) nodes

Theorem 8
Assume s joins the network at step t0. There is τ = O(log n/d), such that:

P

(
|It0+τ | ≥

2n

d

)
≥ 1− eΩ(d).

Proof.
Assume |Yk−1| ≤ n/d and |Ok−1| ≤ n/d for k ≥ 1:

Claim 8.1

P

(
|Yk − Yk−1| >

d

20
y | |Ok−1 − Ok−2| ≥ y

)
≥ 1− e−yd/100
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Theorem 8
Assume s joins the network at step t0. There is τ = O(log n/d), such that:

P

(
|It0+τ | ≥

2n

d

)
≥ 1− eΩ(d).

Proof.
Assume |Yk−1| ≤ n/d and |Ok−1| ≤ n/d for k ≥ 1:

Claim 8.2

P

(
|Ok − Ok−1| ≥

d

20
x | |Yk − Yk−1| ≥ x

)
≥ 1− e−dx/100 .
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Proof: informing Ω(n) nodes

Claim 8.1.

P

(
|Yk − Yk−1| >

d

20
y | |Ok−1 − Ok−2| ≥ y

)
≥ 1− e−yd/100

Proof.
Consider v ∈ Y − Yk−1.

I Zv = 1 iff ∃u ∈ Ok−1 − Ok−2 : v → u using at least of the first 1, ..., d/2 links

I P (Zv = 1 | |Ok−1 − Ok−2| ≥ y) ≥ 1−
(
1− y

n

) d
2

I The Zv ’s are independent

I Apply Chernoff’s bound
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Proof: informing Ω(n) nodes

Claim 8.2.

P

(
|Ok − Ok−1| ≥

d

20
x | |Yk − Yk−1| ≥ x

)
≥ 1− e−dx/100 .

Proof.
At a high level:

I |Ok − Ok−1| =
∑

u∈O−Ok−1
Au

I Au = 1 iff ∃v ∈ Yk − Yk−1 : v → u using one of its last d/2 links

I The Au’a are negatively correlated

I Bounded correlation → use variant of Azuma’s inequality
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Proof: informing almost every node

Theorem 9
a constant τ2 = Θ(d) exists such that, for τ1 = O(log n/ log d) we have:

P
(
|It0+τ1+τ2 | ≥ (1− e−d/10)n

)
≥ 1− e−Ω(d) .

Proof.
Proof uses expansion of large sets in the “no-regeneration” case:

Lemma 10
For every t ≥ n, the following holds whp:

P

(
min

S⊆Nt : ne−d/10≤|S |≤n/2

|∂out(S)|
|S |

≥ 0.1

)
≤ 1

n4
.
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Proof: informing almost every node

Theorem 9
a constant τ2 = Θ(d) exists such that, for τ1 = O(log n/ log d) we have:

P
(
|It0+τ1+τ2 | ≥ (1− e−d/10)n

)
≥ 1− e−Ω(d) .

Proof.
Proof of Lemma 10: Consider ne−d/10 ≤ |S | ≤ n/2 and T = 0.1|S |, S ∩ T = ∅.

1. Union bound over all possible pairs S and T ;

2. Exponentially many pairs, but P (∂out(S) ⊆ T ) for specific pair (S ,T ) is
exponentially small.

Similar to Case 1 of Theorem 7.
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From SDG(R) to PDG(R)

Some subtle changes occur

Main Challenges

I Number of nodes at any moment “stable” but not fixed

I Nodes can come into existence and disappear at any time

I In the Poisson model, we assume it takes one unit to deliver a message across an
edge

I What if the edge disappears in the interim?

Refining the analysis

I Only consider instants t at which a change in Vt occurs

I The resulting process is discrete Markov chain

I Though the intuitions remain the same, proofs sometimes need substantial
revisiting

PDG(R) model considerably harder than SDG(R)
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Open Questions and the End

I Expected degree is constant for every t

I Maximum degree is O(log n) (could still be non-constant)

Major Open Question:

Design and Analysis of Natural Graph Dynamics in the presence of Node Churn that
yield Bounded-Degree Expanders, w.h.p.

THANKS!!!!!!
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