Dynamic Random Networks with Node Churn

Luca Becchetti♥

joint work with

A. Clementi⁺, F. Pasquale⁺, L. Trevisan⁺, and I. Ziccardi⁺

Sapienza University of Rome,
 Tor Vergata University of Rome,
 Bocconi University,
 University of l'Aquila

A day on Random Graphs - May 30th, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction Setting and Problem(s) Related work

Preliminaries

Key notions

Contribution

Time is continuous

Nodes join and leave the system in each time unit

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

A set of V_t of nodes in the system at any time t

3/69

Time is continuous

Nodes join and leave the system in each time unit

$\bullet \bullet \bullet \bullet \bullet \bullet \circ \bullet \bullet \bullet \circ \bullet \bullet$

Nodes join and leave the network within the next time unit: $V_t
ightarrow V_{t+1}$

Time is continuous

Nodes join and leave the system in each time unit

•••• • • • • • •

Nodes join and leave the network within the next time unit: $V_t
ightarrow V_{t+1}$

Time is continuous

- Nodes join and leave the system in each time unit
- Arrivals: Poisson process with rate λ ;
- **>** Departures: Nodes' lifetimes are exponential with parameter μ ;

• We set
$$\lambda = 1$$
 wlog and we let $n = 1/\mu$

Lemma 1 (Pandurangan et al. 2003)

Given λ and μ such that $n = \lambda/\mu$ is sufficiently large, for every fixed real $t \ge 3n$:

$$P(0.9n \le |V_t| \le 1.1n) \ge 1 - 2e^{-\sqrt{n}}.$$
 (1)

Time is continuous

Nodes join and leave the system in each time unit

What if we want to maintain a network over time?

- For every t: V_t is set of nodes, e.g., clients of a P2P network;
- Set E_t of edges at time t is the result of an algorithm.

Maintaining a network

We have a network at some time $t \dots$

ロト・ロト・ヨーシック

May 30, 2022

Maintaining a network

New nodes arrive, some nodes depart ...

Maintaining a network

- Node u entering the network at time t: to which nodes in V_t should u connect?
- u loses an edge to a node v leaving the network at t. Should u replace the lost edge?
- **Goal:** design an algorithm to maintain a network with desired properties

Analytical models of Topology Dynamics with natural evolution rules

- **Homogenous:** All agents run the same rule at every time
- **Local:** Nodes exchange few short messages with few neighbors
- Random: Opportunistic/random interactions among the nodes
- **Simple:** *Natural Algorithms* (Chazelle Comm. ACM 2012).

Analytical models of Topology Dynamics with natural evolution rules

- **Homogenous:** All agents run the same rule at every time
- **Local:** Nodes exchange few short messages with few neighbors
- Random: Opportunistic/random interactions among the nodes
- **Simple:** *Natural Algorithms* (Chazelle Comm. ACM 2012).

Properties of interest:

- Connectivity/expansion
- Information Spreading/flooding

Analytical models of Topology Dynamics with natural evolution rules

- ► Homogenous: All agents run the same rule at every time
- **Local:** Nodes exchange few short messages with few neighbors
- Random: Opportunistic/random interactions among the nodes
- **Simple:** *Natural Algorithms* (Chazelle Comm. ACM 2012).

Properties of interest:

- Connectivity/expansion
- Information Spreading/flooding

Technical challenge: modelling and analyzing (Random) Node Churn in simple Topology Dynamics

Introduction

Setting and Problem(s) Related work

Preliminaries

Key notions Graph dynamics with node churn

Contribution

Overview of results Vertex expansion with edge regeneration Flooding without edge regeneration Remarks and conclusions

Dynamics / Evolving Graphs: State of the Art

Since 2008 (Avin et al - ICALP'08, Clementi et al - PODC'08), important theoretical advances in the area of Dynamic Graphs have been achieved.

Link-Based Graph Dynamics:

Probabilistic Models: Markovian Evolving Graphs Deterministic Models: Time-Varying Graphs

Node-Based Graph Dynamics:

Probabilistic Models: Random Walks, Random Way-Point Models Adversarial Models: mobile agents over grids and other graph topologies.

Dynamics / Evolving Graphs: State of the Art

Since 2008 (Avin et al - ICALP'08, Clementi et al - PODC'08), important theoretical advances in the area of Dynamic Graphs have been achieved.

Link-Based Graph Dynamics:

Probabilistic Models: Markovian Evolving Graphs Deterministic Models: Time-Varying Graphs

Node-Based Graph Dynamics:

Probabilistic Models: Random Walks, Random Way-Point Models Adversarial Models: mobile agents over grids and other graph topologies.

Crucial Constraint: Set of partipating nodes does not change.

Network Formation and Maintanance with Node Churn

Previous Analytical Work

> Dynamic-Graph Protocols with access to Central Servers and/or Random Oracles:

Pandurangan et al. - IEEE FOCS'03 Duchon et al. - LATIN'14

Network Formation and Maintanance with Node Churn

Previous Analytical Work

> Dynamic-Graph Protocols with access to Central Servers and/or Random Oracles:

Pandurangan et al. - IEEE FOCS'03 Duchon et al. - LATIN'14

 Dynamic-Graph Protocols based on Random Walks Cooper et Al - Combinatorics, Probability and Computing 2007 Law and Siu - IEEE INFOCOM'03 Augustine et al - IEEE FOCS'15

Common feature of previous work: no natural dynamics

Introduction

Setting and Problem(s) Related work

Preliminaries

Key notions Graph dynamics with node churn

Contribution

Overview of results Vertex expansion with edge regeneration Flooding without edge regeneration Remarks and conclusions

Static setting

No node churn, static network

A very simple random graph dynamics:

Static setting

No node churn, static network

A very simple random graph dynamics:

The *d*-Random Choice Protocol

- **Time** t = 0: a set of *n* nodes/ agents $V_0 = V$; an empty edge set $E_0 = \emptyset$.
- ▶ Time t = 1: Independently and u.a.r., each node u selects d (out-)neighbors from V and connects to each of them (discarding multi-edges). Each selected edge is added to $E_1 = E_t, \forall t \ge 1$.

Random Oracle

The *d*-**Random Choice Protocol** requires a simple PULL mechanism that each node can call to select one random node in the graph.

Figure: *d*-Random Choice Protocol

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

・日本・「中本・「中本・「中本」 ひゃう

11/ 69

Figure: *d*-Random Choice Protocol

Figure: *d*-Random Choice Protocol

(ロトス団を入所を入所を入り、日本の人で)

Figure: *d*-Random Choice Protocol

A Key notion: Vertex Expansion of a Graph

Outer boundary

Let G = (V, E) be a graph of *n* nodes. For each $S \subseteq V$, $\partial_{out}(S)$ is the outer boundary of *S*, i.e. the set of nodes in V - S with at least one neighbor in *S*.

A Key notion: Vertex Expansion of a Graph

Outer boundary

Let G = (V, E) be a graph of *n* nodes. For each $S \subseteq V$, $\partial_{out}(S)$ is the outer boundary of *S*, i.e. the set of nodes in V - S with at least one neighbor in *S*.

Vertex isoperimetric number

$$h_{out}(G) = \min_{0 \le |S| \le n/2} \frac{|\partial_{out}(S)|}{|S|} \tag{1}$$

Vertex expansion

Let $\varepsilon > 0$ be an arbitrary constant. Then, G is a ε -expander if $h_{out}(G) \ge \varepsilon$.

d-Random Choice Protocol: expansion properties

Theorem 1

For sufficiently large n, for any $d \ge 3$, the random graph G(V, E) is a $\Theta(1)$ -Expander, with high probability (for short, w.h.p.).

d-Random Choice Protocol: expansion properties

Theorem 1

For sufficiently large n, for any $d \ge 3$, the random graph G(V, E) is a $\Theta(1)$ -Expander, with high probability (for short, w.h.p.).

Proof Ingredients:

Mutually-Independent Random Choices, Standard Counting Arguments, Union Bound

d-Random Choice Protocol: expansion properties

Theorem 1

For sufficiently large n, for any $d \ge 3$, the random graph G(V, E) is a $\Theta(1)$ -Expander, with high probability (for short, w.h.p.).

Proof Ingredients:

Mutually-Independent Random Choices, Standard Counting Arguments, Union Bound

COROLLARY

The diameter of G and its Flooding/Rumor-Spreading Time is $O(\log n)$, w.h.p..

Introduction

Setting and Problem(s) Related work

Preliminaries

Key notions Graph dynamics with node churn

Contribution

Overview of results Vertex expansion with edge regeneration Flooding without edge regeneration Remarks and conclusions

Models

Topology Dynamics

We adapt the *d*-Random Choice Dynamics to a Dynamic Framework where:

- Churn: nodes join/leave the network according to Poisson arrivals/exponential departure times.
- Edges incident to leaving nodes disappear;
- Topology dynamics: do active nodes replace disappeared edges?
 - $\blacktriangleright \text{ Yes} \rightarrow \text{edge regeneration}$
 - No

Models

Topology Dynamics

We adapt the *d*-Random Choice Dynamics to a Dynamic Framework where:

- Churn: nodes join/leave the network according to Poisson arrivals/exponential departure times.
- Edges incident to leaving nodes disappear;
- Topology dynamics: do active nodes replace disappeared edges?
 - $\blacktriangleright \text{ Yes} \rightarrow \text{edge regeneration}$
 - No

Caveat

- Edges are undirected but ...
- We speak of the *outgoing edges* of a node u as those edges that resulted from u's connections requests (consistently, we speak of v's *out-degree*).

Poisson Dynamics with(out) Edge Regeneration - PDGR(PDG)

A PDGR (PDG) $\mathcal{G}(\lambda, \mu, d)$ is a stochastic process $\{G_t = (V_t, E_t) : t \in \mathbb{R}^+\}$, where: Node Churn

- ▶ $V_0 = \emptyset$. Nodes joining V_t follow a sequential *Poisson process with mean* λ .
- Once in V_t the life time of a node has exponential distribution with parameter μ .

Topology: *d*-Random Choice Dynamics.

- Initially, E₀ = Ø. For t > 0, a node joining the network at time t selects d (out-)neighbors from V_t independently and u.a.r.
- If node v leaves the graph at time t, then:
 - 1. All edges incident to v disappear;
 - 2. **Regeneration:** Each node in V_t losing outgoing edges to v selects new neighbours from V_t (independently and u.a.r) to restore its out-degree to d. Hence, after any node churn, every node has exactly d out-edges.

イロト イボト イヨト

Poisson Dynamics with edge Regeneration - PDGR

Figure: Poisson Model

t

(ロトス団を入所を入所を入り、日本の人で)

Poisson Dynamics with edge Regeneration - PDGR

Figure: Poisson Model

t+1

□ ▶ < @ ▶ < E ▶ < E ▶ E < </p>

22/69
Figure: Poisson Model

t+1

ロ ト ・ 回 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

Figure: Poisson Model

t+1

(ロト・御ト・恵・・恵・ 「臣」 めんぐ

Figure: Poisson Model

t+1

ロ・・日・・ヨ・ ヨ・ シック

Figure: Poisson Model

t+1

□ ▶ < @ ▶ < E ▶ < E ▶ E < </p>

Figure: Poisson Model

t+1

(ロト (四) (目) (目) (日) (の)

A Streaming Dynamic Graph with(out) edge Regeneration SDGR (SDG) $\mathcal{G}(n, d)$ is a stochastic process $\{G_t = (V_t, E_t), t \ge 1\}$ defined as follows.

- Node Churn Events. V₀ = Ø. At each round t ≥ 1, a new node joins V_t and it stays alive up to round t + n, then it leaves the network. So, at every t ≥ n, the oldest node v leaves the network and a new node u joins it, i.e., V_t := (V_{t-1} \ {v}) ∪ {u}.
- Topology: The *d*-Random Choice Dynamics. *E_t* evolves as follows:
 i) All edges incident to leaving node *v* disappear;
 - ii) The new node u selects d (out-)neighbors from N_t independently and u.a.r.;
 - iii) **Regeneration:** Nodes in V_t that lose any out-going edges to v, select new neighbours (independently and u.a.r from V_t) to restore their (out-)degrees to d.

Figure: Streaming Model

Figure: Streaming Model

(日本本語を本語を、語、今々で、

Introduction

Setting and Problem(s) Related work

Preliminaries

Key notions Graph dynamics with node churn

Contribution

Overview of results

Vertex expansion with edge regeneration Flooding without edge regeneration Remarks and conclusions Edge regeneration affords expansion w.h.p.

Theorem 2

Streaming Model SDGR $\mathcal{G}(n, d)$. For any sufficiently large d (i.e. $d \ge 14$), and for any $t \ge \Omega(n)$, the snapshot $G_t(V_t, E_t)$ is a (1/10)-expander, with probability $1 - 1/n^{\Theta(d)}$.

Edge regeneration affords expansion w.h.p.

Theorem 2

- Streaming Model SDGR $\mathcal{G}(n, d)$. For any sufficiently large d (i.e. $d \ge 14$), and for any $t \ge \Omega(n)$, the snapshot $G_t(V_t, E_t)$ is a (1/10)-expander, with probability $1 1/n^{\Theta(d)}$.
- ► Poisson Model PDGR $\mathcal{G}(\lambda, \mu, d)$. Let $\lambda = 1$ and $n = 1/\mu$, and let $d \ge 35$. Then, for any $t \ge \Omega(n \log n)$, the snapshot $G_t(V_t, E_t)$ is a (1/10)-expander, with probability $1 1/n^{\Theta(1)}$.

For every $t \ge n$: fraction $\Omega(e^{-d})$ isolated nodes w.h.p. but ...

For every $t \ge n$: fraction $\Omega(e^{-d})$ isolated nodes w.h.p. but ...

Lemma 3 (Expansion of large subsets)

For every constant $d \ge 20$ and for every sufficiently large n, let $\{G_t = (V_t, E_t) : t \in \mathbb{N}\}$ be an SDG sampled from $\mathcal{G}(n, d)$. For every fixed $t \ge n$, w.h.p. the snapshot G_t satisfies the following:

$$\min_{S\subseteq N_t: ne^{-d/10} \le |S| \le n/2} \frac{|\partial_{out}(S)|}{|S|} \ge 0.1$$

For every $t \ge n$: fraction $\Omega(e^{-d})$ isolated nodes w.h.p. but ...

Lemma 3 (Expansion of large subsets)

For every constant $d \ge 20$ and for every sufficiently large n, let $\{G_t = (V_t, E_t) : t \in \mathbb{N}\}$ be an SDG sampled from $\mathcal{G}(n, d)$. For every fixed $t \ge n$, w.h.p. the snapshot G_t satisfies the following:

$$\min_{S\subseteq N_t: ne^{-d/10} \le |S| \le n/2} \frac{|\partial_{out}(S)|}{|S|} \ge 0.1.$$

Similar result for PDGR.

・ロ・・日・・日・・日・ シック・

・ロ・・西・・ヨ・・ヨ・ シック

・ロ・・日・・日・・日・ シック・

・ロト・日本・モート ヨー うへぐ

・ロ・・日・・日・・日・ シック・

・ロ・・日・・日・・日・ シック・

Set of informed nodes

Consider a SDGR $\mathcal{G}(n, d) = \{G_t = (V_t, E_t), t \ge 0\}$. Let *s* be the informed node joining the graph at round t_0 and let $I_0 = \{s\} \subseteq V_{t_0}$ Then, at each round $t \ge t_0$, after applying the *d*-Random Choice Dynamics, define I_t iteratively as follows:

$$I_t = \left(I_{t-1} \bigcup I_t'\right) \bigcap V_t, \text{ where } I_t' = \{v \in V_{t-1} | \exists u \in I_{t-1} : (u,v) \in E_{t-1}\}$$

Flooding completes in $\mathcal{O}(\log n)$ rounds whp

Theorem 4

Streaming Model SDGR $\mathcal{G}(n, d)$. For any sufficiently large d (i.e. $d \ge 14$), and for any $t \ge \Omega(n)$. Then, if an informed node joins in step t, after $O(\log n)$ time steps, all nodes of the network will be informed, w.h.p.

Flooding completes in $\mathcal{O}(\log n)$ rounds whp

Theorem 4

- Streaming Model SDGR $\mathcal{G}(n, d)$. For any sufficiently large d (i.e. $d \ge 14$), and for any $t \ge \Omega(n)$. Then, if an informed node joins in step t, after $O(\log n)$ time steps, all nodes of the network will be informed, w.h.p.
- ► Poisson Model PDGR $\mathcal{G}(\lambda, \mu, d)$. Let $\lambda = 1$ and $n = 1/\mu$, and let $d \ge 35$. Then, for any $t \ge \Omega(n \log n)$, if an informed node joins at step t, after $O(\log n)$ flooding steps, all nodes of the network will be informed, w.h.p.
Flooding without Edge Regeneration

Flooding can take long to complete $ightarrow \Omega_d(m)$ rounds whp ...

Flooding can take long to complete $\rightarrow \Omega_d(m)$ rounds whp ...but most nodes informed quickly most of the times:

Theorem 5

For constant d sufficiently large, for every sufficiently large n and for every fixed $t_0 \ge n$, there exists $\tau = O(\log n / \log d + d)$, such that the flooding over SDG $\mathcal{G}(n, d)$ starting at t_0 satisfies the following:

$$\mathsf{P}\left(|I_{t_0+\tau}| \ge (1-e^{-d/10})n\right) \ge 1-e^{-\Omega(d)},$$

Introduction

Setting and Problem(s) Related work

Preliminaries

Key notions Graph dynamics with node churn

Contribution

Overview of results Vertex expansion with edge regeneration Flooding without edge regeneration Remarks and conclusions

Expansion of $G_t = (V_t, E_t)$: main issues and key steps

Technical Issue. Differences in life times of nodes in V_t induce i) correlations among edges in E_t and ii) non uniform edge probabilities \rightarrow Edges incident to **old** nodes are more likely to belong to E_t .

Expansion of $G_t = (V_t, E_t)$: main issues and key steps

Technical Issue. Differences in life times of nodes in V_t induce i) correlations among edges in E_t and ii) non uniform edge probabilities \rightarrow Edges incident to **old** nodes are more likely to belong to E_t .

Lemma 6

Let $k \le t - 1$ and let u be the node with age k + 1. Then, if node $v \in V_t$ was born before u, probability that a specific out-going edge from u has destination v is

$$\frac{1}{n-1}\left(1+\frac{1}{n-1}\right)^k.$$
(2)

If v was born after u, above probability is always $\leq \frac{1}{n-1}$. Good News. Since $k \leq n$, Eq. (2) is $\leq \Theta(1/n)$.

Theorem 7

Let n be sufficiently large and $d \ge 21$. Then, for any $t \ge n$, the snapshot G_t of a SDGR $\mathcal{G}(n, d)$ is a vertex expander with parameter $\varepsilon \ge 0.1$, w.h.p.

Proof Strategy

We consider two cases:

Case 1. Small subsets, i.e., $|S| \leq n/4$, Case 2. Large subsets, i.e., $n/4 \leq |S| \leq n/2$,

Remark

In both cases, the S expansion is obtained by only looking at the **out-going** edges of set S, i.e., those edges determined by the d random choices of each node in S.

Lemma (Case 2)

For every pair of vertex subsets (S, T) with $|S| \le n/4$ and |T| = 0.1|S|, such that $S \cap T = \emptyset$, the event "all the out-neighbors of S are in T", i.e. $\partial_{out}(S) \subseteq T$, does happen with negligible probability, i.e., with probability $O(1/n^{\Theta(1)})$.

Lemma (Case 2)

For every pair of vertex subsets (S, T) with $|S| \le n/4$ and |T| = 0.1|S|, such that $S \cap T = \emptyset$, the event "all the out-neighbors of S are in T", i.e. $\partial_{out}(S) \subseteq T$, does happen with negligible probability, i.e., with probability $O(1/n^{\Theta(1)})$.

Proof

For any S and any $T \subseteq N_t - S$, we define the event $A_{S,T} = \{\partial_{out}(S) \subseteq T\}$ So, we have that

$$\Pr\left(\min_{\substack{n/4 \le |S| \le n/2}} \frac{|\partial_{out}(S)|}{|S|} \le 0.1\right) \le \sum_{\substack{n/4 \le |S| \le n/2\\|T|=0.1|S|}} \Pr\left(A_{S,T}\right).$$
(3)

The next step is to upper bound $Pr(A_{S,T})$.

Lemma (Case 2)

 $Pr(A_{S,T})$ is upper bounded by the probability that each outgoing edge of each node in S has destination in $S \cup T$.

From Lemma 6, since $k \le n-1$, the probability that any outgoing edge of u has destination some node v is at most e/(n-1). Since $\partial_{out}(S) \subseteq T$ implies that every outgoing edge of $u \in S$ has destination in $S \cup T$

we have:

$$\Pr\left(A_{S,T}\right) \le \left(\frac{\mathrm{e}}{\mathrm{n}-1} \cdot |S \cup T|\right)^{d|S|} \,. \tag{4}$$

So, from (3) and (4), for any $d \ge 21$, and standard calculus,

$$\Pr\left(\min_{1\le|S|\le n/4}\frac{|\partial_{out}(S)|}{|S|}\le 0.1\right)\le \sum_{s=1}^{n/4}\binom{n}{s}\binom{n-s}{0.1s}\left(\frac{1.1s\cdot e}{n-1}\right)^{ds}\le \frac{1}{n^4}.$$
 (5)

Introduction

Setting and Problem(s) Related work

Preliminaries

Key notions Graph dynamics with node churn

Contribution

Overview of results Vertex expansion with edge regeneration Flooding without edge regeneration Remarks and conclusions

Node demographics

With respect to node s joining at round t_0 :

- **Young nodes:** $age \le n/2$;
- ▶ Old nodes: $n/2 < age \le n/2 \ln n$;
- **Very old nodes:** *age* > ln *n*.

62/69

Node demographics

With respect to node s joining at round t_0 :

- **Young nodes:** $age \le n/2$;
- ▶ Old nodes: $n/2 < age \le n/2 \ln n$;
- **Very old nodes:** $age > \ln n$.

Key ingredients: i) we only consider outgoing edges from young to old nodes; ii) we neglect edges from young nodes to very old ones; iii) we neglect nodes arriving after *s*. **Remark:** i), ii) and iii) \implies we establish a subset of the edges that will exist in the window $[t_0, t_0 + \ln n]$.

d = 2

- Y_k: subset of young nodes that can be reached from s along an alternating path of length 2k;
- O_k: subset of old nodes that can be reached from s along an alternating path of length 2k + 1.

63/69

d = 2

- Y_k: subset of young nodes that can be reached from s along an alternating path of length 2k;
- O_k: subset of old nodes that can be reached from s along an alternating path of length 2k + 1.

d = 2

- Y_k: subset of young nodes that can be reached from s along an alternating path of length 2k;
- O_k: subset of old nodes that can be reached from s along an alternating path of length 2k + 1.

- Y_k: subset of young nodes that can be reached from s along an alternating path of length 2k;
- O_k: subset of old nodes that can be reached from s along an alternating path of length 2k + 1.

- Y_k: subset of young nodes that can be reached from s along an alternating path of length 2k;
- O_k: subset of old nodes that can be reached from s along an alternating path of length 2k + 1.

We iteratively add edges. At the end of the k-th phase:

- Y_k: subset of young nodes that can be reached from s along an alternating path of length 2k;
- O_k: subset of old nodes that can be reached from s along an alternating path of length 2k + 1.

Young nodes Old nodes

- Y_k: subset of young nodes that can be reached from s along an alternating path of length 2k;
- O_k: subset of old nodes that can be reached from s along an alternating path of length 2k + 1.

- Y_k: subset of young nodes that can be reached from s along an alternating path of length 2k;
- O_k: subset of old nodes that can be reached from s along an alternating path of length 2k + 1.

- Y_k: subset of young nodes that can be reached from s along an alternating path of length 2k;
- O_k: subset of old nodes that can be reached from s along an alternating path of length 2k + 1.

- Y_k: subset of young nodes that can be reached from s along an alternating path of length 2k;
- O_k: subset of old nodes that can be reached from s along an alternating path of length 2k + 1.

Theorem 8

Assume s joins the network at step t₀. There is $\tau = O(\log n/d)$, such that:

$$\mathsf{P}\left(|I_{t_0+ au}|\geq rac{2n}{d}
ight)\geq 1-e^{\Omega(d)}.$$

Proof.

Assume $|Y_{k-1}| \le n/d$ and $|O_{k-1}| \le n/d$ for $k \ge 1$: Claim 8.1

$$\mathsf{P}\left(|Y_k - Y_{k-1}| > rac{d}{20}y \mid |O_{k-1} - O_{k-2}| \ge y
ight) \ge 1 - e^{-yd/100}$$

64/69

(日) (四) (三) (三) (三)

Theorem 8

Assume s joins the network at step t₀. There is $\tau = O(\log n/d)$, such that:

$$\mathsf{P}\left(|I_{t_0+ au}|\geq rac{2n}{d}
ight)\geq 1-e^{\Omega(d)}.$$

Proof.

Assume $|Y_{k-1}| \le n/d$ and $|O_{k-1}| \le n/d$ for $k \ge 1$: Claim 8.2

$$\mathsf{P}\left(|O_k - O_{k-1}| \ge \frac{d}{20}x \mid |Y_k - Y_{k-1}| \ge x\right) \ge 1 - e^{-dx/100}$$
.

64/69

(日) (四) (三) (三) (三)

Claim 8.1.

$$\mathsf{P}\left(|Y_k - Y_{k-1}| > rac{d}{20}y \mid |O_{k-1} - O_{k-2}| \geq y
ight) \geq 1 - e^{-yd/100}$$

Proof.

Consider $v \in Y - Y_{k-1}$.

▶ $Z_v = 1$ iff $\exists u \in O_{k-1} - O_{k-2} : v \to u$ using at least of the first 1, ..., d/2 links

•
$$P(Z_v = 1 | |O_{k-1} - O_{k-2}| \ge y) \ge 1 - (1 - \frac{y}{n})^{\frac{a}{2}}$$

- The Z_v 's are independent
- Apply Chernoff's bound

Claim 8.2.

$$\mathsf{P}\left(|O_k - O_{k-1}| \geq rac{d}{20}x \mid |Y_k - Y_{k-1}| \geq x
ight) \geq 1 - e^{-dx/100} \,.$$

Proof.

At a high level:

►
$$|O_k - O_{k-1}| = \sum_{u \in O - O_{k-1}} A_u$$

▶ $A_u = 1$ iff $\exists v \in Y_k - Y_{k-1} : v \to u$ using one of its last d/2 links

- ▶ The A_u'a are negatively correlated
- **b** Bounded correlation \rightarrow use variant of Azuma's inequality

Proof: informing almost every node

Theorem 9

a constant $\tau_2 = \Theta(d)$ exists such that, for $\tau_1 = \mathcal{O}(\log n / \log d)$ we have:

$$\mathsf{P}\left(|I_{t_0+ au_1+ au_2}| \geq (1-e^{-d/10})n
ight) \geq 1-e^{-\Omega(d)}$$
.

Proof.

Proof uses expansion of large sets in the "no-regeneration" case:

Lemma 10

For every $t \ge n$, the following holds whp:

$$\mathsf{P}\left(\min_{S\subseteq N_t: ne^{-d/10}\leq |S|\leq n/2}\frac{|\partial_{out}(S)|}{|S|}\geq 0.1\right)\leq \frac{1}{n^4}.$$

Proof: informing almost every node

Theorem 9

a constant $\tau_2 = \Theta(d)$ exists such that, for $\tau_1 = \mathcal{O}(\log n / \log d)$ we have:

$$\mathsf{P}\left(|I_{t_0+ au_1+ au_2}| \ge (1-e^{-d/10})n\right) \ge 1-e^{-\Omega(d)}$$
.

Proof.

Proof of Lemma 10: Consider $ne^{-d/10} \le |S| \le n/2$ and $T = 0.1|S|, S \cap T = \emptyset$.

- 1. Union bound over all possible pairs S and T;
- 2. Exponentially many pairs, but $P(\partial_{out}(S) \subseteq T)$ for specific pair (S, T) is exponentially small.

Similar to Case 1 of Theorem 7.

Introduction

Setting and Problem(s) Related work

Preliminaries

Key notions Graph dynamics with node churn

Contribution

Overview of results Vertex expansion with edge regeneration Flooding without edge regeneration Remarks and conclusions

67/69

From SDG(R) to PDG(R)

Some subtle changes occur

Main Challenges

- Number of nodes at any moment "stable" but not fixed
- Nodes can come into existence and disappear at any time
- In the Poisson model, we assume it takes one unit to deliver a message across an edge
- What if the edge disappears in the interim?

From SDG(R) to PDG(R)

Some subtle changes occur

Main Challenges

- Number of nodes at any moment "stable" but not fixed
- Nodes can come into existence and disappear at any time
- In the Poisson model, we assume it takes one unit to deliver a message across an edge
- What if the edge disappears in the interim?

Refining the analysis

- Only consider instants t at which a change in V_t occurs
- The resulting process is discrete Markov chain
- Though the intuitions remain the same, proofs sometimes need substantial revisiting

Open Questions and the End

- Expected degree is constant for every t
- ▶ Maximum degree is $O(\log n)$ (could still be non-constant)

Major Open Question:

Design and Analysis of **Natural** Graph Dynamics in the presence of Node Churn that yield **Bounded-Degree Expanders**, w.h.p.

Open Questions and the End

- Expected degree is constant for every t
- ▶ Maximum degree is $O(\log n)$ (could still be non-constant)

Major Open Question:

Design and Analysis of **Natural** Graph Dynamics in the presence of Node Churn that yield **Bounded-Degree Expanders**, w.h.p.

THANKS!!!!!!