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Compartmental models on networks

Epidemic spread: a very brief modelling overview

Compartmental models : Population of n individuals divided into
interacting compartments (e.g. infected, susceptible, recovered, immune).

Historical note : First models back to D. Bernoulli (1760); “mature”
multidisciplinary area in the XX century Kermack-McKendrick theory
(1927); from the ’90 on (theory developments + data fitting).

SIS model (2-compartments )

I = Infected, S = Susceptible.

β = Infection rate, µ = Recovery rate.

Interaction as “chemical reactions”:

S + I
β→ 2I , I

µ→ S .

Basic Reprod. Nr. ⇒ r := β/µ = infect. rate × av. durat. infectiousness
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Compartmental models on networks

SIS on Networks

Network: G = (V, E), |V| = n, undirected finite graph with adjacency
A := (ax ,y )x ,y∈V s.t. ax ,y = 1{x∼y}.

Definition (SIS evolution (a non-linear system of n diff. eqs.))

Set ρx(t) := P( node x is infected at time t), x ∈ V, and fix

Infection rate = β > 0, Recovery rate = µ > 0 :

∂ρx(t)

∂t
= −µρx(t) + β[1− ρx(t)]

∑
y∈V

ax ,yρy (t)

with some in. cond. ρ⃗(0) := (ρ1(0), . . . , ρn(0)).

Remark:

Contact process on {0, 1}V= microscopic Markovian version of SIS
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Compartmental models on networks

Endemic state & largest eigenvalue

SIS evolution ρx(t) := P( node x is infected at time t), ∀x ∈ V,
rescaling time by 1/µ and setting r := β/µ:

∂ρx(t)

∂t
= −ρx(t) + r

∑
y∈V

ax ,yρy (t)− r
∑
y∈V

ax ,yρx(t)ρy (t)

Outbreak threshold estimate (linearization) :

∂ρx(t)

∂t
≤ −ρx(t) + r

∑
y∈V

ax ,yρy (t)

From which, if ρ⃗(t) := (ρ1(t), . . . , ρn(t)) ⇒ ρ⃗(t) ≤ ρ⃗(0)e(rA−Idn)t

Max eigenvalue λmax of A:

If rλmax − 1 < 0 ⇒ ρx(t) decays exponentially fast to 0, for any x ∈ V.
⇒ critical parameter for the endemic state:

rc ≥ 1/λmax .
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Multiple-node immunization

Multiple-node immunization & max eigendrop

Goal: Identify & remove set of k-nodes to empede the “endemic
outbreak”.

Problem not well-posed: 1) limited rigorous analysis 2) heuristics
ideas based on simulations with lots of other problems 3) choosing
maximal degree nodes is not justified already for k = 1.

Max eigendrop of adjacency: since rc ≥ 1/λmax ,
good strategy: look for sets of k−nodes from which after removal
the reduced network has minimal largest eigenvalue.
Equivalently: find S ⊂ V, with |S| = k maximising

∆kλ(S) := λmax(V)− λmax(V \ S) = k− eigendrop

Computational issues with max eigendrop:

No poly exact algorithm for such an optimization problem.

Chen Chen et al. (2016) proved approx. equivalence with
so-called Shield-Value optimization which is NP complete.
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Multiple-node immunization

Max k-eigendrop, ShieldValue & Netshield
(Chen Chen et al. (2016))

Shield Value : for S ⊂ V, with |S| = k define

SVk(S) := 2λmax

∑
x∈S

u2(x)−
∑
x ,y∈S

ax ,yu(x)u(y)

(“eingescore” − “repellence”),

with u principal eigenvector (Au = λmaxu).

Shield Value approximates max k-eigendrop:

∆kλ(S) ≈ SVk(S).

Maximising shieldvalue is NP-complete problem.

Netshield : greedy fast algorithm which finds near-to-optimal
solutions in

O(nk +m) running time,

with m =number of edges.
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Our method: rooted forests & randomized k-centrality

Our randomized
immunization method:

Random Rooted Spanning Forests
&

randomized k-centrality
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Our method: rooted forests & randomized k-centrality

Graph Laplacian and associated RW

Weighted Directed Network: G = (V, E ,w), with |V| = n and weighted
adjacency Aw := (ax ,y )x ,y∈V s.t. ax ,y = w(x , y)1{x ̸=y}.

Definition (Graph Laplacian)

It is the n × n matrix −Lw with :

Lw (x , y) =


w(x , y) if x ̸= y ∈ V,

−
∑
z ̸=x

w(x , z) on the diagonal.

In particular, Lw = Aw −Dw = (weighted) “adjacency” − “degree”

Definition (Associated Random Walk)

Let X = (X (t))t≥0 be the continuous-time Markov chain on V with
infinitesimal generator Lw .
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Let X = (X (t))t≥0 be the continuous-time Markov chain on V with
infinitesimal generator Lw .
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Our method: rooted forests & randomized k-centrality

RW and a determinantal set of nodes

Definition (Set of Roots Rq of intesity q- A.G. (2018))

Given G = (V, E ,w), and a parameter q > 0, let Rq ⊆ V be a random
subset of nodes with law characterized by:

P (A ⊆ Rq) = det [Kq]A , for any A ⊆ V,

with
Kq(x , y) := Px(X (Tq) = y) = q(qId− Lw )

−1(x , y)

and Tq an independent exponential random variable of parameter q.

Repelling roots when w(x , y) = w(y , x)

P ({x , y} ⊆ Rq) ≤ P (x ∈ Rq)P (y ∈ Rq)
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Our method: rooted forests & randomized k-centrality

Rq from Random Rooted Forests

Forest Space: for G = (V, E ,w), set

FG := { spanning rooted forests on G}
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A spanning rooted forest on a square grid.
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Our method: rooted forests & randomized k-centrality

Rq from Random Rooted Forests

Theorem (Random Forest with Determinantal Roots - A.G. (2018))

Fix q > 0 and G. Consider the following probability measure on FG :

νq(F ) :=
qnr. of trees

∏
e∈F w(e)

Z (q)
, F ∈ FG ,

Then,

the set of roots of the random forest with law νq
is the determinatal point process Rq with kernel Kq

Recall:

P (A ⊆ Rq) = det [Kq]A , for any A ⊆ V,
Kq(x , y) = Px(X (Tq) = y) = RW kernel observed at time-scale 1/q.
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Our method: rooted forests & randomized k-centrality

Sampling Rq with Wilson’s algorithm

h

Build dynamically a rooted spanning forest
using loop-erased random walks killed at rate q.
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Our method: rooted forests & randomized k-centrality

Rq: a flexible set of well-distributed nodes

Theorem (Distribution of number of roots - A.G. (2018))

Given G = (V, E ,w), consider the set of Roots Rq with kernel Kq. Then
its cardinality is a non-homogeneous Binomial :

|Rq| =
n∑

i=1

Yi , Yi ∼ Bernoulli

(
q

q + θi

)
.

with θi ’s eigenvalues of the graph Laplacian −Lw .

Note: |Rq| = n if q → ∞ and |Rq| = 1 if q → 0.

Efficient sampling of exactly k roots

Wilson’s algorithm allows to sample Rq for fixed q, we developed

a coupled algorithm to sample a trajectory (Rq)q∈[0,∞),

and Rk := Rq conditioned on having k roots ,
in O(n) running time if k is a fraction of n.
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Our method: rooted forests & randomized k-centrality

A generalized Page-Rank k-centrality

Theorem (Roots are at local equilibrium - A.G. (2018))

Fix k ≤ n, any partition {B1, . . . ,Bk} of V into k blocks, and any xi ∈ Bi ,
for i = 1, . . . , k . Then:

P
(
Rk = {x1, · · · , xk}

∣∣∣Pq = {B1, . . . ,Bk}
)
=

k∏
i=1

µBi
(xi ),

where

Pq is the partition of V induced by the forest with law νq,

µBi
is the invariant measure of the RW X restricted to Bi .

Note:

For q ≈ 0 ⇒ Pq = V and the unique root is distributed as the
invariant measure µ of the RW.

“Freedom to choose” the graph Laplacian.
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Our method: rooted forests & randomized k-centrality

Forest-immunization (on undirected network)

⋄ Heuristic: k best spreaders to be removed should be far from each
other but also the remaining n − k susceptible ones ⋄

Roots complement-set: RC
q := V \ Rq is also determinantal set &

it concentrates around max-degree sets.

1 Canidate set of k-spreaders to be removed: Sample Rn−k roots
for the susceptible ones & set its complement RC

k to be the candidate
k-set of best spreaders.

2 How many samples? Sample L many candidate k-sets
{RC

k,i : i ≤ L} and compute their ShieldValue and Max-degree with L
such that total running cost is as in Netshield O(m + nk).

3 Forest k-set S⋆ to be immunized: Among the L sampled k-sets.
Pick the ones with max degree and max Shield Value. Take also the
Netshield output set. Set S⋆ to be the set with maximal eigendrop
among these 3 sets.
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Experiments: the geometry of contagion

Forest immunization &
the geometry of contagion

in action:
a few illustrative experiments.
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Experiments: the geometry of contagion

A synthetic insightful example
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Experiments: the geometry of contagion

A synthetic insightful example: k = 1

⇒ node with best eigendrop is {13}: not the highest degree node.
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Experiments: the geometry of contagion

A synthetic insightful example: k = 3

⇒ best triple {14, 15, 16}: not the maximal degree set.
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Experiments: the geometry of contagion

A synthetic insightful example: k = 4

⇒ best quaduple {13, 1, 5, 9}: global + “periferial” centers.

Luca Avena (Mathematics, Leiden) k-node Immunization Rome, May 30, 2022 56 / 65



Experiments: the geometry of contagion

A synthetic insightful example: k = 4

⇒ best quaduple {13, 1, 5, 9}: global + “periferial” centers.
Luca Avena (Mathematics, Leiden) k-node Immunization Rome, May 30, 2022 56 / 65



Experiments: the geometry of contagion

A synthetic insightful example: k = 4

⇒ best quaduple {13, 1, 5, 9}: global + “periferial” centers.
Luca Avena (Mathematics, Leiden) k-node Immunization Rome, May 30, 2022 56 / 65



Experiments: the geometry of contagion

A synthetic insightful example: RC
q for k = 1

RC
q histogram, Eigendrop profile
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Experiments: the geometry of contagion

The Karate club: “a fighting group”

President {1} Vs Instructor {34} led to a split into 2 groups.
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Experiments: the geometry of contagion

The Karate club: k = 1

⇒ best node is {3}: neither the president nor the instructor.
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Experiments: the geometry of contagion

The Karate club: k = 2

⇒ best pair is {1, 34}: the president and the instructor.
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Experiments: the geometry of contagion

The Karate club: k = 3

⇒ best triple is {1, 3, 34}: “the fighters and the philanthropist”.
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Experiments: the geometry of contagion

The Karate club: RC
q for k = 1

RC
q histogram, Eigendrop profile
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Experiments: the geometry of contagion

The Karate club: RC
q for k = 2

RC
q histogram, Eigendrop profile
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Experiments: the geometry of contagion

Conference Interaction: a weighted example

|V| = 102 individuals, |E| ≈ 103 interactions in one day,

On such large non-regular networks benchmarks (and similar ones, e.g.
airport, etc...) the forest-immunization can find better solutions than

Nethsield in comparable running time.
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Experiments: the geometry of contagion
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Random forests and networks analysis, Journal of Statistical Physics 173 (2018).
• (Forest immunization) L. A. , M. Emmerich, A. Gaudillière and I.
Gurewitsch to appear (2022+).

Luca Avena (Mathematics, Leiden) k-node Immunization Rome, May 30, 2022 65 / 65


	Compartmental models on networks
	Multiple-node immunization
	Our method: rooted forests & randomized k-centrality
	Experiments: the geometry of contagion

