A randomized k-centrality measure & applications to Networks Node Immunization

Luca Avena (Leiden, The Netherlands)

A day on random graphs, TorVergata, 30/05/2022 joint with Michael Emmerich, Alexandre Gaudillière and Irina Gurewitsch

Luca Avena (Mathematics, Leiden)

k-node Immunization

- **2** Multiple-node immunization
- **Our method: rooted forests & randomized** *k***-centrality**
- **4** Experiments: the geometry of contagion

Epidemic spread: a very brief modelling overview

Epidemic spread: a very brief modelling overview

- **Compartmental models :** Population of *n* individuals **divided into interacting compartments** (e.g. infected, susceptible, recovered, immune).
- **Historical note** : First models back to **D. Bernoulli (1760)**; "mature" multidisciplinary area in the XX century **Kermack-McKendrick theory** (1927); from the '90 on (*theory developments* + *data fitting*).

Epidemic spread: a very brief modelling overview

- **Compartmental models :** Population of *n* individuals **divided into interacting compartments** (e.g. infected, susceptible, recovered, immune).
- **Historical note** : First models back to **D. Bernoulli (1760)**; "mature" multidisciplinary area in the XX century **Kermack-McKendrick theory** (1927); from the '90 on (theory developments + data fitting).

Epidemic spread: a very brief modelling overview

- Compartmental models : Population of *n* individuals divided into interacting compartments (e.g. infected, susceptible, recovered, immune).
- **Historical note**: First models back to **D. Bernoulli (1760)**; "mature" multidisciplinary area in the XX century **Kermack-McKendrick theory** (1927); from the '90 on (theory developments + data fitting).

SIS model (2-compartments)

I =Infected, S =Susceptible.

 $\beta =$ Infection rate, $\mu =$ Recovery rate.

Interaction as "chemical reactions":

$$S+I \xrightarrow{\beta} 2I, \qquad I \xrightarrow{\mu} S.$$

Epidemic spread: a very brief modelling overview

- Compartmental models : Population of *n* individuals divided into interacting compartments (e.g. infected, susceptible, recovered, immune).
- **Historical note :** First models back to **D. Bernoulli (1760)**; "mature" multidisciplinary area in the XX century **Kermack-McKendrick theory** (1927); from the '90 on (theory developments + data fitting).

SIS model (2-compartments)

$$I =$$
Infected, $S =$ Susceptible.

 $\beta =$ Infection rate, $\mu =$ Recovery rate.

Interaction as "chemical reactions":

$$S + I \xrightarrow{\beta} 2I, \qquad I \xrightarrow{\mu} S.$$

Epidemic spread: a very brief modelling overview

- Compartmental models : Population of *n* individuals divided into interacting compartments (e.g. infected, susceptible, recovered, immune).
- **Historical note**: First models back to **D. Bernoulli (1760)**; "mature" multidisciplinary area in the XX century **Kermack-McKendrick theory** (1927); from the '90 on (theory developments + data fitting).

SIS model (2-compartments)

$$I = Infected,$$
 $S = Susceptible.$
 $\beta = Infection rate,$ $\mu = Recovery rate.$

Interaction as "chemical reactions":

$$S + I \xrightarrow{\beta} 2I, \qquad I \xrightarrow{\mu} S.$$

Basic Reprod. Nr. \Rightarrow $r := \beta/\mu =$ infect. rate \times av. durat. infectiousness

Epidemic spread: a very brief modelling overview

- Compartmental models : Population of *n* individuals divided into interacting compartments (e.g. infected, susceptible, recovered, immune).
- **Historical note :** First models back to **D. Bernoulli (1760)**; "mature" multidisciplinary area in the XX century **Kermack-McKendrick theory** (1927); from the '90 on (theory developments + data fitting).

SIS model (2-compartments)

$$I =$$
Infected, $S =$ Susceptible.
 $\beta =$ Infection rate, $\mu =$ Recovery rate.

Interaction as "chemical reactions":

$$S+I \xrightarrow{\beta} 2I, \qquad I \xrightarrow{\mu} S.$$

Basic Reprod. Nr. \Rightarrow $r := \beta/\mu =$ infect. rate \times av. durat. infectiousness

Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$, undirected finite graph with adjacency $\mathcal{A} := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = \mathbb{1}_{\{x \sim y\}}$.

Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$, undirected finite graph with adjacency $\mathcal{A} := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = \mathbb{1}_{\{x \sim y\}}$.

Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$, undirected finite graph with adjacency $\mathcal{A} := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = \mathbb{1}_{\{x \sim y\}}$.

Definition (**SIS evolution** (a non-linear system of *n* diff. eqs.))

Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$, undirected finite graph with adjacency $\mathcal{A} := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = \mathbb{1}_{\{x \sim y\}}$.

Definition (**SIS evolution** (a non-linear system of *n* diff. eqs.))

Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$, undirected finite graph with adjacency $\mathcal{A} := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = \mathbb{1}_{\{x \sim y\}}$.

Definition (**SIS evolution** (a non-linear system of *n* diff. eqs.))

Set $\rho_{\mathbf{x}}(\mathbf{t}) := \mathbb{P}(\text{ node } \mathbf{x} \text{ is infected at time } \mathbf{t}), \mathbf{x} \in \mathcal{V}, \text{ and fix}$ Infection rate $= \beta > 0$, Recovery rate $= \mu > 0$:

Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$, undirected finite graph with adjacency $\mathcal{A} := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = \mathbb{1}_{\{x \sim y\}}$.

Definition (**SIS evolution** (a non-linear system of *n* diff. eqs.))

Set $\rho_{\mathbf{x}}(\mathbf{t}) := \mathbb{P}(\text{ node } \mathbf{x} \text{ is infected at time } \mathbf{t}), \mathbf{x} \in \mathcal{V}, \text{ and fix}$ Infection rate $= \beta > 0$, Recovery rate $= \mu > 0$:

Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$, undirected finite graph with adjacency $\mathcal{A} := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = \mathbb{1}_{\{x \sim y\}}$.

Definition (**SIS evolution** (a non-linear system of *n* diff. eqs.))

Set $\rho_{\mathbf{x}}(\mathbf{t}) := \mathbb{P}(\text{ node } \mathbf{x} \text{ is infected at time } \mathbf{t}), \mathbf{x} \in \mathcal{V}, \text{ and fix}$ Infection rate $= \beta > 0$, Recovery rate $= \mu > 0$:

$$rac{\partial
ho_{\mathsf{x}}(t)}{\partial t} = -\mu
ho_{\mathsf{x}}(t) + \beta [1 -
ho_{\mathsf{x}}(t)] \sum_{\mathsf{y} \in \mathcal{Y}} \mathsf{a}_{\mathsf{x},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

with some in. cond. $\vec{\rho}(0) := (\rho_1(0), \dots, \rho_n(0)).$

Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$, undirected finite graph with adjacency $\mathcal{A} := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = \mathbb{1}_{\{x \sim y\}}$.

Definition (**SIS evolution** (a non-linear system of *n* diff. eqs.))

Set $\rho_{\mathbf{x}}(\mathbf{t}) := \mathbb{P}(\text{ node } \mathbf{x} \text{ is infected at time } \mathbf{t}), \mathbf{x} \in \mathcal{V}, \text{ and fix}$ Infection rate $= \beta > 0$, Recovery rate $= \mu > 0$:

$$rac{\partial
ho_{\mathsf{x}}(t)}{\partial t} = -\mu
ho_{\mathsf{x}}(t) + eta [1 -
ho_{\mathsf{x}}(t)] \sum_{\mathsf{y} \in \mathcal{V}} \mathsf{a}_{\mathsf{x},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

with some in. cond. $\vec{\rho}(0) := (\rho_1(0), ..., \rho_n(0)).$

Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$, undirected finite graph with adjacency $\mathcal{A} := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = \mathbb{1}_{\{x \sim y\}}$.

Definition (**SIS evolution** (a non-linear system of *n* diff. eqs.))

Set $\rho_{\mathbf{x}}(\mathbf{t}) := \mathbb{P}(\text{ node } \mathbf{x} \text{ is infected at time } \mathbf{t}), \mathbf{x} \in \mathcal{V}, \text{ and fix}$ Infection rate $= \beta > 0$, Recovery rate $= \mu > 0$:

$$rac{\partial
ho_{\mathsf{x}}(t)}{\partial t} = -\mu
ho_{\mathsf{x}}(t) + eta [1 -
ho_{\mathsf{x}}(t)] \sum_{\mathsf{y} \in \mathcal{Y}} \mathsf{a}_{\mathsf{x},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

with some in. cond. $\vec{\rho}(0) := (\rho_1(0), ..., \rho_n(0)).$

Remark:

Contact process on $\{0,1\}^V$ = microscopic Markovian version of SIS

Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$, undirected finite graph with adjacency $\mathcal{A} := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = \mathbb{1}_{\{x \sim y\}}$.

Definition (**SIS evolution** (a non-linear system of *n* diff. eqs.))

Set $\rho_{\mathbf{x}}(\mathbf{t}) := \mathbb{P}(\text{ node } \mathbf{x} \text{ is infected at time } \mathbf{t}), \mathbf{x} \in \mathcal{V}, \text{ and fix}$ Infection rate $= \beta > 0$, Recovery rate $= \mu > 0$:

$$rac{\partial
ho_{\mathsf{x}}(t)}{\partial t} = -\mu
ho_{\mathsf{x}}(t) + eta [1 -
ho_{\mathsf{x}}(t)] \sum_{\mathsf{y} \in \mathcal{Y}} \mathsf{a}_{\mathsf{x},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

with some in. cond. $\vec{\rho}(0) := (\rho_1(0), ..., \rho_n(0)).$

Remark:

Contact process on $\{0,1\}^V$ = microscopic Markovian version of SIS

Endemic state & largest eigenvalue

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_{x}(t)}{\partial t} = -\rho_{x}(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{y}(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{x}(t) \rho_{y}(t)$$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_{x}(t)}{\partial t} = -\rho_{x}(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{y}(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{x}(t) \rho_{y}(t)$$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_x(t)}{\partial t} = -\rho_x(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_y(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_x(t) \rho_y(t)$$

Outbreak threshold estimate (linearization) :

$$\frac{\partial \rho_{x}(t)}{\partial t} \leq -\rho_{x}(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{y}(t)$$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_{x}(t)}{\partial t} = -\rho_{x}(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{y}(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{x}(t) \rho_{y}(t)$$

Outbreak threshold estimate (linearization) :

$$rac{\partial
ho_{\mathsf{X}}(t)}{\partial t} \leq -
ho_{\mathsf{X}}(t) + r\sum_{\mathsf{y}\in\mathcal{V}} \mathsf{a}_{\mathsf{x},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_x(t)}{\partial t} = -\rho_x(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_y(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_x(t) \rho_y(t)$$

Outbreak threshold estimate (linearization) :

$$rac{\partial
ho_{\mathsf{X}}(t)}{\partial t} \leq -
ho_{\mathsf{X}}(t) + r\sum_{\mathsf{y}\in\mathcal{V}} \mathsf{a}_{\mathsf{x},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

From which, if $\vec{\rho}(t) := (\rho_1(t), \dots, \rho_n(t))$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_x(t)}{\partial t} = -\rho_x(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_y(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_x(t) \rho_y(t)$$

Outbreak threshold estimate (linearization) :

$$rac{\partial
ho_{\mathsf{x}}(t)}{\partial t} \leq -
ho_{\mathsf{x}}(t) + r \sum_{\mathsf{y} \in \mathcal{V}} \mathsf{a}_{\mathsf{x},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

From which, if $\vec{\rho}(t) := (\rho_1(t), \dots, \rho_n(t))$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_{x}(t)}{\partial t} = -\rho_{x}(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{y}(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{x}(t) \rho_{y}(t)$$

Outbreak threshold estimate (linearization) :

$$rac{\partial
ho_{\mathsf{X}}(t)}{\partial t} \leq -
ho_{\mathsf{X}}(t) + r \sum_{\mathsf{y} \in \mathcal{V}} \mathsf{a}_{\mathsf{X},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

From which, if $\vec{\rho}(t) := (\rho_1(t), \dots, \rho_n(t)) \Rightarrow \vec{\rho}(t) \le \vec{\rho}(0) e^{(r\mathcal{A} - \mathsf{Id}_n)t}$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_x(t)}{\partial t} = -\rho_x(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_y(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_x(t) \rho_y(t)$$

Outbreak threshold estimate (linearization) :

$$rac{\partial
ho_{\mathsf{x}}(t)}{\partial t} \leq -
ho_{\mathsf{x}}(t) + r \sum_{\mathsf{y} \in \mathcal{V}} \mathsf{a}_{\mathsf{x},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

From which, if $\vec{\rho}(t) := (\rho_1(t), \dots, \rho_n(t)) \Rightarrow \vec{\rho}(t) \le \vec{\rho}(0)e^{(r\mathcal{A} - \mathsf{Id}_n)t}$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_{x}(t)}{\partial t} = -\rho_{x}(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{y}(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{x}(t) \rho_{y}(t)$$

Outbreak threshold estimate (linearization) :

$$rac{\partial
ho_{\mathsf{x}}(t)}{\partial t} \leq -
ho_{\mathsf{x}}(t) + r \sum_{\mathsf{y} \in \mathcal{V}} \mathsf{a}_{\mathsf{x},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

From which, if $\vec{\rho}(t) := (\rho_1(t), \dots, \rho_n(t)) \Rightarrow \vec{\rho}(t) \le \vec{\rho}(0)e^{(r\mathcal{A} - \mathsf{Id}_n)t}$ Max eigenvalue λ_{max} of \mathcal{A} :

If $r\lambda_{max} - 1 < 0 \Rightarrow \rho_x(t)$ decays exponentially fast to 0, for any $x \in \mathcal{V}$.

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_{x}(t)}{\partial t} = -\rho_{x}(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{y}(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{x}(t) \rho_{y}(t)$$

Outbreak threshold estimate (linearization) :

$$rac{\partial
ho_{\mathsf{x}}(t)}{\partial t} \leq -
ho_{\mathsf{x}}(t) + r \sum_{\mathsf{y} \in \mathcal{V}} \mathsf{a}_{\mathsf{x},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

From which, if $\vec{\rho}(t) := (\rho_1(t), \dots, \rho_n(t)) \Rightarrow \vec{\rho}(t) \le \vec{\rho}(0)e^{(r\mathcal{A} - \mathsf{Id}_n)t}$ Max eigenvalue λ_{max} of \mathcal{A} :

If $r\lambda_{max} - 1 < 0 \Rightarrow \rho_x(t)$ decays exponentially fast to 0, for any $x \in \mathcal{V}$.

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_{x}(t)}{\partial t} = -\rho_{x}(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{y}(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{x}(t) \rho_{y}(t)$$

Outbreak threshold estimate (linearization) :

$$rac{\partial
ho_{\mathsf{X}}(t)}{\partial t} \leq -
ho_{\mathsf{X}}(t) + r \sum_{\mathsf{y} \in \mathcal{V}} \mathsf{a}_{\mathsf{X},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

From which, if $\vec{\rho}(t) := (\rho_1(t), \dots, \rho_n(t)) \Rightarrow \vec{\rho}(t) \le \vec{\rho}(0)e^{(r\mathcal{A} - \mathsf{Id}_n)t}$ Max eigenvalue λ_{max} of \mathcal{A} :

If $r\lambda_{max} - 1 < 0 \Rightarrow \rho_x(t)$ decays exponentially fast to 0, for any $x \in \mathcal{V}$. \Rightarrow critical parameter for the endemic state:

$$r_{c} \geq 1/\lambda_{max}.$$

Endemic state & largest eigenvalue

SIS evolution $\rho_x(t) := \mathbb{P}(\text{ node } x \text{ is infected at time } t), \forall x \in \mathcal{V},$ rescaling time by $1/\mu$ and setting $\mathbf{r} := \beta/\mu$:

$$\frac{\partial \rho_{x}(t)}{\partial t} = -\rho_{x}(t) + r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{y}(t) - r \sum_{y \in \mathcal{V}} a_{x,y} \rho_{x}(t) \rho_{y}(t)$$

Outbreak threshold estimate (linearization) :

$$rac{\partial
ho_{\mathsf{X}}(t)}{\partial t} \leq -
ho_{\mathsf{X}}(t) + r \sum_{\mathsf{y} \in \mathcal{V}} \mathsf{a}_{\mathsf{X},\mathsf{y}}
ho_{\mathsf{y}}(t)$$

From which, if $\vec{\rho}(t) := (\rho_1(t), \dots, \rho_n(t)) \Rightarrow \vec{\rho}(t) \le \vec{\rho}(0)e^{(r\mathcal{A} - \mathsf{Id}_n)t}$ Max eigenvalue λ_{max} of \mathcal{A} :

If $r\lambda_{max} - 1 < 0 \Rightarrow \rho_x(t)$ decays exponentially fast to 0, for any $x \in \mathcal{V}$. \Rightarrow critical parameter for the endemic state:

$$r_c \geq 1/\lambda_{max}.$$

Multiple-node immunization

Multiple-node immunization & max eigendrop

Multiple-node immunization & max eigendrop

• **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".

Multiple-node immunization & max eigendrop

• **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".

Multiple-node immunization & max eigendrop

- **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".
- Problem not well-posed: 1) limited rigorous analysis 2) heuristics ideas based on simulations with lots of other problems 3) choosing maximal degree nodes is not justified already for k = 1.

- **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".
- Problem not well-posed: 1) limited rigorous analysis 2) heuristics ideas based on simulations with lots of other problems 3) choosing maximal degree nodes is not justified already for k = 1.

- **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".
- Problem not well-posed: 1) limited rigorous analysis 2) heuristics ideas based on simulations with lots of other problems 3) choosing maximal degree nodes is not justified already for k = 1.
- Max eigendrop of adjacency: since r_c ≥ 1/λ_{max}, good strategy: look for sets of k−nodes from which after removal the reduced network has minimal largest eigenvalue.

- **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".
- Problem not well-posed: 1) limited rigorous analysis 2) heuristics ideas based on simulations with lots of other problems 3) choosing maximal degree nodes is not justified already for k = 1.
- Max eigendrop of adjacency: since r_c ≥ 1/λ_{max}, good strategy: look for sets of k-nodes from which after removal the reduced network has minimal largest eigenvalue.

- **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".
- Problem not well-posed: 1) limited rigorous analysis 2) heuristics ideas based on simulations with lots of other problems 3) choosing maximal degree nodes is not justified already for k = 1.
- Max eigendrop of adjacency: since r_c ≥ 1/λ_{max}, good strategy: look for sets of k-nodes from which after removal the reduced network has minimal largest eigenvalue. Equivalently: find S ⊂ V, with |S| = k maximising

 $\Delta_k \lambda(\mathcal{S}) := \lambda_{max}(\mathcal{V}) - \lambda_{max}(\mathcal{V} \setminus \mathcal{S}) = \mathbf{k} - \mathbf{eigendrop}$

- **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".
- Problem not well-posed: 1) limited rigorous analysis 2) heuristics ideas based on simulations with lots of other problems 3) choosing maximal degree nodes is not justified already for k = 1.
- Max eigendrop of adjacency: since r_c ≥ 1/λ_{max}, good strategy: look for sets of k-nodes from which after removal the reduced network has minimal largest eigenvalue. Equivalently: find S ⊂ V, with |S| = k maximising

$$\Delta_k \lambda(\mathcal{S}) := \lambda_{max}(\mathcal{V}) - \lambda_{max}(\mathcal{V} \setminus \mathcal{S}) = \mathbf{k} - \mathbf{eigendrop}$$

- **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".
- Problem not well-posed: 1) limited rigorous analysis 2) heuristics ideas based on simulations with lots of other problems 3) choosing maximal degree nodes is not justified already for k = 1.
- Max eigendrop of adjacency: since r_c ≥ 1/λ_{max}, good strategy: look for sets of k-nodes from which after removal the reduced network has minimal largest eigenvalue. Equivalently: find S ⊂ V, with |S| = k maximising

$$\Delta_k \lambda(\mathcal{S}) := \lambda_{max}(\mathcal{V}) - \lambda_{max}(\mathcal{V} \setminus \mathcal{S}) = \mathsf{k} - \mathsf{eigendrop}$$

Computational issues with max eigendrop:

• No poly exact algorithm for such an optimization problem.

- **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".
- Problem not well-posed: 1) limited rigorous analysis 2) heuristics ideas based on simulations with lots of other problems 3) choosing maximal degree nodes is not justified already for k = 1.
- Max eigendrop of adjacency: since r_c ≥ 1/λ_{max}, good strategy: look for sets of k-nodes from which after removal the reduced network has minimal largest eigenvalue. Equivalently: find S ⊂ V, with |S| = k maximising

$$\Delta_k \lambda(\mathcal{S}) := \lambda_{max}(\mathcal{V}) - \lambda_{max}(\mathcal{V} \setminus \mathcal{S}) = \mathbf{k} - \mathbf{eigendrop}$$

Computational issues with max eigendrop:

• No poly exact algorithm for such an optimization problem.

- **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".
- Problem not well-posed: 1) limited rigorous analysis 2) heuristics ideas based on simulations with lots of other problems 3) choosing maximal degree nodes is not justified already for k = 1.
- Max eigendrop of adjacency: since r_c ≥ 1/λ_{max}, good strategy: look for sets of k-nodes from which after removal the reduced network has minimal largest eigenvalue. Equivalently: find S ⊂ V, with |S| = k maximising

$$\Delta_k \lambda(\mathcal{S}) := \lambda_{max}(\mathcal{V}) - \lambda_{max}(\mathcal{V} \setminus \mathcal{S}) = \mathbf{k} - \mathbf{eigendrop}$$

Computational issues with max eigendrop:

- No poly exact algorithm for such an optimization problem.
- Chen Chen et al. (2016) proved approx. equivalence with so-called Shield-Value optimization which is NP complete.

Luca Avena (Mathematics, Leiden)

k-node Immunization

- **Goal:** Identify & remove set of *k*-nodes to empede the "*endemic outbreak*".
- Problem not well-posed: 1) limited rigorous analysis 2) heuristics ideas based on simulations with lots of other problems 3) choosing maximal degree nodes is not justified already for k = 1.
- Max eigendrop of adjacency: since r_c ≥ 1/λ_{max}, good strategy: look for sets of k-nodes from which after removal the reduced network has minimal largest eigenvalue. Equivalently: find S ⊂ V, with |S| = k maximising

$$\Delta_k \lambda(\mathcal{S}) := \lambda_{max}(\mathcal{V}) - \lambda_{max}(\mathcal{V} \setminus \mathcal{S}) = \mathbf{k} - \mathbf{eigendrop}$$

Computational issues with max eigendrop:

- No poly exact algorithm for such an optimization problem.
- Chen Chen et al. (2016) proved approx. equivalence with so-called Shield-Value optimization which is NP complete.

Max *k*-eigendrop, ShieldValue & Netshield (Chen Chen et al. (2016))

Max *k*-eigendrop, ShieldValue & Netshield (Chen Chen et al. (2010))

• Shield Value : for $S \subset V$, with |S| = k define

$$SV_k(S) := 2\lambda_{max} \sum_{x \in S} u^2(x) - \sum_{x,y \in S} a_{x,y} u(x) u(y)$$

("eingescore" – "repellence"),

with *u* principal eigenvector $(Au = \lambda_{max}u)$.

• Shield Value : for $\mathcal{S} \subset \mathcal{V}$, with $|\mathcal{S}| = k$ define

$$SV_k(S) := 2\lambda_{max} \sum_{x \in S} u^2(x) - \sum_{x,y \in S} a_{x,y} u(x) u(y)$$

("eingescore" – "repellence"),

with u principal eigenvector ($Au = \lambda_{max}u$).

• Shield Value : for $\mathcal{S} \subset \mathcal{V}$, with $|\mathcal{S}| = k$ define

$$SV_k(S) := 2\lambda_{max} \sum_{x \in S} u^2(x) - \sum_{x,y \in S} a_{x,y} u(x) u(y)$$

("eingescore" – "repellence"),

with u principal eigenvector ($Au = \lambda_{max}u$).

• Shield Value approximates max *k*-eigendrop:

 $\Delta_k \lambda(S) \approx SV_k(S).$

• Maximising shieldvalue is NP-complete problem.

• Shield Value : for $\mathcal{S} \subset \mathcal{V}$, with $|\mathcal{S}| = k$ define

$$SV_k(S) := 2\lambda_{max} \sum_{x \in S} u^2(x) - \sum_{x,y \in S} a_{x,y} u(x) u(y)$$

("eingescore" – "repellence"),

with u principal eigenvector ($Au = \lambda_{max}u$).

• Shield Value approximates max *k*-eigendrop:

$$\Delta_k \lambda(S) \approx SV_k(S).$$

• Maximising shieldvalue is NP-complete problem.

• Shield Value : for $\mathcal{S} \subset \mathcal{V}$, with $|\mathcal{S}| = k$ define

$$SV_k(S) := 2\lambda_{max} \sum_{x \in S} u^2(x) - \sum_{x,y \in S} a_{x,y} u(x) u(y)$$

("eingescore" – "repellence"),

with u principal eigenvector ($Au = \lambda_{max}u$).

• Shield Value approximates max *k*-eigendrop:

$$\Delta_k \lambda(S) \approx SV_k(S).$$

- Maximising shieldvalue is NP-complete problem.
- Netshield : greedy fast algorithm which finds near-to-optimal solutions in

O(nk + m) running time,

with m = number of edges.

• Shield Value : for $\mathcal{S} \subset \mathcal{V}$, with $|\mathcal{S}| = k$ define

$$SV_k(S) := 2\lambda_{max} \sum_{x \in S} u^2(x) - \sum_{x,y \in S} a_{x,y} u(x) u(y)$$

("eingescore" – "repellence"),

with u principal eigenvector ($Au = \lambda_{max}u$).

• Shield Value approximates max *k*-eigendrop:

$$\Delta_k \lambda(S) \approx SV_k(S).$$

- Maximising shieldvalue is NP-complete problem.
- Netshield : greedy fast algorithm which finds near-to-optimal solutions in

$$O(nk + m)$$
 running time,

with m = number of edges.

Our randomized immunization method: Random Rooted Spanning Forests & randomized k-centrality

Graph Laplacian and associated RW

Weighted Directed Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, with $|\mathcal{V}| = n$ and weighted adjacency $\mathcal{A}_w := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = w(x, y) \mathbb{1}_{\{x \neq y\}}$.

Graph Laplacian and associated RW

Weighted Directed Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, with $|\mathcal{V}| = n$ and weighted adjacency $\mathcal{A}_w := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = w(x, y) \mathbb{1}_{\{x \neq y\}}$.

Definition (Graph Laplacian)

It is the $n \times n$ matrix $-\mathcal{L}_w$ with :

$$\mathcal{L}_w(x,y) = \begin{cases} w(x,y) & \text{if } x \neq y \in \mathcal{V}, \\ -\sum_{z \neq x} w(x,z) & \text{on the diagonal.} \end{cases}$$

In particular, $\mathcal{L}_w = \mathcal{A}_w - \mathcal{D}_w = (weighted)$ "adjacency" – "degree"

Graph Laplacian and associated RW

Weighted Directed Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, with $|\mathcal{V}| = n$ and weighted adjacency $\mathcal{A}_w := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = w(x, y) \mathbb{1}_{\{x \neq y\}}$.

Definition (Graph Laplacian)

It is the $n \times n$ matrix $-\mathcal{L}_w$ with :

$$\mathcal{L}_w(x,y) = egin{cases} w(x,y) & ext{if } x
eq y \in \mathcal{V}, \ -\sum_{z
eq x} w(x,z) & ext{on the diagonal.} \end{cases}$$

In particular, $\mathcal{L}_w = \mathcal{A}_w - \mathcal{D}_w =$ (weighted) "adjacency" - "degree"

Graph Laplacian and associated RW

Weighted Directed Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, with $|\mathcal{V}| = n$ and weighted adjacency $\mathcal{A}_w := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = w(x, y) \mathbb{1}_{\{x \neq y\}}$.

Definition (Graph Laplacian)

It is the $n \times n$ matrix $-\mathcal{L}_w$ with :

$$\mathcal{L}_w(x,y) = \begin{cases} w(x,y) & \text{if } x \neq y \in \mathcal{V}, \\ -\sum_{z \neq x} w(x,z) & \text{on the diagonal.} \end{cases}$$

In particular, $\mathcal{L}_w = \mathcal{A}_w - \mathcal{D}_w =$ (weighted) "adjacency" - "degree"

Definition (Associated Random Walk)

Let $X = (X(t))_{t \ge 0}$ be the continuous-time Markov chain on \mathcal{V} with infinitesimal generator \mathcal{L}_w .

Graph Laplacian and associated RW

Weighted Directed Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, with $|\mathcal{V}| = n$ and weighted adjacency $\mathcal{A}_w := (a_{x,y})_{x,y \in \mathcal{V}}$ s.t. $a_{x,y} = w(x, y) \mathbb{1}_{\{x \neq y\}}$.

Definition (Graph Laplacian)

It is the $n \times n$ matrix $-\mathcal{L}_w$ with :

$$\mathcal{L}_w(x,y) = egin{cases} w(x,y) & ext{if } x
eq y \in \mathcal{V}, \\ -\sum_{z
eq x} w(x,z) & ext{on the diagonal.} \end{cases}$$

In particular, $\mathcal{L}_w = \mathcal{A}_w - \mathcal{D}_w =$ (weighted) "adjacency" - "degree"

Definition (Associated Random Walk)

Let $X = (X(t))_{t \ge 0}$ be the continuous-time Markov chain on \mathcal{V} with infinitesimal generator \mathcal{L}_w .

Luca Avena (Mathematics, Leiden)

RW and a determinantal set of nodes

Definition (Set of Roots \mathcal{R}_q of intesity q- A.G.

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, and a parameter q > 0, let $\mathcal{R}_q \subseteq \mathcal{V}$ be a random subset of nodes with law characterized by:

$$\mathbb{P}\left(\mathcal{A}\subseteq\mathcal{R}_q
ight)=\det\left[K_q
ight]_{\mathcal{A}},\qquad ext{for any }\mathcal{A}\subseteq\mathcal{V},$$

with

$$\mathcal{K}_q(x,y) := \mathbf{P}_x(X(T_q) = y) = q(q \operatorname{Id} - \mathcal{L}_w)^{-1}(x,y)$$

and T_q an independent exponential random variable of parameter q.

Definition (Set of Roots \mathcal{R}_q of intesity q- A.G. (2018))

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, and a parameter q > 0, let $\mathcal{R}_q \subseteq \mathcal{V}$ be a random subset of nodes with law characterized by:

$$\mathbb{P}\left(\mathcal{A}\subseteq\mathcal{R}_{q}
ight)=\det\left[\mathcal{K}_{q}
ight]_{\mathcal{A}},\qquad ext{ for any }\mathcal{A}\subseteq\mathcal{V},$$

with

$$\mathcal{K}_q(x,y) := \mathbf{P}_x(X(\mathcal{T}_q) = y) = q(q \operatorname{Id} - \mathcal{L}_w)^{-1}(x,y)$$

and T_q an independent exponential random variable of parameter q.

Definition (Set of Roots \mathcal{R}_q of intesity q- A.G. (2018))

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, and a parameter q > 0, let $\mathcal{R}_q \subseteq \mathcal{V}$ be a random subset of nodes with law characterized by:

$$\mathbb{P}\left(\mathcal{A}\subseteq\mathcal{R}_{q}
ight)=\det\left[K_{q}
ight]_{\mathcal{A}},\qquad ext{ for any }\mathcal{A}\subseteq\mathcal{V},$$

with

$$\mathcal{K}_q(x,y) := \mathbf{P}_x(X(\mathcal{T}_q) = y) = q(q \operatorname{Id} - \mathcal{L}_w)^{-1}(x,y)$$

and T_q an independent exponential random variable of parameter q.

Repelling roots when
$$w(x, y) = w(y, x)$$

 $\mathbb{P}(\{x, y\} \subseteq \mathcal{R}_q) \le \mathbb{P}(x \in \mathcal{R}_q) \mathbb{P}(y \in \mathcal{R}_q)$

Definition (Set of Roots \mathcal{R}_q of intesity q- A.G. (2018))

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, and a parameter q > 0, let $\mathcal{R}_q \subseteq \mathcal{V}$ be a random subset of nodes with law characterized by:

$$\mathbb{P}\left(\mathcal{A}\subseteq\mathcal{R}_{q}
ight)=\det\left[\mathcal{K}_{q}
ight]_{\mathcal{A}},\qquad ext{ for any }\mathcal{A}\subseteq\mathcal{V},$$

with

$$\mathcal{K}_q(x,y) := \mathbf{P}_x(X(\mathcal{T}_q) = y) = q(q \operatorname{Id} - \mathcal{L}_w)^{-1}(x,y)$$

and T_q an independent exponential random variable of parameter q.

Repelling roots when w(x, y) = w(y, x)

$$\mathbb{P}\left(\{x,y\}\subseteq\mathcal{R}_q
ight)\leq\mathbb{P}\left(x\in\mathcal{R}_q
ight)\mathbb{P}\left(y\in\mathcal{R}_q
ight)$$

\mathcal{R}_q from Random Rooted Forests

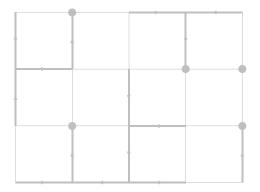
Forest Space: for $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, set

 $\mathcal{F}_{\mathcal{G}} := \{ \text{ spanning rooted forests on } \mathcal{G} \}$

\mathcal{R}_q from Random Rooted Forests

Forest Space: for $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, set

$$\mathcal{F}_\mathcal{G}:=\{ ext{ spanning rooted forests on }\mathcal{G}\}$$



A spanning rooted forest on a square grid.

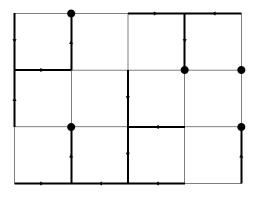
Luca Avena (Mathematics, Leiden)

k-node Immunization

\mathcal{R}_q from Random Rooted Forests

Forest Space: for $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, set

$$\mathcal{F}_\mathcal{G}:=\{ ext{ spanning rooted forests on }\mathcal{G}\}$$



A spanning rooted forest on a square grid.

Luca Avena (Mathematics, Leiden)

k-node Immunization

\mathcal{R}_q from Random Rooted Forests

Theorem (Random Forest with Determinantal Roots - A.G. (2018))

Fix q > 0 and \mathcal{G} . Consider the following probability measure on $\mathcal{F}_{\mathcal{G}}$:

$$u_q(F) := rac{q^{nr. \ of \ trees} \prod_{e \in F} w(e)}{Z(q)}, \quad F \in \mathcal{F}_\mathcal{G},$$

\mathcal{R}_q from Random Rooted Forests

Theorem (Random Forest with Determinantal Roots - A.G. (2018))

Fix q > 0 and \mathcal{G} . Consider the following probability measure on $\mathcal{F}_{\mathcal{G}}$:

$$u_q(F) := rac{q^{\textit{nr. of trees}} \prod_{e \in F} w(e)}{Z(q)}, \quad F \in \mathcal{F}_\mathcal{G},$$

Then,

the set of roots of the random forest with law ν_q is the determinatal point process \mathcal{R}_q with kernel K_q

Recall:

•
$$\mathbb{P}\left(\mathcal{A}\subseteq\mathcal{R}_q\right)=\det\left[\mathcal{K}_q\right]_{\mathcal{A}},$$
 for any $\mathcal{A}\subseteq\mathcal{V},$

• $K_q(x, y) = \mathbf{P}_x(X(T_q) = y) = RW$ kernel observed at time-scale 1/q.

\mathcal{R}_q from Random Rooted Forests

Theorem (Random Forest with Determinantal Roots - A.G. (2018))

Fix q > 0 and \mathcal{G} . Consider the following probability measure on $\mathcal{F}_{\mathcal{G}}$:

$$u_q(F) := rac{q^{\textit{nr. of trees}} \prod_{e \in F} w(e)}{Z(q)}, \quad F \in \mathcal{F}_\mathcal{G},$$

Then,

the set of roots of the random forest with law ν_q is the determinatal point process \mathcal{R}_q with kernel \mathcal{K}_q

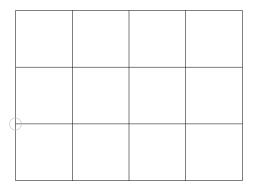
Recall:

•
$$\mathbb{P}\left(\mathcal{A}\subseteq\mathcal{R}_q\right)=\det\left[\mathcal{K}_q\right]_{\mathcal{A}},$$
 for any $\mathcal{A}\subseteq\mathcal{V},$

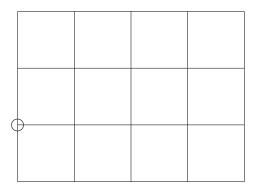
• $K_q(x, y) = \mathbf{P}_x(X(T_q) = y) = RW$ kernel observed at time-scale 1/q.

Sampling \mathcal{R}_q with Wilson's algorithm

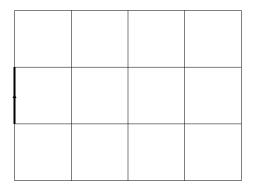
Sampling \mathcal{R}_q with Wilson's algorithm



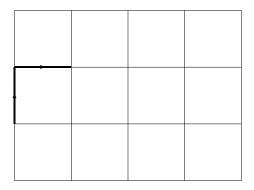
Sampling \mathcal{R}_q with Wilson's algorithm



Sampling \mathcal{R}_q with Wilson's algorithm



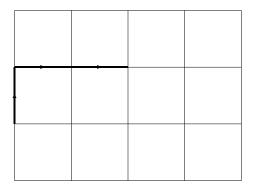
Sampling \mathcal{R}_q with Wilson's algorithm



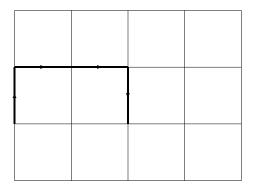
Build dynamically a rooted spanning forest using **loop-erased random walks** killed at rate *q*.

15 / 65

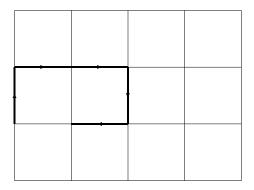
Sampling \mathcal{R}_q with Wilson's algorithm



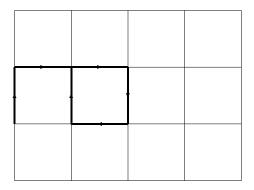
Sampling \mathcal{R}_q with Wilson's algorithm



Sampling \mathcal{R}_q with Wilson's algorithm



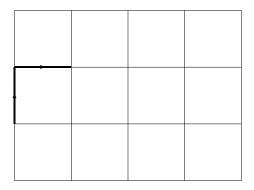
Sampling \mathcal{R}_q with Wilson's algorithm



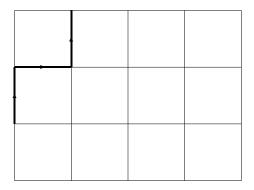
Build dynamically a rooted spanning forest using **loop-erased random walks** killed at rate *q*.

19 / 65

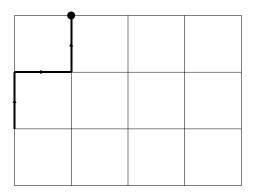
Sampling \mathcal{R}_q with Wilson's algorithm



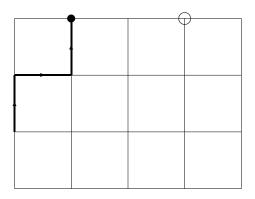
Sampling \mathcal{R}_q with Wilson's algorithm



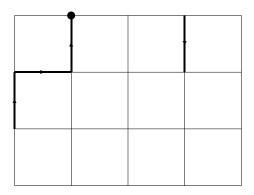
Sampling \mathcal{R}_q with Wilson's algorithm



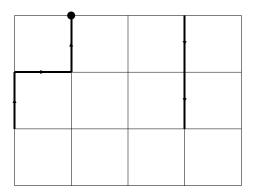
Sampling \mathcal{R}_q with Wilson's algorithm



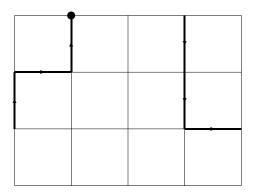
Sampling \mathcal{R}_q with Wilson's algorithm



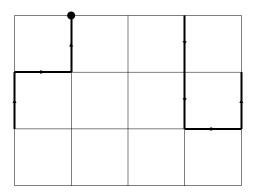
Sampling \mathcal{R}_q with Wilson's algorithm



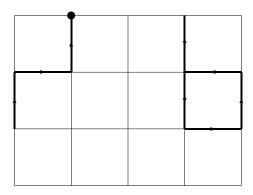
Sampling \mathcal{R}_q with Wilson's algorithm



Sampling \mathcal{R}_q with Wilson's algorithm



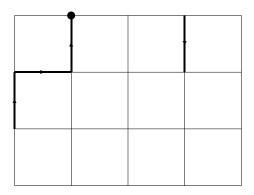
Sampling \mathcal{R}_q with Wilson's algorithm



Build dynamically a rooted spanning forest using loop-erased random walks killed at rate q.

28 / 65

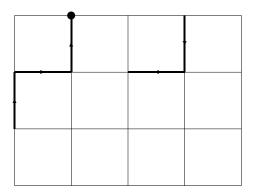
Sampling \mathcal{R}_q with Wilson's algorithm



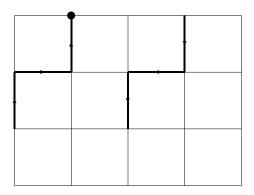
Build dynamically a rooted spanning forest using **loop-erased random walks** killed at rate *q*.

29 / 65

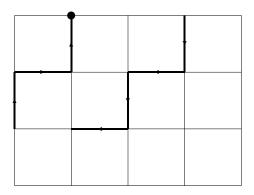
Sampling \mathcal{R}_q with Wilson's algorithm



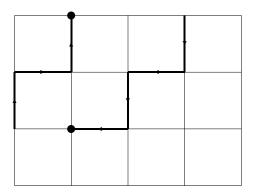
Sampling \mathcal{R}_q with Wilson's algorithm



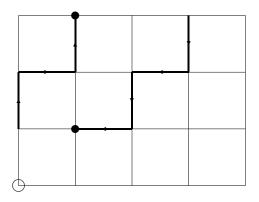
Sampling \mathcal{R}_q with Wilson's algorithm



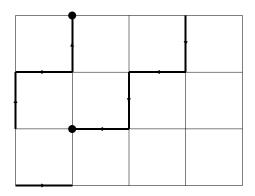
Sampling \mathcal{R}_q with Wilson's algorithm



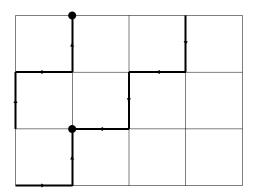
Sampling \mathcal{R}_q with Wilson's algorithm



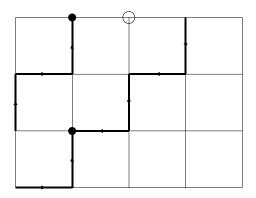
Sampling \mathcal{R}_q with Wilson's algorithm



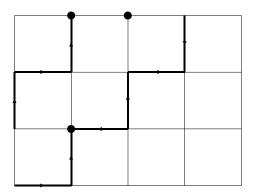
Sampling \mathcal{R}_q with Wilson's algorithm



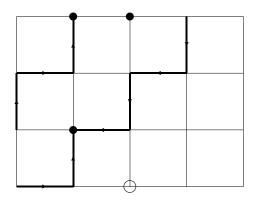
Sampling \mathcal{R}_q with Wilson's algorithm



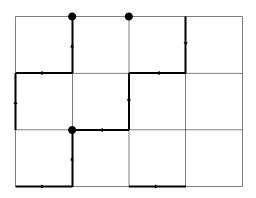
Sampling \mathcal{R}_q with Wilson's algorithm



Sampling \mathcal{R}_q with Wilson's algorithm



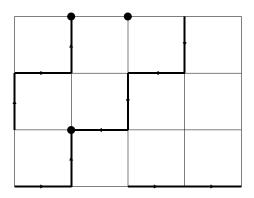
Sampling \mathcal{R}_q with Wilson's algorithm



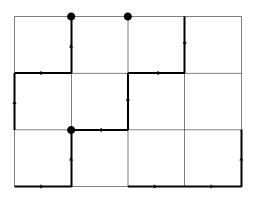
Build dynamically a rooted spanning forest using **loop-erased random walks** killed at rate q.

40 / 65

Sampling \mathcal{R}_q with Wilson's algorithm



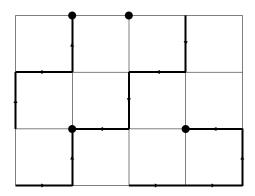
Sampling \mathcal{R}_q with Wilson's algorithm



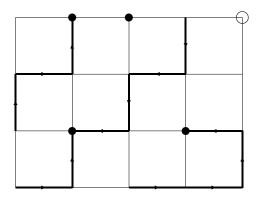
Build dynamically a rooted spanning forest using **loop-erased random walks** killed at rate q.

42 / 65

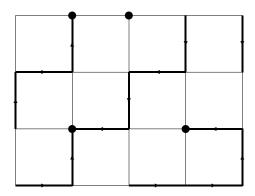
Sampling \mathcal{R}_q with Wilson's algorithm



Sampling \mathcal{R}_q with Wilson's algorithm



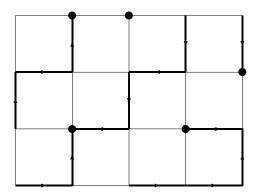
Sampling \mathcal{R}_q with Wilson's algorithm



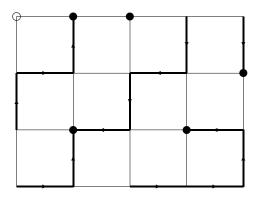
Build dynamically a rooted spanning forest using loop-erased random walks killed at rate q.

45 / 65

Sampling \mathcal{R}_q with Wilson's algorithm



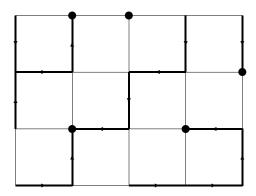
Sampling \mathcal{R}_q with Wilson's algorithm



Build dynamically a rooted spanning forest using loop-erased random walks killed at rate q.

47 / 65

Sampling \mathcal{R}_q with Wilson's algorithm



Build dynamically a rooted spanning forest using loop-erased random walks killed at rate q.

48 / 65

\mathcal{R}_q : a flexible set of well-distributed nodes

Theorem (Distribution of number of roots -

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, consider the set of Roots \mathcal{R}_q with kernel K_q . Then its cardinality is a non-homogeneous Binomial :

$$|\mathcal{R}_q| = \sum_{i=1}^n Y_i, \qquad Y_i \sim Bernoulli\left(rac{q}{q+ heta_i}
ight)$$

with θ_i 's eigenvalues of the graph Laplacian $-\mathcal{L}_w$.

Theorem (Distribution of number of roots - A.G. (2018))

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, consider the set of Roots \mathcal{R}_q with kernel K_q . Then its cardinality is a non-homogeneous Binomial :

$$|\mathcal{R}_q| = \sum_{i=1}^n Y_i, \qquad Y_i \sim Bernoulli\left(rac{q}{q+ heta_i}
ight)$$

with θ_i 's eigenvalues of the graph Laplacian $-\mathcal{L}_w$.

Theorem (Distribution of number of roots - A.G. (2018))

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, consider the set of Roots \mathcal{R}_q with kernel K_q . Then its cardinality is a non-homogeneous Binomial :

$$|\mathcal{R}_q| = \sum_{i=1}^n Y_i, \qquad Y_i \sim Bernoulli\left(rac{q}{q+ heta_i}
ight)$$

with θ_i 's eigenvalues of the graph Laplacian $-\mathcal{L}_w$.

Note: $|\mathcal{R}_q| = n$ if $q \to \infty$ and $|\mathcal{R}_q| = 1$ if $q \to 0$.

Theorem (Distribution of number of roots - A.G. (2018))

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, consider the set of Roots \mathcal{R}_q with kernel K_q . Then its cardinality is a non-homogeneous Binomial :

$$|\mathcal{R}_q| = \sum_{i=1}^n Y_i, \qquad Y_i \sim Bernoulli\left(rac{q}{q+ heta_i}
ight)$$

with θ_i 's eigenvalues of the graph Laplacian $-\mathcal{L}_w$.

Note: $|\mathcal{R}_q| = n$ if $q \to \infty$ and $|\mathcal{R}_q| = 1$ if $q \to 0$.

Theorem (Distribution of number of roots - A.G. (2018))

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, consider the set of Roots \mathcal{R}_q with kernel K_q . Then its cardinality is a non-homogeneous Binomial :

$$|\mathcal{R}_q| = \sum_{i=1}^n Y_i, \qquad Y_i \sim Bernoulli\left(rac{q}{q+ heta_i}
ight)$$

with θ_i 's eigenvalues of the graph Laplacian $-\mathcal{L}_w$.

Note: $|\mathcal{R}_q| = n$ if $q \to \infty$ and $|\mathcal{R}_q| = 1$ if $q \to 0$.

Efficient sampling of exactly k roots

Wilson's algorithm allows to sample \mathcal{R}_q for fixed q, we developed

- a coupled algorithm to sample a trajectory $(\mathcal{R}_q)_{q\in[0,\infty)}$,
- and $\mathcal{R}_k := \mathcal{R}_q$ conditioned on having k roots ,
 - in O(n) running time if k is a fraction of n.

Luca Avena (Mathematics, Leiden)

Theorem (Distribution of number of roots - A.G. (2018))

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, consider the set of Roots \mathcal{R}_q with kernel K_q . Then its cardinality is a non-homogeneous Binomial :

$$|\mathcal{R}_q| = \sum_{i=1}^n Y_i, \qquad Y_i \sim Bernoulli\left(rac{q}{q+ heta_i}
ight)$$

with θ_i 's eigenvalues of the graph Laplacian $-\mathcal{L}_w$.

Note: $|\mathcal{R}_q| = n$ if $q \to \infty$ and $|\mathcal{R}_q| = 1$ if $q \to 0$.

Efficient sampling of exactly k roots

Wilson's algorithm allows to sample \mathcal{R}_q for fixed q, we developed

- a coupled algorithm to sample a trajectory $(\mathcal{R}_q)_{q \in [0,\infty)}$,
- and $\mathcal{R}_k := \mathcal{R}_q$ conditioned on having k roots,
 - in O(n) running time if k is a fraction of n.

Luca Avena (Mathematics, Leiden)

A generalized Page-Rank *k*-centrality

Theorem (Roots are at local equilibrium -

Fix $k \leq n$, any partition $\{B_1, \ldots, B_k\}$ of \mathcal{V} into k blocks, and any $x_i \in B_i$, for $i = 1, \ldots, k$. Then:

$$\mathbb{P}\Big(\mathcal{R}_k = \{x_1, \cdots, x_k\} \Big| \mathcal{P}_q = \{B_1, \ldots, B_k\}\Big) = \prod_{i=1}^{k} \mu_{B_i}(x_i),$$

where

• \mathcal{P}_q is the partition of \mathcal{V} induced by the forest with law ν_q ,

• μ_{B_i} is the invariant measure of the RW X restricted to B_i .

Theorem (Roots are at local equilibrium - A.G. (2018))

Fix $k \leq n$, any partition $\{B_1, \ldots, B_k\}$ of \mathcal{V} into k blocks, and any $x_i \in B_i$, for $i = 1, \ldots, k$. Then:

$$\mathbb{P}\Big(\mathcal{R}_k = \{x_1, \cdots, x_k\} \Big| \mathcal{P}_q = \{B_1, \ldots, B_k\}\Big) = \prod_{i=1}^{\kappa} \mu_{B_i}(x_i),$$

where

- \mathcal{P}_q is the partition of \mathcal{V} induced by the forest with law ν_q ,
- μ_{B_i} is the invariant measure of the RW X restricted to B_i .

Theorem (Roots are at local equilibrium - A.G. (2018))

Fix $k \leq n$, any partition $\{B_1, \ldots, B_k\}$ of \mathcal{V} into k blocks, and any $x_i \in B_i$, for $i = 1, \ldots, k$. Then:

$$\mathbb{P}\Big(\mathcal{R}_k = \{x_1, \cdots, x_k\} \Big| \mathcal{P}_q = \{B_1, \ldots, B_k\}\Big) = \prod_{i=1}^{\kappa} \mu_{B_i}(x_i),$$

where

- \mathcal{P}_q is the partition of \mathcal{V} induced by the forest with law ν_q ,
- μ_{B_i} is the invariant measure of the RW X restricted to B_i .

Note:

- For q ≈ 0 ⇒ P_q = V and the unique root is distributed as the invariant measure µ of the RW.
- "Freedom to choose" the graph Laplacian.

Theorem (Roots are at local equilibrium - A.G. (2018))

Fix $k \leq n$, any partition $\{B_1, \ldots, B_k\}$ of \mathcal{V} into k blocks, and any $x_i \in B_i$, for $i = 1, \ldots, k$. Then:

$$\mathbb{P}\Big(\mathcal{R}_k = \{x_1, \cdots, x_k\} \Big| \mathcal{P}_q = \{B_1, \ldots, B_k\}\Big) = \prod_{i=1}^k \mu_{B_i}(x_i),$$

where

- \mathcal{P}_q is the partition of \mathcal{V} induced by the forest with law ν_q ,
- μ_{B_i} is the invariant measure of the RW X restricted to B_i .

Note:

- For q ≈ 0 ⇒ P_q = V and the unique root is distributed as the invariant measure µ of the RW.
- "Freedom to choose" the graph Laplacian.

Forest-immunization (on undirected network)

♦ **Heuristic:** *k* best spreaders to be removed should be far from each other but also the remaining n - k susceptible ones ♦

Forest-immunization (on undirected network)

♦ **Heuristic:** *k* best spreaders to be removed should be far from each other but also the remaining n - k susceptible ones ♦

Forest-immunization (on undirected network)

♦ **Heuristic:** *k* best spreaders to be removed should be far from each other but also the remaining n - k susceptible ones ♦

Forest-immunization (on undirected network)

♦ **Heuristic:** *k* best spreaders to be removed should be far from each other but also the remaining n - k susceptible ones ♦

Roots complement-set: $\mathcal{R}_q^{\mathcal{C}} := \mathcal{V} \setminus \mathcal{R}_q$ is also determinantal set & it concentrates around max-degree sets.

Canidate set of k-spreaders to be removed: Sample R_{n-k} roots for the susceptible ones & set its complement R^C_k to be the candidate k-set of best spreaders.

Forest-immunization (on undirected network)

♦ **Heuristic:** *k* best spreaders to be removed should be far from each other but also the remaining n - k susceptible ones ♦

Roots complement-set: $\mathcal{R}_q^{\mathcal{C}} := \mathcal{V} \setminus \mathcal{R}_q$ is also determinantal set & it concentrates around max-degree sets.

Canidate set of k-spreaders to be removed: Sample R_{n-k} roots for the susceptible ones & set its complement R^C_k to be the candidate k-set of best spreaders.

Forest-immunization (on undirected network)

♦ **Heuristic:** *k* best spreaders to be removed should be far from each other but also the remaining n - k susceptible ones ♦

- Canidate set of k-spreaders to be removed: Sample R_{n-k} roots for the susceptible ones & set its complement R^C_k to be the candidate k-set of best spreaders.
- Output: Provide the image of the image. The image of the image of

Forest-immunization (on undirected network)

♦ **Heuristic:** *k* best spreaders to be removed should be far from each other but also the remaining n - k susceptible ones ♦

- Canidate set of k-spreaders to be removed: Sample R_{n-k} roots for the susceptible ones & set its complement R^C_k to be the candidate k-set of best spreaders.
- Output: Provide the image of the image. The image of the image of

Forest-immunization (on undirected network)

♦ **Heuristic:** *k* best spreaders to be removed should be far from each other but also the remaining n - k susceptible ones ♦

- Canidate set of k-spreaders to be removed: Sample R_{n-k} roots for the susceptible ones & set its complement R^C_k to be the candidate k-set of best spreaders.
- **Output** Weight State (Constraint) Sample L many candidate k-sets {R^C_{k,i} : i ≤ L} and compute their ShieldValue and Max-degree with L such that total running cost is as in Netshield O(m + nk).
- Sorest k-set S_{*} to be immunized: Among the L sampled k-sets. Pick the ones with max degree and max Shield Value. Take also the Netshield output set. Set S_{*} to be the set with maximal eigendrop among these 3 sets.

Forest-immunization (on undirected network)

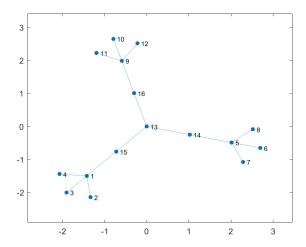
♦ **Heuristic:** *k* best spreaders to be removed should be far from each other but also the remaining n - k susceptible ones ♦

- Canidate set of k-spreaders to be removed: Sample R_{n-k} roots for the susceptible ones & set its complement R^C_k to be the candidate k-set of best spreaders.
- Output: Provide the image of the image. The image of the image of
- Forest k-set S_{*} to be immunized: Among the L sampled k-sets. Pick the ones with max degree and max Shield Value. Take also the Netshield output set. Set S_{*} to be the set with maximal eigendrop among these 3 sets.

Forest immunization & the geometry of contagion in action: a few illustrative experiments.

52 / 65

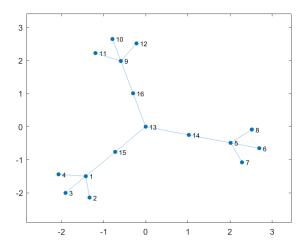
A synthetic insightful example



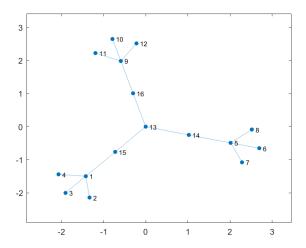
Luca Avena (Mathematics, Leiden)

53 / 65

A synthetic insightful example: k = 1



A synthetic insightful example: k = 1



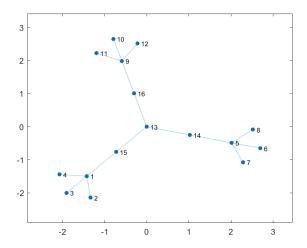
\Rightarrow node with best eigendrop is {13}: not the highest degree node.

Luca Avena (Mathematics, Leiden)

k-node Immunization

Rome, May 30, 2022

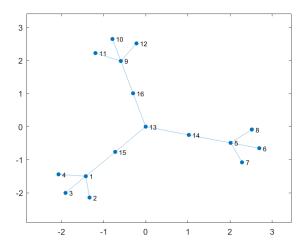
A synthetic insightful example: k = 1



 \Rightarrow node with best eigendrop is {13}: not the highest degree node.

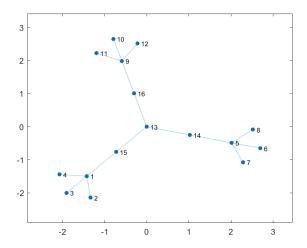
Luca Avena (Mathematics, Leiden)

A synthetic insightful example: k = 3



55 / 65

A synthetic insightful example: k = 3

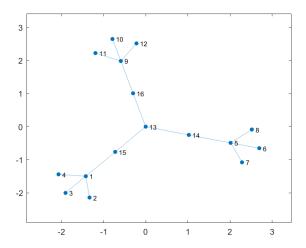


 \Rightarrow best triple {14, 15, 16}: not the maximal degree set.

Luca Avena (Mathematics, Leiden)

k-node Immunization

A synthetic insightful example: k = 3

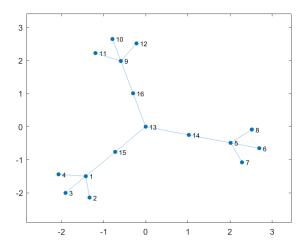


 \Rightarrow best triple {14, 15, 16}: not the maximal degree set.

Luca Avena (Mathematics, Leiden)

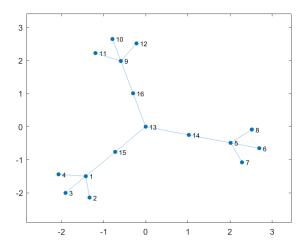
k-node Immunization

A synthetic insightful example: k = 4



56 / 65

A synthetic insightful example: k = 4

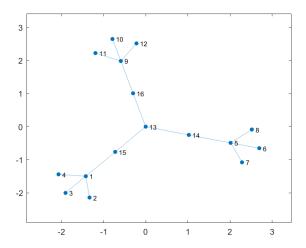


\Rightarrow best quaduple {13, 1, 5, 9}: global + "periferial" centers.

Luca Avena (Mathematics, Leiden)

k-node Immunization

A synthetic insightful example: k = 4



 \Rightarrow best quaduple {13, 1, 5, 9}: global + "periferial" centers.

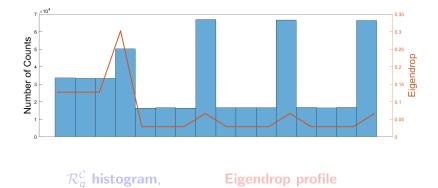
Luca Avena (Mathematics, Leiden)

k-node Immunization

Rome, May 30, 2022

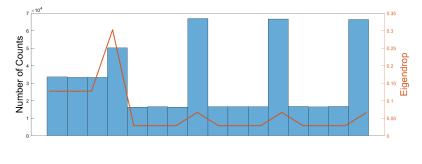
A synthetic insightful example: $\mathcal{R}_{q}^{\mathcal{C}}$ for k = 1

A synthetic insightful example: $\mathcal{R}_{q}^{\mathcal{C}}$ for k = 1



57 / 65

A synthetic insightful example: $\mathcal{R}_{q}^{\mathcal{C}}$ for k = 1

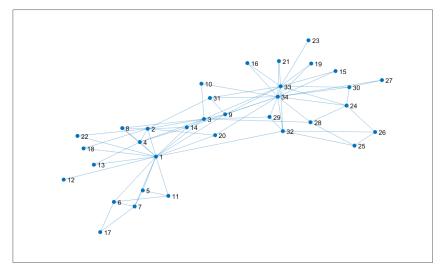


 $\mathcal{R}_{q}^{\mathcal{C}}$ histogram,

Eigendrop profile

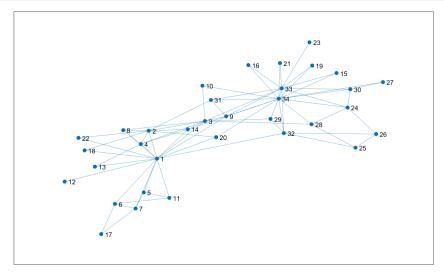
The Karate club: "a fighting group"

The Karate club: "a fighting group"



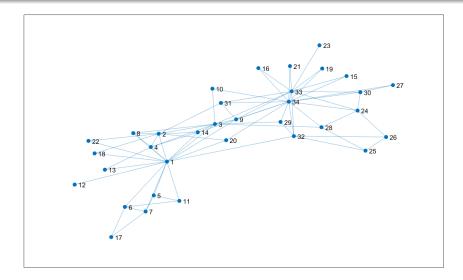
President $\{1\}$ Vs Instructor $\{34\}$ led to a split into 2 groups.

The Karate club: "a fighting group"



President $\{1\}$ Vs Instructor $\{34\}$ led to a split into 2 groups.

The Karate club: k = 1



The Karate club: k = 1



\Rightarrow best node is {3}: neither the president nor the instructor.

Luca Avena (Mathematics, Leiden)

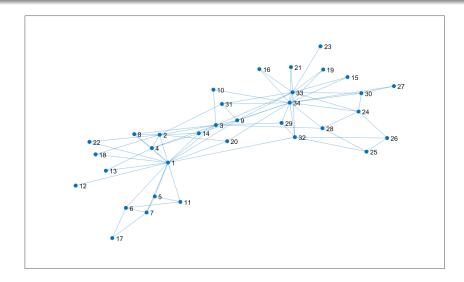
k-node Immunization

The Karate club: k = 1



\Rightarrow best node is {3}: neither the president nor the instructor.

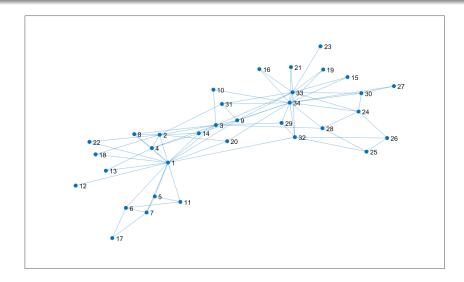
The Karate club: k = 2



\Rightarrow best pair is {1,34}: the president and the instructor.

Luca Avena (Mathematics, Leiden)

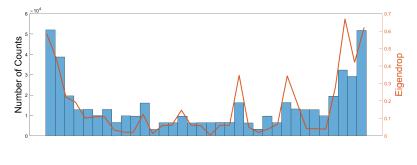
The Karate club: k = 3



\Rightarrow best triple is {1,3,34}: "the fighters and the philanthropist".

The Karate club: $\mathcal{R}_q^{\mathcal{C}}$ for k = 1

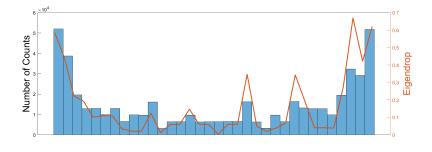
The Karate club: $\mathcal{R}_q^{\mathcal{C}}$ for k = 1



 $\mathcal{R}_q^{\mathcal{C}}$ histogram,

Eigendrop profile

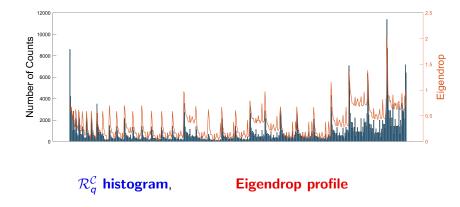
The Karate club: $\mathcal{R}^{\mathcal{C}}_{a}$ for k = 1



 $\mathcal{R}_{q}^{\mathcal{C}}$ histogram,

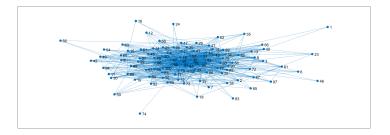
Eigendrop profile

The Karate club: \mathcal{R}_a^c for k = 2



Conference Interaction: a weighted example

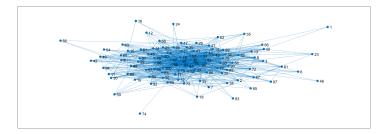
Conference Interaction: a weighted example



 $|\mathcal{V}|=10^2$ individuals, $|\mathcal{E}|pprox 10^3$ interactions in one day,

On such large non-regular networks benchmarks (and similar ones, e.g. airport, etc...) the forest-immunization can find better solutions than Nethsield in comparable running time.

Conference Interaction: a weighted example



 $|\mathcal{V}|=10^2$ individuals, $|\mathcal{E}|pprox 10^3$ interactions in one day,

On such large non-regular networks benchmarks (and similar ones, e.g. airport, etc...) the forest-immunization can find better solutions than Nethsield in comparable running time.

References & THANK YOU

- (Survey on epidemics on networks) R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, *Epidemic processes in complex networks*, Reviews of Modern Physics 87 (2015).
- (Max eigenvalue for SIS and SIR) D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec and C. Faloutsos, *Epidemic thresholds in real networks*, ACM Transactions on Information and System Security (2008).
- (Netshield) C. Chen, H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-Rad, C. Faloutsos and D. H. Chau, Node immunization on large graphs: theory and algorithms, IEEE Transactions on Knowledge and Data Engineering 28 (2016).
- (Roots theory) L. A. and A. Gaudillière, *Two applications of random spanning forests*, Journal of Theoretical Probability 31 (2018).
- (Survey on rooted forests) L. A., F. Castell, A. Gaudillière and C. Mélot, Random forests and networks analysis, Journal of Statistical Physics 173 (2018).
- (Forest immunization) L. A., M. Emmerich, A. Gaudillière and I. Gurewitsch to appear (2022+).