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| = Infected, S = Susceptible.
B = Infection rate, 1 = Recovery rate.

Interaction as “chemical reactions”:

s+12%0, 14 s,

Luca Avena (Mathematics, Leiden) k-node Immunization Rome, May 30, 2022



Compartmental models on networks

Epidemic spread: a very brief modelling overview

@ Compartmental models : Population of n individuals divided into
interacting compartments (e.g. infected, susceptible, recovered, immune).

@ Historical note : First models back to D. Bernoulli (1760); “mature”
multidisciplinary area in the XX century Kermack-McKendrick theory
(1927); from the 90 on (theory developments + data fitting).

SIS model (2-compartments )

| = Infected, S = Susceptible.
B = Infection rate, 1 = Recovery rate.

Interaction as “chemical reactions”:

s+12%0, 14 s,

Luca Avena (Mathematics, Leiden) k-node Immunization Rome, May 30, 2022



Compartmental models on networks

Epidemic spread: a very brief modelling overview

@ Compartmental models : Population of n individuals divided into
interacting compartments (e.g. infected, susceptible, recovered, immune).

@ Historical note : First models back to D. Bernoulli (1760); “mature”
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SIS model (2-compartments )

| = Infected, S = Susceptible.
B = Infection rate, 1 = Recovery rate.

Interaction as “chemical reactions”:
s+12%0, 14 s,

Basic Reprod. Nr. = r:= [3/u = infect. rate x av. durat. infectiousness
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Definition (SIS evolution (a non-linear system of n diff. egs.))

Set px(t) := P( node x is infected at time t),x € V, and fix

Infection rate = 8 > 0, Recovery rate = ;> 0 :
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SIS on Networks

Network: G = (V, &), |[V| = n, undirected finite graph with adjacency
A = (axy)xyev st axy = Ly

Definition (SIS evolution (a non-linear system of n diff. egs.))

Set px(t) := P( node x is infected at time t),x € V, and fix

Infection rate = 8 > 0, Recovery rate = ;> 0 :

Ipx(t)
ot

= —upx(t) + B[1 — px(t)] Z ax,y Py (t)

yey

with some in. cond. p(0) := (p1(0), ..., pn(0)).

Remark:

Contact process on {0,1}"= microscopic Markovian version of SIS
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SIS evolution p,(t) := P( node x is infected at time t), Vx € V,
rescaling time by 1/ and setting r := [/
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Endemic state & largest eigenvalue

SIS evolution p,(t) := P( node x is infected at time t), Vx € V,
rescaling time by 1/ and setting r := [/

Ipx(t)
ot —px(t) +r Z axypy(t) — rZ ax,y Px(t)py(t)
yeEV yey
Outbreak threshold estimate (linearization) :
Opx(t
8 04 1Y sl
yey

From which, if 5(£) := (p1(t),. .., pn(t)) = A(t) < 5(0)elrA=ldn)e
Max eigenvalue )\, of A:

If rAmax —1 < 0 = py(t) decays exponentially fast to 0, for any x € V.
= critical parameter for the endemic state:

re > 1/)\max'
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e Problem not well-posed: 1) limited rigorous analysis 2) heuristics
ideas based on simulations with lots of other problems 3) choosing
maximal degree nodes is not justified already for k = 1.
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Multiple-node immunization

Multiple-node immunization & max eigendrop

o Goal: Identify & remove set of k-nodes to empede the “endemic
outbreak’ .

e Problem not well-posed: 1) limited rigorous analysis 2) heuristics
ideas based on simulations with lots of other problems 3) choosing
maximal degree nodes is not justified already for k = 1.

e Max eigendrop of adjacency: since rc > 1/\ax,
good strategy: look for sets of k—nodes from which after removal
the reduced network has minimal largest eigenvalue.

Equivalently: find S C V, with |S| = k maximising

AUA(S) = Amax (V) — Amax(V \ S) = k — eigendrop
Computational issues with max eigendrop:

@ No poly exact algorithm for such an optimization problem.

@ Chen Chen et al. (2016) proved approx. equivalence with
so-called Shield-Value optimization which is NP complete.
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Multiple-node immunization

Max k-eigendrop, ShieldValue & Netshield

( )

o Shield Value : for S C V, with |S| = k define

SVi(S) 1= 2Xmax D 13(x) = D axyu(x)u(y)

xeS X, yeS§S
(“eingescore” —  ‘“repellence”),

with u principal eigenvector (Au = Apmax ).
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xeS X, yeS§S
(“eingescore” —  ‘“repellence”),

with u principal eigenvector (Au = Apmax ).
o Shield Value approximates max k-eigendrop:
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Multiple-node immunization

Max k-eigendrop, ShieldValue & Netshield

( )

o Shield Value : for S C V, with |S| = k define

SVI(S) 1= 20max Y _ 1P (x) = D axyu(x)u(y)
xeS x,ye€S
(“eingescore” —  ‘“repellence”),
with u principal eigenvector (Au = Apmax ).
o Shield Value approximates max k-eigendrop:

AA(S) ~ SVi(S).

o Maximising shieldvalue is NP-complete problem.

@ Netshield : greedy fast algorithm which finds near-to-optimal
solutions in

O(nk + m) running time,
with m =number of edges.
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Our randomized
immunization method:
Random Rooted Spanning Forests

&

randomized k-centrality
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Our method: rooted forests & randomized k-centrality

Graph Laplacian and associated RW

Weighted Directed Network: G = (V,&, w), with |V| = n and weighted
adjacency Ay := (ax,y)xyev St axy = w(x, y) sy
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Our method: rooted forests & randomized k-centrality

Graph Laplacian and associated RW

Weighted Directed Network: G = (V,&, w), with |V| = n and weighted
adjacency Ay := (ax,y)xyev St axy = w(x, y) sy

Definition (Graph Laplacian)

It is the n X n matrix —L,, with :

w(x,y) fx#yeV,
Lu(x,y) =14 - Z w(x,z) on the diagonal.
ZF#X

In particular, £, = A,, — D,, = (weighted) “adjacency” — "degree”
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Graph Laplacian and associated RW

Weighted Directed Network: G = (V,&, w), with |V| = n and weighted
adjacency Ay := (ax,y)xyev St axy = w(x, y) sy

Definition (Graph Laplacian)

It is the n X n matrix —L,, with :

w(x,y) fx#yeV,
Lu(x,y) =14 - Z w(x,z) on the diagonal.
ZF#X

In particular, £, = A,, — D,, = (weighted) “adjacency” — "degree”

Definition (Associated Random Walk)

Let X = (X(t));>o be the continuous-time Markov chain on V' with
infinitesimal generator L,,.
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Given G = (V, &, w), and a parameter g > 0, let R4 C V be a random
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RW and a determinantal set of nodes

Definition (Set of Roots R, of intesity g- )
Given G = (V, &, w), and a parameter g > 0, let R4 C V be a random
subset of nodes with law characterized by:

P(ACRy) =det[Kq] 4, for any A C V,

with
Kq(x,y) = P(X(Tq) = ¥) = q(qld — L) (x,y)

and T, an independent exponential random variable of parameter q.

Repelling roots when w(x, y) = w(y, x)

P({x,y} € Rq) <P(x € Rg)P(y € Rq)
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R4 from Random Rooted Forests

Forest Space: for G = (V, &, w), set

Fg := { spanning rooted forests on G}
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Our method: rooted forests & randomized k-centrality

R4 from Random Rooted Forests

Forest Space: for G = (V, &, w), set

Fg := { spanning rooted forests on G}

A spanning rooted forest on a square grid.
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Our method: rooted forests & randomized k-centrality

R4 from Random Rooted Forests

Theorem (Random Forest with Determinantal Roots -

Fix g > 0 and G. Consider the following probability measure on Fg:

nr. of treesH . W(e)
ec

Z(q) ’

q

vg(F) := F € Fg,
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Theorem (Random Forest with Determinantal Roots -

Fix g > 0 and G. Consider the following probability measure on Fg:

an. of trees H . W(e)
ec

Vg(F) = , F e Fg,
q( ) Z(q) g
Then,
the set of roots of the random forest with law v,
is the determinatal point process R, with kernel K,
Recall:
o P(ACRy) =det[Kq],, forany ACV,

o Kq(x,y) = Px(X(Tq4) = y) = RW kernel observed at time-scale 1/q.
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Rgq: a flexible set of well-distributed nodes
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Our method: rooted forests & randomized k-centrality

Rq: a flexible set of well-distributed nodes

Theorem (Distribution of number of roots - )
Given G = (V, &, w), consider the set of Roots Rq with kernel K;. Then
its cardinality /s a non-homogeneous Binomial

n . q
Rql = Y;, Y; ~ Bernoulli | —— | .
Ral=3 ()

with 6;’s eigenvalues of the graph Laplacian —L,, .
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Rgq: a flexible set of well-distributed nodes

Theorem (Distribution of number of roots - )

Given G = (V, &, w), consider the set of Roots Rq with kernel K;. Then
its cardinality /s a non-homogeneous Binomial

n . q
Rql = Y;, Y; ~ Bernoulli | —— | .
Ral=3 ()

with 6;’s eigenvalues of the graph Laplacian —L,, .

Note: |Rq4|=n if g— o0 and Rql=1 ifg—0.
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Rq: a flexible set of well-distributed nodes

Theorem (Distribution of number of roots - )

Given G = (V, &, w), consider the set of Roots Rq with kernel K;. Then
its cardinality /s a non-homogeneous Binomial

n . q
Rql = Y;, Y; ~ Bernoulli | —— | .
Ral=3 ()

with 6;’s eigenvalues of the graph Laplacian —L,, .

Note: |Rq4|=n if g— o0 and Rql=1 ifg—0.
Efficient sampling of exactly k roots

Wilson's algorithm allows to sample R for fixed g, we developed
e a coupled algorithm to sample a trajectory (Rg)qe[o,)
e and Ry := R4 conditioned on having k roots ,
in O(n) running time if k is a fraction of n.

Rome, May 30, 2022
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Our method: rooted forests & randomized k-centrality

A generalized Page-Rank k-centrality

Theorem (Roots are at local equilibrium - )

Fix k < n, any partition {Bs, ..., Bk} of V into k blocks, and any x; € B;,
fori=1,... k. Then:

P(Ri = {1+ %} Pq = {Br,-., B} ) = f[us,(x;),
i=1

where

@ Py is the partition of V induced by the forest with law v,

@ L, is the invariant measure of the RW X restricted to B;.
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A generalized Page-Rank k-centrality

Theorem (Roots are at local equilibrium - )

Fix k < n, any partition {Bs, ..., Bk} of V into k blocks, and any x; € B;,
fori=1,... k. Then:

P(Ri = {1+ %} Pq = {Br,-., B} ) = f[us,(x;),
i=1

where
@ Py is the partition of V induced by the forest with law v,
@ L, is the invariant measure of the RW X restricted to B;.

Note:

@ For g = 0= P, =V and the unique root is distributed as the
invariant measure p of the RW.

@ “Freedom to choose” the graph Laplacian.
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Our method: rooted forests & randomized k-centrality

Forest-immunization (on undirected network)

¢ Heuristic: k best spreaders to be removed should be far from each
other but also the remaining n — k susceptible ones ¢
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@ Canidate set of k-spreaders to be removed: Sample R,,_x roots
for the susceptible ones & set its complement Ri to be the candidate
k-set of best spreaders.

@ How many samples? Sample L many candidate k-sets
{R$ . :i <L} and compute their ShieldValue and Max-degree with L
such that total running cost is as in Netshield O(m + nk).
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Forest-immunization (on undirected network)

¢ Heuristic: k best spreaders to be removed should be far from each
other but also the remaining n — k susceptible ones ¢

Roots complement-set: Rg =V \ Rq is also determinantal set &
it concentrates around max-degree sets.

@ Canidate set of k-spreaders to be removed: Sample R,,_x roots
for the susceptible ones & set its complement Ri to be the candidate
k-set of best spreaders.

@ How many samples? Sample L many candidate k-sets
{R$ . :i <L} and compute their ShieldValue and Max-degree with L
such that total running cost is as in Netshield O(m + nk).

© Forest k-set S, to be immunized: Among the L sampled k-sets.
Pick the ones with max degree and max Shield Value. Take also the
Netshield output set. Set S, to be the set with maximal eigendrop
among these 3 sets.
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Experiments: the geometry of contagion

Forest immunization &
the geometry of contagion
in action:

a few illustrative experiments.
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Experiments: the geometry of contagion

A synthetic insightful example
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A synthetic insightful example: k
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= node with best eigendrop is {13}: not the highest degree node.
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A synthetic insightful example: k
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= best triple {14,15,16}: not the maximal degree set.
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Experiments: the geometry of contagion

A synthetic insightful example: k
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= best quaduple {13,1,5,9}: global + “periferial” centers.
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Experiments: the geometry of contagion

A synthetic insightful example: R for k =1
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Experiments: the geometry of contagion

A synthetic insightful example: RS for k = 1
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Experiments: the geometry of contagion

A synthetic insightful example: RS for k = 1
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Rg histogram, Eigendrop profile

Rome, May 30, 2022
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The Karate club: “a fighting group”
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Experiments: the geometry of contagion

The Karate club: “a fighting group”
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The Karate club: “a fighting group”
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President {1} Vs Instructor {34} led to a split into 2 groups.
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Experiments: the geometry of contagion

The Karate club: k=1
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Experiments: the geometry of contagion

The Karate club: k=1
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= best node is {3}: neither the president nor the instructor.
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Experiments: the geometry of contagion

The Karate club: kK =2
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= best pair is {1,34}: the president and the instructor.
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The Karate club: kK =3
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= best triple is {1, 3,34}: “the fighters and the philanthropist”.
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The Karate club: Rg for k=1

Luca Avena (Mathematics, Leiden) k-node Immunization Rome, May 30, 2022 62 /65



Experiments: the geometry of contagion

The Karate club: Rg for k
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The Karate club: Rg for k=1
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The Karate club: Rg for k =2
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Conference Interaction: a weighted example
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Experiments: the geometry of contagion

Conference Interaction: a weighted example

|V| = 102 individuals, |€| = 103 interactions in one day,

On such large non-regular networks benchmarks (and similar ones, e.g.
airport, etc...) the forest-immunization can find better solutions than
Nethsield in comparable running time.
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