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Plan of the talk

1. Accessible liquid states in non-convex feedforward models 
and negative margin classifiers

2. Geometry of perfect learning: differences between discrete 
and continuous weights

3. Chaotic and stable liquid attractors  in recurrent asymmetric 
neural networks



• Overparametrization & generalization (overfitting under control)

• Non-convexity and first-order algorithms

•Internal representations if feedforward and attractor NN

Basic problems 



Figure 4-1. DBN architecture

In the sections that follow, we explain more about how DBNs take advantage of RBMs to
better model training data.

Feature Extraction with RBM Layers

We use RBMs to extract higher-level features from the raw input vectors. To do that, we
want to set the hidden unit states and weights such that when we show the RBM an input
record and ask the RBM to reconstruct the record, it generates something pretty close to the
original input vector. Hinton talks about this effect in terms of how machines “dream about
data.”

The fundamental purpose of RBMs in the context of deep learning and DBNs is to learn
these higher-level features of a dataset in an unsupervised training fashion. It was discovered
that we could train better neural networks by letting RBMs learn progressively higher-level
features using the learned features from a lower level RBM pretrain layer as the input to a
higher-level RBM pretrain layer.

Learning higher-order features automatically

Learning these features in an unsupervised fashion is considered the pretrain phase of
DBNs. Each hidden layer of the RBM in the pretrain phase learns progressively more com-
plex features from the distribution of the data. These higher-order features are progressively
combined in nonlinear ways to do elegant automated feature engineering.

{(xµ, yµ)}µ=1,...,M
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Training set:

�µ $ (WK · �K(xµ)) yµ
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Introduction: arti)cial neural networks for
machine learning{ <latexit sha1_base64="px9YPanz5zjmfmRs0MuGxBXXrxQ=">AAAB8HicbVDLSsNAFJ3UV62vqks3g0VwVRItPnZFNy5cVLAPbEKZTG/aoZNJmJkIJfQvXLhRcevfuPRvnKRBfB24cDjnXu69x485U9q2P6zSwuLS8kp5tbK2vrG5Vd3e6agokRTaNOKR7PlEAWcC2pppDr1YAgl9Dl1/cpn53XuQikXiVk9j8EIyEixglGgj3bnXRI4gddPZoFqz63YO/Jc4BamhAq1B9d0dRjQJQWjKiVJ9x461lxKpGeUwq7iJgpjQCRlB31BBQlBeml88wwdGGeIgkqaExrn6fSIloVLT0DedIdFj9dvLxP+8fqKDMy9lIk40CDpfFCQc6whn7+Mhk0A1nxpCqGTmVkzHRBKqTUh5BucZTr4+/ks6R3XnuN64adSaF0UaZbSH9tEhctApaqIr1EJtRJFAD+gJPVvSerRerNd5a8kqZnbRD1hvn1ItkRw=</latexit>

pre-activations at layer K

xμ →
<latexit sha1_base64="KVOL63tIB9EvA+qd1HPZyHKEv6Y="></latexit>

ŷµ $ yµ

Let’s consider feedforward architecture first
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- Energy = “0-1 loss”: number of errors on the training set (not differentiable)

Mean Square Error, …

Cross-entropy: “log-
likelihood”,  softmax

LNE =
X

µ

(1� �(ŷµ, yµ))
<latexit sha1_base64="EVroPaEmlVfHoyibAINqQDdJ/mc="></latexit>

- Surrogate differentiable losses

�µ $ (WK · �K(xµ)) yµ
<latexit sha1_base64="CZR/5F1qWaLCnHpb/mZyi+5aXgo="></latexit>



The simplest non convex models: 

binary perceptron and negative stability  spherical perceptrons

Control parameter:

<latexit sha1_base64="w581HsszZER1UultGxyAOqMU61U="></latexit>

{(x̄µ, yµ)} µ = 1, ..., P = ↵NRandom Training set:
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↵ =
#patterns

#weigts
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yµ = ±1 with p =
1

2
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xµ
i = ±1 with p =

1

2
, i = 1, ..., N

Learning:
<latexit sha1_base64="LApjTX0vGwdjn8gy5EIi2W5rQNs="></latexit>

find Wi such that
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�µ ⌘ yµ
NX

i=1

Wix
µ
i = yµ W · xµ (stability, margin)
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1 = Sign(�µ) or �µ > 0

with

<latexit sha1_base64="way+1tx21Evjw1hc9aCAEVs3vwI="></latexit>

yµ = Sign(
NX

i=1

Wix
µ
i ) = Sign(W · xµ)

<latexit sha1_base64="r+B7kFf+aMIUhfAqE8noovQPa+A="></latexit>

8µ



Binary perception:
<latexit sha1_base64="DxbmlFXww57+jGE4Au8FPeAnjd4="></latexit>

Wi 2 {�1,+1}

minimal non convex models

With  (negative) margin:
<latexit sha1_base64="Tu4v7KT/ilZy77SOg87v/mmeHSk="></latexit>

Wi 2 R
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NX
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W 2
i = N
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&
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1 = Sign(�µ � k) or �µ > k

<latexit sha1_base64="5CEqGpKkuMKx5pusxzt/KHSbkDw="></latexit>

k = 0
<latexit sha1_base64="Gi7/EgEAW3uZFEh4EAyzlOx2+YE="></latexit>

k > 0

<latexit sha1_base64="mZHcVPY8qwW46HlHC78O0sm3fAQ="></latexit>

W · x > �|k|

<latexit sha1_base64="vb8vloEEvy7dY+0d0nZBRU2QOO8=">AAAEVXiclVPLbtNAFHWdUIp5NIUlmysio1akURzxklCqCliwqsojTaVMEo0n43iU8QPPuE3k+iMRC8SnsEBi7NhJk8KC0Vi6PvfMPedee+yQMyFbrZ9beqV6a/v2zh3j7r37D3Zrew/PRBBHhHZJwIPo3MaCcubTrmSS0/MwotizOe3Z03dZvndBI8EC/4uch3Tg4YnPHEawVNBoT+cmwjx0cQc5ESYJqgNqAJJ0JpMQS0kjX6TpGnxJ2UQq0DBnIzZEXtxBoQcWoDcFARD1kksm3RRSBYZFaStN2mnOynajiFjHajSbzcaJYc7/u5hhIieIMOcqyNkO88elRm/EVmVETFyQLpbpUifHP7OJn+4jEXujRFlJhyf5uaKzA1ij9QCRcSABZoukWTaT7aUXULns7T3lEmdE1cLXmF3AfPHyDy0EnZLRgFIpFzJMa93tsvLh9KA0kOeDaDnglfoRTNftHEELAK57X3eeD475gJJDq/HMQukKUgwsXdtOPilws5Nhu6O+Inqq6KV9pXUIV9MrMLKRW6NavdVs5QtuBlYR1LVinY5q39A4ILFHfUk4FqJvtUI5SHAkGeE0NVAsaIjJFE9oX4U+9qgYJPm1SMFUyBhUa+rxJeTo9RMJ9oSYe7ZiZl2JzVwG/i3Xj6XzepAwP4wl9clCyIk5yACyOwZjFlEi+VwFmERMeQXiYvXbqusk1AyszY5vBmftpvWy+eLj8/rx22IaO9pj7Ym2r1naK+1Y+6Cdal2N6N/1XxW9Uqn8qPyuVqvbC6q+VZx5pK2t6u4f0zZYCA==</latexit>

µ = 1
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µ = 2
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µ = 2
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µ = 1

V $ S
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The simplest non-convex model: the Binary Perceptron

volume/entropy
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same picture also holds for complex architectures trained
on real-world benchmarks.

In a more general sense, these findings highlight the in-
adequacy of a standard equilibrium analysis when used to
describe the practically relevant properties of a prototypi-
cal complex system. There’s no reason to believe that this
scenario is specific to this particular family of problems;
our work could provide a general methodology to detect,
analyze and exploit this kind of occurrences. [Also, to
bring world peace.]

The model.—The single layer binary neural network
(perceptron) maps vectors of N inputs ⇠ 2 {�1, 1}N to
binary outputs as ⌧ (W, ⇠) = sign (W · ⇠), where W 2
{�1, 1}N is the vector of synaptic weights. Given ↵N

input patterns ⇠
µ with µ 2 {1, . . . ,↵N} and their cor-

responding desired outputs �
µ 2 {�1, 1}↵N , and defin-

ing X⇠ (W ) =
Q↵N

µ=1 ⇥ (�µ
⌧ (W, ⇠

µ)), where ⇥ (x) is the
Heaviside step function, the learning problem is that of
finding W such that ⌧ (W, ⇠

µ) = �
µ for all µ, i.e. such

that X⇠ (W ) = 1. The entries ⇠
µ
i are random unbiased

i.i.d. variables. There are two main scenarios of inter-
est for the distribution of the desired outputs �

µ: 1)
the classification (or storage) case, in which they are
i.i.d. random variables, and 2) the generalization (or
teacher-student) scenario, in which they are provided by
a “teacher” device, i.e. another perceptron with synap-
tic weights W

T . In the classification scenario, the typi-
cal problem is solvable with probability 1 in the limit of
large N up to ↵c = 0.833 [5], after which the probability
of finding a solution drops to zero. ↵c is called the ca-
pacity ; we also use this term for the maximum value of
↵ for which a solution can be found by a specific algo-
rithm. In the teacher-student scenario, the problem has
multiple solutions up to ↵TS = 1.245, after which there
is a first-order transition and only one solution is possi-
ble: the teacher itself [2, 6]. One additional quantity of
interest in this scenario is the generalization error rate
pe =

1
⇡ arccos

�
1
NW ·WT

�
, which is the probability that

⌧ (W, ⇠
?) = ⌧

�
W

T
, ⇠

?
�

when ⇠
? is a previously unseen

input.
Simplified algorithms.—Only a handful of algorithms

are currently believed to be able to solve the classification
problem and achieve a non-zero capacity in the limit of
large N in a sub-exponential running time; they are all,
to some extent, heuristic, and only numerical evidence
(although with N as large as 106) is available to support
the claims. The first such algorithm is a modified version
of Belief Propagation (BP), a message passing algorithm
which differs from standard BP by an additional “rein-
forcement” term, which can reach a capacity of at least
↵ ' 0.74 [11]. Two more algorithms, called SBPI [12]
and CP+R [13], were derived as crude simplifications of
the reinforced BP scheme: compared to the latter, they
have drastically reduced requirements (only employing
finite discrete quantities and simple, local and on-line
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Figure 1. (Color online) Numerical evidence of the ex-
istence of clusters of solutions. Entropy at a given dis-
tance from a reference solution W̃ , in the classification case
at ↵ = 0.4. From bottom to top: (magenta) theoretical pre-
diction for a typical W̃ ; (blue) numerical estimate based on a
random walks on connected solutions starting from one pro-
vided by SBPI, with N = 1001; (red) estimate from Belief
Propagation using a solution from SBPI, with N = 10001;
(green) theoretical curve for the optimal W̃ ? as computed
from eq. (3); (dotted black) upper bound (↵ = 0 case, all
configurations are solutions). The random-walk points un-
derestimate the number of solutions since they only consider
connected clusters; the BP curve is lower than the optimal
because in the latter W̃ is optimized as a function of the
distance, while in the former it is fixed. Inset : comparison
between a typical solution and one found with SBPI, in the
teacher-student case at ↵ = 0.5 with N = 1001. Larger po-
tentials correspond to smaller distances. Top points (red):
SBPI reference solution, entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as ref-
erence.

update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵TS or beyond.

Two issues arise from these results: 1) the failure of
the reinforced BP algorithm to reach the maximal ca-
pacity of ↵c ' 0.833 patterns, and 2) the effectiveness of
the utterly-simplified algorithms SBPI and CP+R, which
strikingly contrasts the picture provided by standard sta-
tistical analyses.

We investigated these issues through numerical exper-
iments, and found evidence that, in fact, the solutions
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update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵TS or beyond.

Two issues arise from these results: 1) the failure of
the reinforced BP algorithm to reach the maximal ca-
pacity of ↵c ' 0.833 patterns, and 2) the effectiveness of
the utterly-simplified algorithms SBPI and CP+R, which
strikingly contrasts the picture provided by standard sta-
tistical analyses.

We investigated these issues through numerical exper-
iments, and found evidence that, in fact, the solutions

...~⇠µ

Wi 2 {±1} , i = 1, ..., N





• The space of solution splits into separated states of vanishing entropy  (Krauth, Mézard (1989)); 
• ∀𝛼 > 0 typical solutions are isolated (Huang, Kabashima (2014));  
• Rigorous: Abbe, Li, Sly (2021), Perkins, Xu (2021), Nakajima, Sun (2022), Aubin, Perkins, Zdeborova (2019) 3
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FIG. 2: BP entropy vs. α for single problem instances of size
n = 3465 for K = 1, 3, 5, 7. The analytic result for K = 1
and K ! 1 for n → ∞ are also plotted for comparison. The
upper inset shows Qt vs. t of the analytical DE prediction
(dashed line) vs. simulations over a system of size 105 + 1 at
α = 0.6 without reinforcement (data in perfect agreement to
the prediction) and with reinforcement (γ0 = 0). The bottom
inset shows the fraction of errors E/n vs t for both cases.
In the latter case we can see that Qt

→ 0 as the solution is
reached.

of pattern a. The fixed point of these equations provide
the information we are seeking for. Solving the equa-
tions by iteration proved itself to be an efficient tech-
nique, fully distributed, which is known as a message-
passing method (the components of the vectors u and h
can be thought as messages running along edges of the
factor graph, see Fig. 1). From the fixed point we may
compute the list of all probability marginals P (wi = ±1)
together with global quantities of interest such as the en-
tropy (normalized logarithm of the size of the set W ). As
expected from the statistical mechanics results [11], the
entropy is monotonically decreasing with α and vanishes
at αc ∼ 0.833 for n large enough. Similar results can be
derived for multilayer networks as shown in Fig. 2. The
BP equations can be adapted in a straightforward way
to networks of arbitrary topology, even if the notation is
slightly more encumbered. In general this network will be
formed by connecting several perceptron sub-units. The
corresponding factor graph can be recovered trivially as
in Fig. 1, by just replicating every perceptron for each
pattern, and adding a set of auxiliary units to represent
the output of every perceptron sub-unit of the network.
It will suffice then to derive a set of slightly more general
BP equations for the perceptron which we omit for the
sake of brevity. We have studied analytically the dynam-
ical behaviour of the BP algorithm in the large n limit by
the so called density evolution (DE) technique (see e.g.
[20] for details on DE). In the upper inset of Figure 2
we can see the comparison of numerical simulations of
large single instances with the analytical prediction of
the quantity Q = 1− 1

αn2

∑

i

∑

a m2
i→a at every iteration

step. In the spirit of [16], a way of using the informa-

tion provided by BP is to “decimate” the problem. This
approach is indeed feasible and leads to optimal assign-
ments. However here we focus on a much more efficient
and fully distributed version [21] of the algorithm. The
idea is to introduce an extra term into Eqs. 1-3 enforc-
ing hi = ±∞ at a fixed point, and use wi = sign (hi) as
a solution. This term is introduced stochastically (with
probability 0 at the first iteration and probability 1 at
t = ∞) to improve convergence. We will replace Eq. 3
with Eqs. 4,5:

ht+1
i =

1√
n

∑

b

ξb
i u

t
b→i +

{

0 w.p. γt

ht
i w.p. 1 − γt

(4)

ht+1
i→a = ht+1

i −
1√
n

ξa
i ut

a→i (5)

We will use γt = γt
0 for 0 ≤ γ0 ≤ 1 (though other choices

are also possible). Choosing γ0 = 1 clearly gives back
the original BP set of equations, Eqs. 1-3. We note that
a similar inertia term γht

i (constant γ) was introduced
in [22], which would correspond to average the one in
Eq. 4. Note also that the extra term for γt = 0 corre-
sponds to adding an external field equal to the local field
computed in the last step. Remembering that “fixing” a
variable as in the standard decimation procedure is equiv-
alent to adding an external field of infinite intensity, one
can think of this procedure as a sort of smooth decimation
in which all variables (not only the most polarized ones)
get an external field, but the intensity is proportional
to their polarization. Numerical experiments of learning
randomly generated patterns have been carried out on
systems of various sizes (up to n = 106), with different
choices of K and with different topologies (overlapping
and tree–like). Some are reported in Fig. 3. An easy
to use version of the code is made available at [23]. It is
not hard to think how the same algorithm could be made
effective also in presence of faulty contacts and hetero-
geneous discrete synaptic values. (which need not to be
identified a priori as the message-passing procedure, dis-
tributed over the same graph, could incorporate defects
by modifying accordingly the messages). Even for the
limit case of continuous synapses the process converge to
optimal solutions in a wide range of α.

Experiments have been performed using an improved
version of Eqs. 1-3: Using further linearizations like
in [20] one can obtain a new set of equations that are
equivalent to Eqs. 1-3 up to an error of O

(

n−1/2
)

, hav-
ing two main implementation advantages: memory re-
quirements of just O (n) (in addition to the set of pat-
terns which amounts to αn2 bits), and needing just O (n)
(slow) hyperbolic function computations in addition to
O

(

n2
)

elementary (fast) floating point operations. BP
equations can also be simplified by approximating mk→b

by mk in Eqs. 1-3 (without correction terms), giving a
simple closed expression in the quantities {mt

i}. The re-
sulting equation is not asymptotically equivalent to BP

s

𝛼 = P/N

freezing

E0

𝛼c=0.83

Results from statistical physics

Equilibrium results (binary perceptron)

In the large N, P limit (with a ⌘ P/N fixed):
the space of solution splits into separated clusters of vanishing entropy
(Krauth, Mézard (1989));
8a > 0 solutions are isolated (Huang, Kabashima (2014));
Rigorous Proofs: Abbe, Li, Sly (2021), Perkins, Xu (2021).

↵↵c

dmin = O(N) SAT PHASE UNSAT PHASE

This contradicts empirical evidence!

Enrico M. Malatesta Generalization and local entropy 10 / 32

Start with the Binary perceptron



If this would be the case, locally stable algorithms would fail  and learning would be hard: 
The so called  Overlap Gap Property would hold



If this would be the case, locally stable algorithms would fail  and learning would be hard: 
The so called  Overlap Gap Property would hold

This contradicts empirical evidence!



If this would be the case, locally stable algorithms would fail  and learning would be hard: 
The so called  Overlap Gap Property would hold

11

Figure 1:

 0

 20

 40

 60

 80

 100

 120

 140

 1  10  100  1000  10000 100000 1e+06  1e+07  1e+08  1e+09

e
n

e
rg

y

iterations

MC N=801 α=0.3
EdMC N=801 α=0.3

Perceptron Learning Problem, N = 801, ↵ = 0.3. A typical trajectory of standard Monte

Carlo(red curve) and Entropy-drive Monte Carlo(black curve). EdMC is run at 0 temperature

with � = 0.6, MC is started at y0 = 1 and run with a cooling rate of fy = 1.001, to ensure

convergence to a solution.

We performed extensive simulations and studied the scaling properties of EdMC in con-

trast to simulated annealing. Figure 2 is a log-log plot of the number of iterations nE=0 to

reach a solution obtained for increasing N at ↵ = 0.3. A least squares fit(nE=0 / N2.84) con-

firms the evident power law behaviour. Note that even with an extremely low cooling rate fy
convergence to a zero energy vector w̃ is not guaranteed: simulated annealing often gets stuck

in local minima, even at low loading(↵ ⇠ 0.3), especially in high dimensionality(N ? 103).

The power scaling of simulated annealing has to be confronted with the almost linear be-

haviour of zero temperature EdMC, which is reported in Figure 3. The situation is similar

at ↵ = 0.6: here standard Monte Carlo is uncapable of reaching a zero energy configu-

ration, and gets sistematically trapped in low energy states(our MC is terminated after

ntrap = 100.000⇥N rejected spin flips). In Figure 4 we show the scaling of MC and EdMC

iterations at ↵ = 0.6, also comparing the number of EdMC necessary to reach the aver-

age minimal energy of standard Monte Carlo. Note the clear sub-linear behaviour of the

latter(light blue curve) and the striking difference in orders of magnitudes.
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1) Regions observed with a diameter d

2) Internal entropy:

3) External entropy (number of regions of diameter d with a given internal entropy): 

whereN ð ~W;dÞ¼
P

fWgXξðWÞδ(W · ~W;Nð1−2dÞ) counts
the number of solutions W at normalized Hamming
distance d from a reference solution ~W (δ is the
Kronecker delta symbol) and y has the role of an inverse
temperature. This free energy describes a system in which
each configuration ~W is constrained to be a solution, and
has a formal energy density Eð ~WÞ ¼ −ð1=NÞ logN ð ~W; dÞ
that favors configurations surrounded by an exponential
number of other solutions, with y controlling the amount of
reweighting. The regions of highest local density are then
described in the regime of large y and small d.
The relevant quantities are computed through the usual

statistical physics tools; of particular importance is the
entropy density of the surrounding solutions, the local
entropy:

SIðd; yÞ ¼ −hEð ~WÞiξ; ~W ¼ 1

N
hlogN ð ~W; dÞiξ; ~W; ð2Þ

which is simply given by SIðd; yÞ ¼ ∂yðyF ðd; yÞÞ. The
signature for the existence of a dense and exponentially
large cluster of solutions is that SIðd; yÞ > 0 in a

neighborhood of d ¼ 0. Another important quantity is
the external entropy, i.e., the entropy of the reference
solutions SEðd; yÞ ¼ −y½F ðd; yÞ þ SIðd; yÞ&, which must
also be non-negative.
The special case y ¼ 1 is essentially equivalent to the

computation of Ref. [11]; SIðd; yÞ reduces to the compu-
tation à la Franz-Parisi of [14] in the limit y → 0.
We computed Eq. (1) by the replica method in the

replica-symmetric (RS) ansatz, resulting in an expression
involving 13 order parameters to be determined by the
saddle point method. The analytical expressions and the
details of the computation are reported in the Supplemental
Material [18]. It turns out that, for all values of α and d,
there is a value of y beyond which SEðd; yÞ < 0, which is
unphysical and signals a problem with the RS assumption.
Therefore, we sought the value y⋆ ¼ y⋆ðα; dÞ at which
SEðd; y⋆Þ ¼ 0, i.e., the highest value of y for which the
RS analytical results are consistent. In the following, we
thus drop the y dependency.
The solution to the system of equations stemming from

the RS saddle point produces qualitatively very similar
results for both the classification (with α < αc) and the
generalization (with α < αTS) case. It displays a number of
noteworthy properties (Fig. 2):
(1) For all α < αc, there is a neighborhood of d ¼ 0

where SIðdÞ > 0, implying the existence of extensive

FIG. 1 (color online). Numerical evidence of the existence of
clusters of solutions. Entropy at a given distance from a reference
solution ~W, in the classification case at α ¼ 0.4. From bottom to
top: (magenta) theoretical prediction for a typical ~W; (blue)
numerical estimate based on a random walks on connected
solutions starting from one provided by SBPI, with N ¼ 1001;
(red) estimate from belief propagation using a solution from
SBPI, with N ¼ 10001; (green) theoretical curve for the optimal
~W as computed from Eq. (1); and (dotted black) upper bound
(α ¼ 0 case, all configurations are solutions). The random-walk
points underestimate the number of solutions since they only
consider single-flip-connected clusters; the BP curve is lower
than the optimal curve because in the latter ~W is optimized as a
function of the distance, while in the former it is fixed. Inset:
comparison between a typical solution and one found with SBPI,
in the teacher-student case at α ¼ 0.5 with N ¼ 1001. Larger
potentials correspond to smaller distances. Top points (red): SBPI
reference solution, with the entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as reference.

FIG. 2 (color online). Large deviation analysis. Local entropy
curves at varying distance d from the reference solution ~W for
various α (classification case). Black dotted curve, α ¼ 0 case
(upper bound). Red solid curves, RS results from Eq. (1) (optimal
~W). Up to α ¼ 0.77, the curves are monotonic. At α ¼ 0.78, a
region incorrectly described within the RS ansatz appears (dotted;
geometric bounds are violated at the boundaries of the part of the
curve with negative derivative). At α ¼ 0.79, the solution is
discontinuous (a gap appears in the curve), and parts of the curve
have negative entropy (dotted). Blue dashed curves, equilibrium
analysis (typical ~W) [14] (dotted parts are unphysical): the curves
are never positive in a neighborhood of d ¼ 0. Inset: enlargement
of the region around d ¼ 0 (notice the solution for α ¼ 0.79,
followed by a gap).
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whereN ð ~W;dÞ¼
P

fWgXξðWÞδ(W · ~W;Nð1−2dÞ) counts
the number of solutions W at normalized Hamming
distance d from a reference solution ~W (δ is the
Kronecker delta symbol) and y has the role of an inverse
temperature. This free energy describes a system in which
each configuration ~W is constrained to be a solution, and
has a formal energy density Eð ~WÞ ¼ −ð1=NÞ logN ð ~W; dÞ
that favors configurations surrounded by an exponential
number of other solutions, with y controlling the amount of
reweighting. The regions of highest local density are then
described in the regime of large y and small d.
The relevant quantities are computed through the usual

statistical physics tools; of particular importance is the
entropy density of the surrounding solutions, the local
entropy:

SIðd; yÞ ¼ −hEð ~WÞiξ; ~W ¼ 1

N
hlogN ð ~W; dÞiξ; ~W; ð2Þ

which is simply given by SIðd; yÞ ¼ ∂yðyF ðd; yÞÞ. The
signature for the existence of a dense and exponentially
large cluster of solutions is that SIðd; yÞ > 0 in a

neighborhood of d ¼ 0. Another important quantity is
the external entropy, i.e., the entropy of the reference
solutions SEðd; yÞ ¼ −y½F ðd; yÞ þ SIðd; yÞ&, which must
also be non-negative.
The special case y ¼ 1 is essentially equivalent to the

computation of Ref. [11]; SIðd; yÞ reduces to the compu-
tation à la Franz-Parisi of [14] in the limit y → 0.
We computed Eq. (1) by the replica method in the

replica-symmetric (RS) ansatz, resulting in an expression
involving 13 order parameters to be determined by the
saddle point method. The analytical expressions and the
details of the computation are reported in the Supplemental
Material [18]. It turns out that, for all values of α and d,
there is a value of y beyond which SEðd; yÞ < 0, which is
unphysical and signals a problem with the RS assumption.
Therefore, we sought the value y⋆ ¼ y⋆ðα; dÞ at which
SEðd; y⋆Þ ¼ 0, i.e., the highest value of y for which the
RS analytical results are consistent. In the following, we
thus drop the y dependency.
The solution to the system of equations stemming from

the RS saddle point produces qualitatively very similar
results for both the classification (with α < αc) and the
generalization (with α < αTS) case. It displays a number of
noteworthy properties (Fig. 2):
(1) For all α < αc, there is a neighborhood of d ¼ 0

where SIðdÞ > 0, implying the existence of extensive

FIG. 1 (color online). Numerical evidence of the existence of
clusters of solutions. Entropy at a given distance from a reference
solution ~W, in the classification case at α ¼ 0.4. From bottom to
top: (magenta) theoretical prediction for a typical ~W; (blue)
numerical estimate based on a random walks on connected
solutions starting from one provided by SBPI, with N ¼ 1001;
(red) estimate from belief propagation using a solution from
SBPI, with N ¼ 10001; (green) theoretical curve for the optimal
~W as computed from Eq. (1); and (dotted black) upper bound
(α ¼ 0 case, all configurations are solutions). The random-walk
points underestimate the number of solutions since they only
consider single-flip-connected clusters; the BP curve is lower
than the optimal curve because in the latter ~W is optimized as a
function of the distance, while in the former it is fixed. Inset:
comparison between a typical solution and one found with SBPI,
in the teacher-student case at α ¼ 0.5 with N ¼ 1001. Larger
potentials correspond to smaller distances. Top points (red): SBPI
reference solution, with the entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as reference.

FIG. 2 (color online). Large deviation analysis. Local entropy
curves at varying distance d from the reference solution ~W for
various α (classification case). Black dotted curve, α ¼ 0 case
(upper bound). Red solid curves, RS results from Eq. (1) (optimal
~W). Up to α ¼ 0.77, the curves are monotonic. At α ¼ 0.78, a
region incorrectly described within the RS ansatz appears (dotted;
geometric bounds are violated at the boundaries of the part of the
curve with negative derivative). At α ¼ 0.79, the solution is
discontinuous (a gap appears in the curve), and parts of the curve
have negative entropy (dotted). Blue dashed curves, equilibrium
analysis (typical ~W) [14] (dotted parts are unphysical): the curves
are never positive in a neighborhood of d ¼ 0. Inset: enlargement
of the region around d ¼ 0 (notice the solution for α ¼ 0.79,
followed by a gap).
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which are found by the simplified algorithms are typically
not isolated; rather, they belong (with high probability at
large N) to large connected clusters of solutions. More
precisely: 1) from a given solution W̃ , a random walk
process over neighboring configurations in the space of
solutions can reach distances of order N from the start-
ing point; 2) the number of solutions at a distance of
order N from W̃ grows exponentially with N (this can
be estimated from the analysis of the recurrence relations
on the average growth factor of the number of solutions
at varying distances, and using the random walk pro-
cesses for sampling the local properties relevant to those
relations) .

Furthermore, we used BP (without reinforcement)
with an additional Franz-Parisi potential [15] to estimate
the entropy of the solutions at varying distance from a
reference solution W̃ obtained from a heuristic solver,
and found that the results do not match the predictions
of the equilibrium analysis [10], see Fig. 1.

We also extended the equilibrium analysis [10] to the
teacher-student scenario, and found that: 1) the qual-
itative picture is the same as for the classification sce-
nario, i.e. typical solutions are isolated for all values of
↵ - even when adding a non-zero stability constraint; 2)
the teacher device is also isolated, and it is in fact indis-
tinguishable from all other typical solutions except for
the generalization error; 3) the results of estimates ob-
tained from BP are consistent with the analytical calcu-
lation when using the teacher as a reference point, but
not when using a solution provided by a heuristic solver
(see inset in Fig. 1). Finally, the generalization error for
solutions found algorithmically is lower than what would
be expected for a typical solution (see Fig. 3).

Large deviation analysis.—These empirical results sug-
gest that the heuristic algorithms do not operate in the
regime described by calculations performed at thermody-
namic equilibrium, but rather in a large-deviation regime,
to which the usual statistical tools are effectively blind
[16].

We found theoretical evidence that this is indeed the
case by studying the following free energy function:
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counts the number of solutions W at normalized Ham-
ming distance d from a reference solution W̃ (� is the
Kronecker delta symbol), and y has the role of an in-
verse temperature. This free energy describes a system
in which each configuration W̃ is constrained to be a solu-
tion, and has an energy E
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favors configurations surrounded by an exponential num-
ber of other solutions.

In the limit y ! 1, provided the ground state is
unique, we obtain the entropy of the surrounding solu-
tions:
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where W̃
? is the optimal reference solution, i.e. the one

which is surrounded by most other solutions at the given
distance d. Therefore, if an exponentially large cluster of
solutions exists, we expect that S (d) > 0 in a neighbor-
hood of d = 0 (as opposed to the case of typical W̃ ).

We computed eq. (1) by the replica method in the so
called replica-symmetric (RS) Ansatz, and derived an ex-
pression for the y ! 1 case. The analysis of the scaling
of the order parameters with y confirms that the ground
state is indeed unique. We also found that in this limit
the constraint that W̃ is a solution becomes irrelevant.

The resulting expression for the entropy S (d) in the
generalization scenario is:
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standard notation Dz = e�
x2
2p
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dz to indicate a Gaussian

measure, and H (x) =
´1
x Dz. The quantities q, �q, R,

q̂, �q̂, R̂ and Ŝ are order parameters to be determined
by saddle-point equations, thus yielding a system of 7
coupled equations. q and R have a simple interpretation
in terms of the typical overlap between two solutions and
between a solution and the teacher, respectively. R can
thus be used to predict the generalization error pe.

The classification scenario can be obtained by setting
R = R̂ = 0 in expression (3), and solving for the remain-
ing system of 5 equations.

The solution to these systems of equations displays a
number of noteworthy properties (Fig. 2):

1. The classification (with ↵ < ↵c) and generalization
(with ↵ < ↵TS) cases are qualitatively very similar.

2. The system has a solution yielding S (d) > 0 for
all values of d for ↵ 2 [0,↵U ], where ↵U ' 0.755
in the classification case and ↵U ' 1.085 in the
generalization case. For ↵ � ↵U , there exists a
critical value dmin such that the system has no so-
lutions for d < dmin. Both dmin and S (dmin) are
strictly positive right after ↵U . This suggests that
a large cluster of solutions exists up to at least

Local entropy measure

Ed(W̃ )
.
= � logN (W̃ , d)

Bias the statistical measure towards dense (wide, flat) regions

"local entropy” (the log of the number of 
solutions in hypersphere of radius d) 

Learning in rare in High Local Entropy regions  
(wide flat minima)
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same picture also holds for complex architectures trained
on real-world benchmarks.

In a more general sense, these findings highlight the in-
adequacy of a standard equilibrium analysis when used to
describe the practically relevant properties of a prototypi-
cal complex system. There’s no reason to believe that this
scenario is specific to this particular family of problems;
our work could provide a general methodology to detect,
analyze and exploit this kind of occurrences. [Also, to
bring world peace.]

The model.—The single layer binary neural network
(perceptron) maps vectors of N inputs ⇠ 2 {�1, 1}N to
binary outputs as ⌧ (W, ⇠) = sign (W · ⇠), where W 2
{�1, 1}N is the vector of synaptic weights. Given ↵N

input patterns ⇠
µ with µ 2 {1, . . . ,↵N} and their cor-

responding desired outputs �
µ 2 {�1, 1}↵N , and defin-

ing X⇠ (W ) =
Q↵N

µ=1 ⇥ (�µ
⌧ (W, ⇠

µ)), where ⇥ (x) is the
Heaviside step function, the learning problem is that of
finding W such that ⌧ (W, ⇠

µ) = �
µ for all µ, i.e. such

that X⇠ (W ) = 1. The entries ⇠
µ
i are random unbiased

i.i.d. variables. There are two main scenarios of inter-
est for the distribution of the desired outputs �

µ: 1)
the classification (or storage) case, in which they are
i.i.d. random variables, and 2) the generalization (or
teacher-student) scenario, in which they are provided by
a “teacher” device, i.e. another perceptron with synap-
tic weights W

T . In the classification scenario, the typi-
cal problem is solvable with probability 1 in the limit of
large N up to ↵c = 0.833 [5], after which the probability
of finding a solution drops to zero. ↵c is called the ca-
pacity ; we also use this term for the maximum value of
↵ for which a solution can be found by a specific algo-
rithm. In the teacher-student scenario, the problem has
multiple solutions up to ↵TS = 1.245, after which there
is a first-order transition and only one solution is possi-
ble: the teacher itself [2, 6]. One additional quantity of
interest in this scenario is the generalization error rate
pe =

1
⇡ arccos

�
1
NW ·WT

�
, which is the probability that

⌧ (W, ⇠
?) = ⌧

�
W

T
, ⇠

?
�

when ⇠
? is a previously unseen

input.
Simplified algorithms.—Only a handful of algorithms

are currently believed to be able to solve the classification
problem and achieve a non-zero capacity in the limit of
large N in a sub-exponential running time; they are all,
to some extent, heuristic, and only numerical evidence
(although with N as large as 106) is available to support
the claims. The first such algorithm is a modified version
of Belief Propagation (BP), a message passing algorithm
which differs from standard BP by an additional “rein-
forcement” term, which can reach a capacity of at least
↵ ' 0.74 [11]. Two more algorithms, called SBPI [12]
and CP+R [13], were derived as crude simplifications of
the reinforced BP scheme: compared to the latter, they
have drastically reduced requirements (only employing
finite discrete quantities and simple, local and on-line
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Figure 1. (Color online) Numerical evidence of the ex-
istence of clusters of solutions. Entropy at a given dis-
tance from a reference solution W̃ , in the classification case
at ↵ = 0.4. From bottom to top: (magenta) theoretical pre-
diction for a typical W̃ ; (blue) numerical estimate based on a
random walks on connected solutions starting from one pro-
vided by SBPI, with N = 1001; (red) estimate from Belief
Propagation using a solution from SBPI, with N = 10001;
(green) theoretical curve for the optimal W̃ ? as computed
from eq. (3); (dotted black) upper bound (↵ = 0 case, all
configurations are solutions). The random-walk points un-
derestimate the number of solutions since they only consider
connected clusters; the BP curve is lower than the optimal
because in the latter W̃ is optimized as a function of the
distance, while in the former it is fixed. Inset : comparison
between a typical solution and one found with SBPI, in the
teacher-student case at ↵ = 0.5 with N = 1001. Larger po-
tentials correspond to smaller distances. Top points (red):
SBPI reference solution, entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as ref-
erence.

update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵TS or beyond.

Two issues arise from these results: 1) the failure of
the reinforced BP algorithm to reach the maximal ca-
pacity of ↵c ' 0.833 patterns, and 2) the effectiveness of
the utterly-simplified algorithms SBPI and CP+R, which
strikingly contrasts the picture provided by standard sta-
tistical analyses.

We investigated these issues through numerical exper-
iments, and found evidence that, in fact, the solutions

 = 1 iff all patterns are  correctly classified
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same picture also holds for complex architectures trained
on real-world benchmarks.

In a more general sense, these findings highlight the in-
adequacy of a standard equilibrium analysis when used to
describe the practically relevant properties of a prototypi-
cal complex system. There’s no reason to believe that this
scenario is specific to this particular family of problems;
our work could provide a general methodology to detect,
analyze and exploit this kind of occurrences. [Also, to
bring world peace.]

The model.—The single layer binary neural network
(perceptron) maps vectors of N inputs ⇠ 2 {�1, 1}N to
binary outputs as ⌧ (W, ⇠) = sign (W · ⇠), where W 2
{�1, 1}N is the vector of synaptic weights. Given ↵N

input patterns ⇠
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teacher-student) scenario, in which they are provided by
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tic weights W

T . In the classification scenario, the typi-
cal problem is solvable with probability 1 in the limit of
large N up to ↵c = 0.833 [5], after which the probability
of finding a solution drops to zero. ↵c is called the ca-
pacity ; we also use this term for the maximum value of
↵ for which a solution can be found by a specific algo-
rithm. In the teacher-student scenario, the problem has
multiple solutions up to ↵TS = 1.245, after which there
is a first-order transition and only one solution is possi-
ble: the teacher itself [2, 6]. One additional quantity of
interest in this scenario is the generalization error rate
pe =

1
⇡ arccos

�
1
NW ·WT

�
, which is the probability that

⌧ (W, ⇠
?) = ⌧

�
W

T
, ⇠

?
�

when ⇠
? is a previously unseen

input.
Simplified algorithms.—Only a handful of algorithms

are currently believed to be able to solve the classification
problem and achieve a non-zero capacity in the limit of
large N in a sub-exponential running time; they are all,
to some extent, heuristic, and only numerical evidence
(although with N as large as 106) is available to support
the claims. The first such algorithm is a modified version
of Belief Propagation (BP), a message passing algorithm
which differs from standard BP by an additional “rein-
forcement” term, which can reach a capacity of at least
↵ ' 0.74 [11]. Two more algorithms, called SBPI [12]
and CP+R [13], were derived as crude simplifications of
the reinforced BP scheme: compared to the latter, they
have drastically reduced requirements (only employing
finite discrete quantities and simple, local and on-line
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Figure 1. (Color online) Numerical evidence of the ex-
istence of clusters of solutions. Entropy at a given dis-
tance from a reference solution W̃ , in the classification case
at ↵ = 0.4. From bottom to top: (magenta) theoretical pre-
diction for a typical W̃ ; (blue) numerical estimate based on a
random walks on connected solutions starting from one pro-
vided by SBPI, with N = 1001; (red) estimate from Belief
Propagation using a solution from SBPI, with N = 10001;
(green) theoretical curve for the optimal W̃ ? as computed
from eq. (3); (dotted black) upper bound (↵ = 0 case, all
configurations are solutions). The random-walk points un-
derestimate the number of solutions since they only consider
connected clusters; the BP curve is lower than the optimal
because in the latter W̃ is optimized as a function of the
distance, while in the former it is fixed. Inset : comparison
between a typical solution and one found with SBPI, in the
teacher-student case at ↵ = 0.5 with N = 1001. Larger po-
tentials correspond to smaller distances. Top points (red):
SBPI reference solution, entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as ref-
erence.

update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵TS or beyond.

Two issues arise from these results: 1) the failure of
the reinforced BP algorithm to reach the maximal ca-
pacity of ↵c ' 0.833 patterns, and 2) the effectiveness of
the utterly-simplified algorithms SBPI and CP+R, which
strikingly contrasts the picture provided by standard sta-
tistical analyses.

We investigated these issues through numerical exper-
iments, and found evidence that, in fact, the solutions
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same picture also holds for complex architectures trained
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describe the practically relevant properties of a prototypi-
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scenario is specific to this particular family of problems;
our work could provide a general methodology to detect,
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tic weights W
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cal problem is solvable with probability 1 in the limit of
large N up to ↵c = 0.833 [5], after which the probability
of finding a solution drops to zero. ↵c is called the ca-
pacity ; we also use this term for the maximum value of
↵ for which a solution can be found by a specific algo-
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ble: the teacher itself [2, 6]. One additional quantity of
interest in this scenario is the generalization error rate
pe =

1
⇡ arccos

�
1
NW ·WT

�
, which is the probability that

⌧ (W, ⇠
?) = ⌧

�
W

T
, ⇠

?
�

when ⇠
? is a previously unseen

input.
Simplified algorithms.—Only a handful of algorithms

are currently believed to be able to solve the classification
problem and achieve a non-zero capacity in the limit of
large N in a sub-exponential running time; they are all,
to some extent, heuristic, and only numerical evidence
(although with N as large as 106) is available to support
the claims. The first such algorithm is a modified version
of Belief Propagation (BP), a message passing algorithm
which differs from standard BP by an additional “rein-
forcement” term, which can reach a capacity of at least
↵ ' 0.74 [11]. Two more algorithms, called SBPI [12]
and CP+R [13], were derived as crude simplifications of
the reinforced BP scheme: compared to the latter, they
have drastically reduced requirements (only employing
finite discrete quantities and simple, local and on-line
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Figure 1. (Color online) Numerical evidence of the ex-
istence of clusters of solutions. Entropy at a given dis-
tance from a reference solution W̃ , in the classification case
at ↵ = 0.4. From bottom to top: (magenta) theoretical pre-
diction for a typical W̃ ; (blue) numerical estimate based on a
random walks on connected solutions starting from one pro-
vided by SBPI, with N = 1001; (red) estimate from Belief
Propagation using a solution from SBPI, with N = 10001;
(green) theoretical curve for the optimal W̃ ? as computed
from eq. (3); (dotted black) upper bound (↵ = 0 case, all
configurations are solutions). The random-walk points un-
derestimate the number of solutions since they only consider
connected clusters; the BP curve is lower than the optimal
because in the latter W̃ is optimized as a function of the
distance, while in the former it is fixed. Inset : comparison
between a typical solution and one found with SBPI, in the
teacher-student case at ↵ = 0.5 with N = 1001. Larger po-
tentials correspond to smaller distances. Top points (red):
SBPI reference solution, entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as ref-
erence.

update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵TS or beyond.

Two issues arise from these results: 1) the failure of
the reinforced BP algorithm to reach the maximal ca-
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tistical analyses.

We investigated these issues through numerical exper-
iments, and found evidence that, in fact, the solutions

3

which are found by the simplified algorithms are typically
not isolated; rather, they belong (with high probability at
large N) to large connected clusters of solutions. More
precisely: 1) from a given solution W̃ , a random walk
process over neighboring configurations in the space of
solutions can reach distances of order N from the start-
ing point; 2) the number of solutions at a distance of
order N from W̃ grows exponentially with N (this can
be estimated from the analysis of the recurrence relations
on the average growth factor of the number of solutions
at varying distances, and using the random walk pro-
cesses for sampling the local properties relevant to those
relations) .

Furthermore, we used BP (without reinforcement)
with an additional Franz-Parisi potential [15] to estimate
the entropy of the solutions at varying distance from a
reference solution W̃ obtained from a heuristic solver,
and found that the results do not match the predictions
of the equilibrium analysis [10], see Fig. 1.

We also extended the equilibrium analysis [10] to the
teacher-student scenario, and found that: 1) the qual-
itative picture is the same as for the classification sce-
nario, i.e. typical solutions are isolated for all values of
↵ - even when adding a non-zero stability constraint; 2)
the teacher device is also isolated, and it is in fact indis-
tinguishable from all other typical solutions except for
the generalization error; 3) the results of estimates ob-
tained from BP are consistent with the analytical calcu-
lation when using the teacher as a reference point, but
not when using a solution provided by a heuristic solver
(see inset in Fig. 1). Finally, the generalization error for
solutions found algorithmically is lower than what would
be expected for a typical solution (see Fig. 3).

Large deviation analysis.—These empirical results sug-
gest that the heuristic algorithms do not operate in the
regime described by calculations performed at thermody-
namic equilibrium, but rather in a large-deviation regime,
to which the usual statistical tools are effectively blind
[16].

We found theoretical evidence that this is indeed the
case by studying the following free energy function:

F (d, y) = � 1

Ny
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0
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counts the number of solutions W at normalized Ham-
ming distance d from a reference solution W̃ (� is the
Kronecker delta symbol), and y has the role of an in-
verse temperature. This free energy describes a system
in which each configuration W̃ is constrained to be a solu-
tion, and has an energy E

⇣
W̃

⌘
= � logN

⇣
W̃ , d

⌘
which

favors configurations surrounded by an exponential num-
ber of other solutions.

In the limit y ! 1, provided the ground state is
unique, we obtain the entropy of the surrounding solu-
tions:

S (d) = �F (d,1) =
1

N
logN

⇣
W̃

?
, d

⌘
(2)

where W̃
? is the optimal reference solution, i.e. the one

which is surrounded by most other solutions at the given
distance d. Therefore, if an exponentially large cluster of
solutions exists, we expect that S (d) > 0 in a neighbor-
hood of d = 0 (as opposed to the case of typical W̃ ).

We computed eq. (1) by the replica method in the so
called replica-symmetric (RS) Ansatz, and derived an ex-
pression for the y ! 1 case. The analysis of the scaling
of the order parameters with y confirms that the ground
state is indeed unique. We also found that in this limit
the constraint that W̃ is a solution becomes irrelevant.

The resulting expression for the entropy S (d) in the
generalization scenario is:

S (d) = � (1� q) q̂
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. We used the

standard notation Dz = e�
x2
2p

2⇡
dz to indicate a Gaussian

measure, and H (x) =
´1
x Dz. The quantities q, �q, R,

q̂, �q̂, R̂ and Ŝ are order parameters to be determined
by saddle-point equations, thus yielding a system of 7
coupled equations. q and R have a simple interpretation
in terms of the typical overlap between two solutions and
between a solution and the teacher, respectively. R can
thus be used to predict the generalization error pe.

The classification scenario can be obtained by setting
R = R̂ = 0 in expression (3), and solving for the remain-
ing system of 5 equations.

The solution to these systems of equations displays a
number of noteworthy properties (Fig. 2):

1. The classification (with ↵ < ↵c) and generalization
(with ↵ < ↵TS) cases are qualitatively very similar.

2. The system has a solution yielding S (d) > 0 for
all values of d for ↵ 2 [0,↵U ], where ↵U ' 0.755
in the classification case and ↵U ' 1.085 in the
generalization case. For ↵ � ↵U , there exists a
critical value dmin such that the system has no so-
lutions for d < dmin. Both dmin and S (dmin) are
strictly positive right after ↵U . This suggests that
a large cluster of solutions exists up to at least

Characteristic function:

Number of solutions within Hamming  distance        from a given weight vector         :  W̃d

A ·B =
NX

j=1

AjBj

...~⇠µ

Wi 2 {±1} , i = 1, ..., N

= lim
�!1

e��LNE(W )
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Check the existence of subdominant dense regions of solutions in binary networks

  

Large deviations results

● Emergence of rare but ultra-dense regions of solutions (wide flat 
minima)

– Robust to perturbations

– Good generalization properties

– Easily accessible to various (not all!) simple heuristic algorithms

energy
local entropy

This was 
unexpected

C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PRL, 2015
C. Baldassi, F. Gerace, C. Lucibello, L. Saglietti, R. Zecchina, PRE, 2016

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019

Large deviations results for the binary perceptron:

rigorous proof (second moment method) Baldassi, Dellavecchia, Lucibello, Zecchina, submitted (2019)

C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and R. Zecchina Phys. Rev. Lett. 115, 128101 (2015)
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topology/functionality inference

topology/functionality inference

data ?

N  learned functional nodes, to be connected in a global network

Teacher Student

P (�|⇠new, {⇠µ,�µ}) =
Z

dWP (�|W, ⇠new, )P (W, {⇠µ,�µ})

Generalization

clusters of solutions. Furthermore, for all α, the curves for
SIðdÞ are all approximately equal around d ¼ 0; in
particular, they all approximate the case for α ¼ 0 where
all points are solutions. This implies that the clusters of
solutions are extremely dense at their core. This is our chief
result. The size of this dense region shrinks with α and
vanishes at αc.
(2) For large distances, as expected, SIðdÞ collapses with

a second-order transition onto the equilibrium entropy; i.e.,
this regime is dominated by the typical solutions.
(3) Up to a certain αU (where αU ≃ 0.77 in the

classification case and αU ≃ 1.1 in the generalization case),
the SIðdÞ curves are monotonic in d. Beyond αU, there is a
transition in which there appear regions of d (dotted in
Fig. 2) that are not correctly described by the RS ansatz
(since geometric bounds are violated; see the discussion in
the Supplemental Material for details [18]), and must be
described at a higher level of replica symmetry breaking
(RSB). We speculate that this transition signals a change in
the structure of the space of solutions: for α < αU, the
densest cores of solutions are immersed in a huge con-
nected structure; for α > αU, this structure fractures and the
dense cores become isolated and hard to find.
(4) In the teacher-student scenario, the generalization

properties of the optimal reference solutions ~W are gen-
erally much better than those of typical solutions. This is
clearly shown in Fig. 3, where we also show that the curve
for small d is in striking agreement with that produced
using solutions obtained from the SBPI algorithm. The

generalization error decreases monotonically when increas-
ing d, and it saturates to a plateau when SIðdÞ becomes
equal to the entropy of the typical solutions [see point
(2) above].
We expect this qualitative and quantitative picture,

especially for α≲ αU, to be quite robust. First, these results
are convincingly supported by our numerical findings,
where available. Furthermore, a slightly simplified model
analyzed at a higher level of RSB and at y → ∞ [see Eq. (3)
below] yields almost indistinguishable results.
The analytical computations are straightforwardly gen-

eralized to the case of multilevel synapses and sparse
patterns, and the results are qualitatively identical [23].
Multilayer network.—These theoretical results seem to

extend to more complex architectures and nonrandom
learning problems. We observed this by heuristically
extending the CPþ R algorithm to multilayer classifiers
with L possible output labels, and training these networks
on the MNIST database benchmark [24], which consists of
7 × 104 grayscale images of hand-written digits (L ¼ 10).
A description of the architecture and of the learning
algorithm is provided in the Supplemental Material [18].
We observed that it is indeed very easy to achieve perfect

learning on the whole training data set, and that very good
generalization errors can be reached (e.g., 1.25% with order
107 synapses) despite the binary nature of the synapses and
the fact that we did not specialize the architecture for this
particular data set. Moreover, we did not observe any
overfitting: the generalization error does not degrade by
reaching zero training error, or by using larger networks.
As for the perceptron, we performed a random-walk

process in the space of solutions, with similar results: the
simplified algorithm reaches a solution that is part of a
dense, large connected cluster, and the generalization
properties of the starting solution are better than those of
solutions found in later stages of the random walk (see
Fig. 1B in the Supplemental Material [18]).
Optimization.—We also studied a variant of the free

energy (1) without the constraint on ~W:

FUðd; yÞ ¼ −
1

Ny
log

!X

f ~Wg

N ð ~W; dÞy
"
: ð3Þ

The analysis in this case requires at least an additional
step of RSB, and will be presented in detail in a follow-up
work [25]. Still, the results are very close to those reported
for the constrained scenario; furthermore, the probability
that the ~W in this system are a solution tends exponentially
to 1 with d → 0, despite the removal of the explicit
constraint. This suggests that we can algorithmically
exploit FUðd; yÞ to efficiently sample ground states of
the system, and that such a strategy could be applied to
different optimization problems as well.
As the most straightforward proof of concept in this

direction we have developed a Monte Carlo Markov Chain

FIG. 3 (color online). Generalization error (teacher-student
scenario). From top to bottom: (blue) typical solution, (red)
optimal ~W from Eq. (1) at small d (we used d ¼ 0.025 for
numerical reasons and since the curve is not sensitive to the
precise value of d in this regime; this solution disappears after
α≃ 1.2), (black points) solutions from SBPI at N ¼ 10001, 100
samples per point, (magenta) optimal ~W from Eq. (1) at the value
of d for which SI is maximum (i.e., it equals the equilibrium
entropy), and (green) Bayesian case: error from the average over
all solutions. At αTS ¼ 1.245 there is the first-order transition to
perfect learning; between αTS and α ¼ 1.5 there is a metastable
regime; the dashed parts of the curves correspond to unphysical
solutions of the RS equations with negative entropy.

PRL 115, 128101 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

18 SEPTEMBER 2015

128101-4

Bayesian optimal:

The teacher is isolated

Phys. Rev. Lett. 115, 128101 (2015)



Algorithmic follow up: real replicas

Assume y integer, and transform the partition function

Local free entropy:

Large-deviation partition function: Z(y, �,�0,�) =
X

W

e��0LNE(W )+y �(W,�,�)
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• Local Entropy driven Simulated Annealing 

• Replicated Message-Passing (aka “focusing Belief Propagation”)

• Replicated Stochastic Gradient Descent (SGD)

• Entropy-SGD: Langevin dynamics to estimate local entropy

• Replicated Greedy Algorithms

• Sharpness Aware Minimization

• Stochastic weights + gradient on the probabilities

• Quantum Annealing delocalization mechanism for finding NN ground 
states

• …

Local entropy algorithms 



Objective Function:  
search for configurations   which maximize the local entropy  
(minimize the “energy”)             

Local Entropy driven Simulated Annealing

1.  SA moves   

2.  BP method to estimate the local entropy, 
or use a replicated model

3

which are found by the simplified algorithms are typically
not isolated; rather, they belong (with high probability at
large N) to large connected clusters of solutions. More
precisely: 1) from a given solution W̃ , a random walk
process over neighboring configurations in the space of
solutions can reach distances of order N from the start-
ing point; 2) the number of solutions at a distance of
order N from W̃ grows exponentially with N (this can
be estimated from the analysis of the recurrence relations
on the average growth factor of the number of solutions
at varying distances, and using the random walk pro-
cesses for sampling the local properties relevant to those
relations) .

Furthermore, we used BP (without reinforcement)
with an additional Franz-Parisi potential [15] to estimate
the entropy of the solutions at varying distance from a
reference solution W̃ obtained from a heuristic solver,
and found that the results do not match the predictions
of the equilibrium analysis [10], see Fig. 1.

We also extended the equilibrium analysis [10] to the
teacher-student scenario, and found that: 1) the qual-
itative picture is the same as for the classification sce-
nario, i.e. typical solutions are isolated for all values of
↵ - even when adding a non-zero stability constraint; 2)
the teacher device is also isolated, and it is in fact indis-
tinguishable from all other typical solutions except for
the generalization error; 3) the results of estimates ob-
tained from BP are consistent with the analytical calcu-
lation when using the teacher as a reference point, but
not when using a solution provided by a heuristic solver
(see inset in Fig. 1). Finally, the generalization error for
solutions found algorithmically is lower than what would
be expected for a typical solution (see Fig. 3).

Large deviation analysis.—These empirical results sug-
gest that the heuristic algorithms do not operate in the
regime described by calculations performed at thermody-
namic equilibrium, but rather in a large-deviation regime,
to which the usual statistical tools are effectively blind
[16].

We found theoretical evidence that this is indeed the
case by studying the following free energy function:
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counts the number of solutions W at normalized Ham-
ming distance d from a reference solution W̃ (� is the
Kronecker delta symbol), and y has the role of an in-
verse temperature. This free energy describes a system
in which each configuration W̃ is constrained to be a solu-
tion, and has an energy E
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= � logN
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favors configurations surrounded by an exponential num-
ber of other solutions.

In the limit y ! 1, provided the ground state is
unique, we obtain the entropy of the surrounding solu-
tions:

S (d) = �F (d,1) =
1

N
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where W̃
? is the optimal reference solution, i.e. the one

which is surrounded by most other solutions at the given
distance d. Therefore, if an exponentially large cluster of
solutions exists, we expect that S (d) > 0 in a neighbor-
hood of d = 0 (as opposed to the case of typical W̃ ).

We computed eq. (1) by the replica method in the so
called replica-symmetric (RS) Ansatz, and derived an ex-
pression for the y ! 1 case. The analysis of the scaling
of the order parameters with y confirms that the ground
state is indeed unique. We also found that in this limit
the constraint that W̃ is a solution becomes irrelevant.

The resulting expression for the entropy S (d) in the
generalization scenario is:
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standard notation Dz = e�
x2
2p
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measure, and H (x) =
´1
x Dz. The quantities q, �q, R,

q̂, �q̂, R̂ and Ŝ are order parameters to be determined
by saddle-point equations, thus yielding a system of 7
coupled equations. q and R have a simple interpretation
in terms of the typical overlap between two solutions and
between a solution and the teacher, respectively. R can
thus be used to predict the generalization error pe.

The classification scenario can be obtained by setting
R = R̂ = 0 in expression (3), and solving for the remain-
ing system of 5 equations.

The solution to these systems of equations displays a
number of noteworthy properties (Fig. 2):

1. The classification (with ↵ < ↵c) and generalization
(with ↵ < ↵TS) cases are qualitatively very similar.

2. The system has a solution yielding S (d) > 0 for
all values of d for ↵ 2 [0,↵U ], where ↵U ' 0.755
in the classification case and ↵U ' 1.085 in the
generalization case. For ↵ � ↵U , there exists a
critical value dmin such that the system has no so-
lutions for d < dmin. Both dmin and S (dmin) are
strictly positive right after ↵U . This suggests that
a large cluster of solutions exists up to at least
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Perceptron Learning Problem, N = 801, ↵ = 0.3. A typical trajectory of standard Monte

Carlo(red curve) and Entropy-drive Monte Carlo(black curve). EdMC is run at 0 temperature

with � = 0.6, MC is started at y0 = 1 and run with a cooling rate of fy = 1.001, to ensure

convergence to a solution.

We performed extensive simulations and studied the scaling properties of EdMC in con-

trast to simulated annealing. Figure 2 is a log-log plot of the number of iterations nE=0 to

reach a solution obtained for increasing N at ↵ = 0.3. A least squares fit(nE=0 / N2.84) con-

firms the evident power law behaviour. Note that even with an extremely low cooling rate fy
convergence to a zero energy vector w̃ is not guaranteed: simulated annealing often gets stuck

in local minima, even at low loading(↵ ⇠ 0.3), especially in high dimensionality(N ? 103).

The power scaling of simulated annealing has to be confronted with the almost linear be-

haviour of zero temperature EdMC, which is reported in Figure 3. The situation is similar

at ↵ = 0.6: here standard Monte Carlo is uncapable of reaching a zero energy configu-

ration, and gets sistematically trapped in low energy states(our MC is terminated after

ntrap = 100.000⇥N rejected spin flips). In Figure 4 we show the scaling of MC and EdMC

iterations at ↵ = 0.6, also comparing the number of EdMC necessary to reach the aver-

age minimal energy of standard Monte Carlo. Note the clear sub-linear behaviour of the

latter(light blue curve) and the striking difference in orders of magnitudes.
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iterations at ↵ = 0.6, also comparing the number of EdMC necessary to reach the aver-

age minimal energy of standard Monte Carlo. Note the clear sub-linear behaviour of the

latter(light blue curve) and the striking difference in orders of magnitudes.
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Connection with Monasson’s 1-rsb formalism (1995)

1) We are interested in the  out-of-equilibrium regime m >1

2)  q1 =1-2 D is the diameter of the hypersphere. We do not need to maximise over q1

3) If we find a value of q1  that maximises the free entropy then we have an out-of-equilibrium 
state (m >1)  as in Monasson 

3

The relationship between our analysis and the usual 1RSB case can be made even more direct, leading to an
alternative – although with very similar results – large deviations analysis: consider, instead of eq. (S10), a partition
function in which the interaction among the replicas is pairwise (without the reference configuration W̃ ) and the
constraint on the distance is hard (introduced via a Dirac delta function):

Z1RSB (�0, y,D) =
X

{Wa}

e��0 Py
a=1 E(Wa)

Y

a>b

�
�
d
�
W a,W b

�
�ND

�
(S11)

Suppose then that we study the average free entropy hlogZ1RSB (�0, y, �)i (where h·i represents the average over
the quenched parameters, if any) in the context of replica theory. Then, we will have n virtual replicas of the whole
system, and since each system has y real replicas we end up with ny total replicas. Let’s use indices c, d for the
virtual replicas and a, b for the real ones, such that a configuration will now have two indices, e.g. W ca. Suppose
that we manage to manipulate the expression such that it becomes a function, among other order parameters, of the
overlaps qca,db = 1

N

⌦
W ca,W db

↵
, where h·, ·i represents some inner product, and that the distance function d (·, ·) can

be expressed in terms of those. Then, as usual, we would introduce auxiliary integrals
Z Y

(ca,db)

�
Ndqca,db

� Y

(ca,db)

�
�
Nqca,db �

⌦
W ca,W db

↵�
(S12)

Using this, we can rewrite the interaction term. Say that d (W,W 0) = hW,W i+ hW 0,W 0i � 2 hW,W 0i, then:
Y

c

Y

a>b

�
�
d
�
W ca,W cb

�
�ND

�
=

Y

c

Y

a>b

�
�
N

�
qca,ca + qcb,cb � 2qca,cb �D

��
(S13)

By assuming replica symmetry, we seek a saddle point with this structure:

qca,ca = Q

qca,cb = q1 (a 6= b) (S14)
qca,db = q0 (c 6= d)

with Q � q1 � q0. The interaction term eq. (S13) becomes:
Y

c

Y

a>b

�
�
N

�
qca,ca + qcb,cb � 2qca,cb �D

��
= � (2N (Q� q1 �D)) (S15)

Therefore, the external parameter D eliminates a degree of freedom in the solution to the saddle point equations
for the overlaps. The final step in the replica calculation would have the form

hlogZ1RSB (�0, y,D)i = �1RSB (�0, y,Q, q1, q0, . . . ) � (Q� q1 �D)

= �1RSB (�0, y,Q,Q�D, q0, . . . ) (S16)

where �1RSB is the expression that would have been derived in an equilibrium computation without the interaction
term, the dots in the argument represent extra order parameters, and the order parameters are fixed by the saddle
point equations

@Q�1RSB (�0, y,Q,Q�D, q0, . . . ) = 0

@q0�1RSB (�0, y,Q,Q�D, q0, . . . ) = 0 (S17)
...

Thus, the difference with respect to the usual 1RSB computation is that the equation for finding the extremum over
q1 is removed, and the one for finding the extremum over Q is modified. Maximizing over D, by solving for @D� = 0,
is then equivalent to the usual 1RSB description (equivalent to the case � ! 0 in the soft-constraint case):

Z1RSB (�0, y) = max
D

Z1RSB (�0, y,D) (S18)

In the common case where Q is fixed (e.g. if the variables W are discrete, or constraints on the norm are introduced)
then this representation fixes q1; it is clear then that our large deviations analysis (the alternative one of eq. (S11))
is simply derived by fixing q1 as an external parameter, and thus omitting the saddle point equation @q1�1RSB = 0.
Note that this wouldn’t make physical sense in the standard derivation of the 1RSB equations, since in that context
q1 is only introduced as an overlap between virtual replicas when choosing an Ansatz for the solutions of the saddle
point equations; our derivation is only physically meaningful when describing a system of real interacting replicas or,
in the case of the original derivation from eq. (S5), a system with a modified energy function.
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R. Monasson,   Physical review letters, 75(15):2847, 1995. 
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• How are these dense regions composed?
• Why they generalise well? 
• Do they contain high margin solutions?

Solutions with margin k:

k
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Figure 2. Hamming distance between typical solutions as a
function of the margin imposed, for – = 0.2, 0.3, 0.4, 0.6
and 0.8 (from top to bottom). The lines change from solid to
dashed when the entropy of solutions becomes negative, i.e.
when Ÿ = Ÿmax as defined in the main text.

where we have dropped the dependence of Z on › and ‡
to lighten the notation. Indeed, Z is the partition func-
tion of a flat measure over the Ÿ-margin solutions, which
in turn is the zero-temperature limit of an equilibrium
Gibbs measure, with the number of violated patterns as
the energy. The corresponding Gibbs entropy of the so-
lutions can thus be obtained as

„(–, Ÿ) = lim
NæŒ

1
N

Èln ZÍ›,‡ (2)

where È. . . Í›,‡ denotes the average over random patterns
and labels. In the following, we can safely impose ‡µ = 1
for every µ = 1, . . . , P without loss of generality, since
we can perform the transformation ›µ

i æ ‡µ›µ
i , without

a�ecting the probability measure of the patterns. Since
we are considering a discrete model, the entropy has a
lower bound of 0. In the limit of large N the model
exhibits a sharp transition at the critical capacity –c(Ÿ),
defined as the maximum – with non-vanishing entropy:
„(–c(Ÿ), Ÿ) = 0. For – < –c(k) the probability that an
instance of the problem has a solution is 1, but it sharply
drops to zero above this threshold [25] (see also [21] for a
recent rigorous proof of the value for zero margin –c(0) ƒ
0.833).

Distances between typical solutions. We have com-
puted the entropy of solutions, given in equation (2) us-
ing the replica method. The details of the derivation are
given in the Supplemental Material (SM).

As displayed in Fig. 2, we find that the Hamming dis-
tance between solutions is a rapidly decreasing function
of the margin. As mentioned in the introduction, the en-
tropy is a decreasing function of the margin as well (see
the SM); this means that even if solutions with larger
margin are exponentially fewer, they are less dispersed.
The closest solutions are those with maximum margin

Ÿmax(–), defined as the largest Ÿ with non-vanishing en-
tropy: „(–, Ÿmax(–)) = 0.

Isolated and and non-isolated solutions. A key ques-
tion is how, below the critical capacity, the solutions are
arranged and how the structure of solution space a�ects
the performance of learning algorithms. As discussed by
Krauth and Mezard [25] and Huang and Kabashima [26]
the structure of typical solutions for Ÿ = 0 consists of
clusters of vanishing entropy (so called frozen-1RSB sce-
nario). In the whole phase below –c(Ÿ = 0), zero-margin
solutions are isolated, meaning that one has to flip an ex-
tensive number of weights in order to find the closest solu-
tion. This scenario was also recently confirmed in simple
one-hidden layer neural networks with generic activation
functions [16] and also rigorously for the symmetric per-
ceptron [27, 28]. This kind of landscape with point-like
solutions suggests that finding such solution should be a
hard optimization problem; however, this is contrary to
the numerical evidence given by simple algorithms such
as the ones based on message passing [29, 30]. This ap-
parent contradiction was solved in [14, 19, 31] where it
was shown that there exist rare but dense regions of so-
lutions that are accessible by algorithms. Subsequent
works suggested that simple algorithmic strategies that
are commonly used in deep learning such as the choice
of the loss and the activation function [15, 16] or the
e�ect of regularization [32] seem to help algorithms to
access those regions. Finally, a systematic study of the
loss landscape of neural networks suggested that as net-
work depth increases the number of minima increase as
well, but at the same time they become more clustered
and generally are separated by low barriers [17, 18, 33].
In [34] the authors show that SGD-based algorithms are
able to access flat minima because they intrinsically pos-
sess an anisotropic noise that is stronger in the directions
where the landscape is rough and smaller when it is flat.

Here we want to better understand the geometry of
those rare dense regions, in particular how they relate
to the Ÿ > 0 solutions, with which they share at least
the property of being robust with respect to input per-
turbations (see [16] for a discussion of the distribution of
the stabilities inside a high-local-entropy region). To this
end we begin by analyzing in which part of the landscape
high-margin solutions tend to be concentrated. Given a
configuration w̃, that we also call the “reference”, we de-
fine the local entropy of w̃ as the logarithm (divided by
N) of the quantity:

N›(w̃, d, Ÿ) =
ÿ

w

X›(w; Ÿ) ”

A
N(1 ≠ 2d) ≠

Nÿ

i=1
w̃iwi

B
.

(3)
This expression counts the number of configurations w
that are solutions with margin Ÿ of the classification task,
and which lay at a normalized Hamming distance d from
the reference w̃. Studying the local entropy profile as we
vary the distance d thus allows to characterize the density

Typical high margin solutions are less but tend to be much closer to each other

The lines change from solid to dashed when the entropy of solutions becomes negative, i.e. 
when κ = κmax

distance d=(1-q1)/2  
between typical solutions 
for a given margin
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Figure 1. The picture represents a portion of the space
of network configurations. Di�erent dots represent solutions
(zero-error configurations); solutions with larger Ÿ margin are
represented with larger, darker dots (see legend). Red arrows
from left to right indicate four examples of typical solutions
with a given Ÿ (in descending order from top to bottom). The
yellow arrows from right to left indicate three examples of
the type of atypical solutions found around the typical ones
with a larger margin (also in descending order from top to
bottom). Low-margin solutions are more numerous than high-
margin solutions. Typical low-margin solutions are isolated
and distant from each other. Typical high-margin solutions
are also distant from each other, but less so, and tend to
be surrounded by (atypical) low-margin solutions. Thus, the
higher-margin solutions are rare, but they lie in the middle of
a dense, extended region that results from the coalescence of
the low-margin solutions.

ing with Ÿ, high-margin solutions are exponentially rare
compared to zero-margin solutions. However, they tend
to concentrate in particular regions, and are in turn sur-
rounded by other solutions of smaller and smaller mar-
gin. This coalescence of minima results in dense regions
of solutions over long distances, of size O (N). This is
illustrated in Fig. 1, where we show a two-dimensional
qualitative sketch of the picture that emerges from our
analysis of the geometric distribution of minima for a
not too large value of –. As as the number of patterns
increases (i.e. –), the solutions thin out, their margin
gets smaller, and above some threshold in – the large
connected structures break up and eventually disappear.

Our results provide a clearer picture regarding the in-
ternal structure of the flat minima and allow us to de-
fine an alternative analytical method for estimating the
threshold at which they appear and where the algorithms

begin to find solutions e�ciently. We show that, for val-
ues of the loading parameter – su�ciently small, the
zero-error solutions have the following properties:

1) the Hamming distance between typical solutions in
the space of network configurations is a rapidly decreas-
ing function of their margin Ÿ. Despite being exponen-
tially less numerous (in N) compared to the Ÿ = 0 so-
lutions, the Ÿ > 0 solutions tend to have small mutual
distance. They are sparser and yet much closer. 2) typi-
cal solutions with a prescribed margin Ÿ̃ > 0 are always
surrounded at O(N) Hamming distance by an exponen-
tial number of smaller margin solutions. By increasing
Ÿ̃, we make sure to target higher local entropy regions.

While the notion of margin has been developed in
the context of shallow networks where it can be directly
linked to generalization, the notion of flatness, or high
local entropy, applies also to deep networks for which
there is no straightforward way to define the margin for
the hidden layer units. High local entropy minima are
stable with respect to perturbations of the input and of
the internal representations.

The model. For simplicity, we discuss here the results
of our study by considering a single-layer [22] network
with N binary weights w œ {≠1, 1}N , which is per-
haps the simplest to define non-convex neural network
endowed with a non-trivial geometric structure of zero-
error solutions. In the SM we detail the analytical results
for models with one hidden layer, with binary weights
and generic activation functions, which lead to a quali-
tatively similar geometric scenario. In the SM we also
report numerical results for deep networks.

Given a (binary) pattern › œ {≠1, 1}N as input to
the network, the corresponding output is computed as
‡out = sign (w · ›). We consider a training set composed
of µ = 1, . . . , P = –N i.i.d. unbiased random binary
patterns ›µ = {≠1, 1}N and labels ‡µ = {≠1, 1} [23, 24].
The learning problem consists in finding the weights that
realize all the input-output mappings of the training set.
In this paper we are interested not only in those con-
figurations that are solutions, but also those that have
a large confidence level. We quantify this by imposing
that for every pattern in the training set, the weights
should have stability �µ © ‡µ

Ô
N

w · ›µ, larger than a
given margin Ÿ, which therefore represents the distance
from the threshold of the output unit (i.e. the classifica-
tion boundary) in the direction of the correct label. The
flat measure over these configurations is proportional to
X›,‡(w; Ÿ) =

rP
µ=1 �

1
‡µ

Ô
N

qN
i=1 wi›

µ
i ≠ Ÿ

2
where �(·)

is the Heaviside theta function; this quantity is equal to
1 if the weight w classifies correctly all the patterns with
a certain margin Ÿ, and 0 otherwise. The number of so-
lutions with margin Ÿ is given by

Z =
ÿ

{wi=±1}

X›,‡(w; Ÿ) (1)

Figure 1: A heuristic illustration of the rugged landscape of the fitness function of solutions
�kGXk1 in the perceptron model.

Figure 2: Cross sections {X : �kGXk1 � �} at increasing values of  representing the clusters
of solutions.

illustrated in Figure 1. Away from the peaks the landscape falls away quickly in most directions
but more slowly in a few directions (of course unlike our figure, the space of X in the perceptron
model is very high dimensional). If we fix ↵, varying  corresponds to taking di↵erent cross-sections
of the landscape as illustrated in Figure 2. For any , most clusters will be isolated points given by
peaks of height exactly �. But the taller peaks have larger cross-sections and for small enough 
these connect together and can form very wide but thin webs as seen in the left cross-section. For
larger  the mountain cross-sections do no overlap but the largest mountains still give clusters of
linear size.
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Binary perceptron: e�cient algorithms can find solutions in
a rare well-connected cluster

Emmanuel Abbe ∗ Shuangping Li † Allan Sly ‡

Abstract

It was recently shown that almost all solutions in the symmetric binary perceptron are
isolated, even at low constraint densities, suggesting that finding typical solutions is hard. In
contrast, some algorithms have been shown empirically to succeed in finding solutions at low
density. This phenomenon has been justified numerically by the existence of subdominant and
dense connected regions of solutions, which are accessible by simple learning algorithms. In
this paper, we establish formally such a phenomenon for both the symmetric and asymmetric
binary perceptrons. We show that at low constraint density (equivalently for overparametrized
perceptrons), there exists indeed a subdominant connected cluster of solutions with almost
maximal diameter, and that an e�cient multiscale majority algorithm can find solutions in such
a cluster with high probability, settling in particular an open problem posed by Perkins-Xu in
STOC’21. In addition, even close to the critical threshold, we show that there exist clusters of
linear diameter for the symmetric perceptron, as well as for the asymmetric perceptron under
additional assumptions.

1 Introduction

The binary perceptron is a simple neural network model. It was studied in the 60s by Cover1

[Cov65] and in the 80s in the statistical physics literature with detailed characterizations put
forward by Gardner and Derrida [GD88] and Krauth and Mézard [KM89]. More recently, the
structural properties of its solution space have been related to the behavior of algorithms for
learning neural networks in [Bal+16a; Bal+16b; BZ06; Bal+15] and several probabilistic results
have been established in [KR98; Tal99; Sto13; DS19; APZ19; PX21; ALS21] (see further discussions
below).

The asymmetric binary perceptron model (ABP) is defined as follows. Let G be an m by n
matrix with i.i.d. entries taking value in {+1,�1} with equal probability. Fix a real number , and
consider the following constraints:

Sj(G) :=

(
X 2 {�1,+1}n :

1p
n

nX

i=1

Gj,iXi � 

)
, j = 1, · · · ,m.

∗Institute of Mathematics, EPFL, Lausanne, CH-1015, Switzerland. Email: emmanuel.abbe@epfl.ch.
†PACM, Princeton University, Princeton, NJ, 08544, USA. Email: sl31@princeton.edu.
‡Department of Mathematics, Princeton University, Princeton, NJ, 08544, USA. Email: allansly@princeton.edu.
1Mainly for the spherical case.
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Unveiling the structure of wide flat minima in neural networks

Carlo Baldassi,1 Clarissa Lauditi,2 Enrico M. Malatesta,1 Gabriele Perugini,1 and Riccardo Zecchina1

1
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The success of deep learning has revealed the application potential of neural networks across the
sciences and opened up fundamental theoretical problems. In particular, the fact that learning
algorithms based on simple variants of gradient methods are able to find near-optimal minima
of highly nonconvex loss functions is an unexpected feature of neural networks. Moreover, such
algorithms are able to fit the data even in the presence of noise, and yet they have excellent predictive
capabilities. Several empirical results have shown a reproducible correlation between the so-called
flatness of the minima achieved by the algorithms and the generalization performance. At the same
time, statistical physics results have shown that in nonconvex networks a multitude of narrow minima
may coexist with a much smaller number of wide flat minima, which generalize well. Here we show
that wide flat minima arise as complex extensive structures, from the coalescence of minima around
"high-margin" (i.e., locally robust) configurations. Despite being exponentially rare compared to
zero-margin ones, high-margin minima tend to concentrate in particular regions. These minima
are in turn surrounded by other solutions of smaller and smaller margin, leading to dense regions
of solutions over long distances. Our analysis also provides an alternative analytical method for
estimating when flat minima appear and when algorithms begin to find solutions, as the number of
model parameters varies.

Machine learning has undergone a tremendous ac-
celeration thanks to the performance of so-called deep
networks [1]. Very complex architectures are able to
achieve unexpected performance in very di�erent do-
mains, from language processing [2] to protein structure
prediction [3, 4], just to name a few recent impressive re-
sults. A key aspect that di�erent neural network models
have in common is the non-convex nature of the learning
problem. The learning process must be able to converge
in a very high-dimensional space and in the presence of a
huge number of local minima of the loss function which
measures the error rate on the data set. Surprisingly,
this goal can be achieved by algorithms designed for con-
vex problems with just few adjustments, such as choosing
highly parameterized architectures, using dynamic regu-
larization techniques, and choosing appropriate loss func-
tions [5]. In practice, neural networks with hundreds of
millions of variables can be successfully optimized by al-
gorithms based on the gradient descent method [6].

The study of the geometric structure of the minima of
the loss function is essential for understanding the dy-
namic phenomena of learning and explaining generaliza-
tion capabilities. Several empirical results have shown
a reproducible correlation between the so-called flatness
of the minima achieved by algorithms and generalization
performance [7–9]. In a sense that needs to be made rig-
orous, the loss functions of neural networks seem to be
characterized by the existence of large flat minima that
are both accessible and well generalizable [10–12]. More-
over, similar minima are found in the case of randomized
labels [13] and di�erent data sets, suggesting that they
are a robust property of the networks.

This scenario is upheld by some recent studies based
on statistical physics methods [14–18], which show that
in tractable models of non-convex neural networks a mul-

titude of minima with poor generalization capabilities co-
exists with a smaller number of wide flat minima, a.k.a.
high local entropy minima, that generalize close to opti-
mality [14]. These studies rely on large-deviation meth-
ods that give access to the typical number of minima
surrounded by a very large number of other minima at a
fixed distance. The analytical results are corroborated by
numerical studies that confirm the accessibility of wide
flat minima by simple algorithms that do not try to sam-
ple from the dominating set of minima [19].

Here we provide analytical results on the geometric
structure of these wide flat minima. We take as analyt-
ically tractable non-convex model a prototypical neural
network with N binary weights trained on P = –N ran-
dom patterns, investigated in the thermodynamic limit
of large N and large P , with – = P/N = O(1) . The
network performs a binary classification task, and its pre-
diction is given by the sign of the output unit. This model
has been extensively studied with mean field statistical
physics methods [20], based on the self-averaging prop-
erty that in the thermodynamic limit the macroscopic
behavior of any sample is fully described by the sample
average; many of the results were later corroborated by
rigorous techniques [21]. The solutions of the learning
task (zero-error configurations) can be characterized by
their margin, denoted by Ÿ. The margin of a solution
is a hard measure of robustness to local perturbations
of the weights: it is the minimum di�erence, across all
the training patterns, between the output pre-activation
and the threshold. A Ÿ-margin solution is guaranteed
to be surrounded in configuration space by other solu-
tions within a radius proportional to Ÿ

Ô
N . In the model

under study, the number of solutions at a given margin
Ÿ, when they exist, is typically exponential in N , i.e.
exp (N„ (–, Ÿ)). Since „ (–, Ÿ) is monotonically decreas-
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Figure 1. The picture represents a portion of the space
of network configurations. Di�erent dots represent solutions
(zero-error configurations); solutions with larger Ÿ margin are
represented with larger, darker dots (see legend). Red arrows
from left to right indicate four examples of typical solutions
with a given Ÿ (in descending order from top to bottom). The
yellow arrows from right to left indicate three examples of
the type of atypical solutions found around the typical ones
with a larger margin (also in descending order from top to
bottom). Low-margin solutions are more numerous than high-
margin solutions. Typical low-margin solutions are isolated
and distant from each other. Typical high-margin solutions
are also distant from each other, but less so, and tend to
be surrounded by (atypical) low-margin solutions. Thus, the
higher-margin solutions are rare, but they lie in the middle of
a dense, extended region that results from the coalescence of
the low-margin solutions.

ing with Ÿ, high-margin solutions are exponentially rare
compared to zero-margin solutions. However, they tend
to concentrate in particular regions, and are in turn sur-
rounded by other solutions of smaller and smaller mar-
gin. This coalescence of minima results in dense regions
of solutions over long distances, of size O (N). This is
illustrated in Fig. 1, where we show a two-dimensional
qualitative sketch of the picture that emerges from our
analysis of the geometric distribution of minima for a
not too large value of –. As as the number of patterns
increases (i.e. –), the solutions thin out, their margin
gets smaller, and above some threshold in – the large
connected structures break up and eventually disappear.

Our results provide a clearer picture regarding the in-
ternal structure of the flat minima and allow us to de-
fine an alternative analytical method for estimating the
threshold at which they appear and where the algorithms

begin to find solutions e�ciently. We show that, for val-
ues of the loading parameter – su�ciently small, the
zero-error solutions have the following properties:

1) the Hamming distance between typical solutions in
the space of network configurations is a rapidly decreas-
ing function of their margin Ÿ. Despite being exponen-
tially less numerous (in N) compared to the Ÿ = 0 so-
lutions, the Ÿ > 0 solutions tend to have small mutual
distance. They are sparser and yet much closer. 2) typi-
cal solutions with a prescribed margin Ÿ̃ > 0 are always
surrounded at O(N) Hamming distance by an exponen-
tial number of smaller margin solutions. By increasing
Ÿ̃, we make sure to target higher local entropy regions.

While the notion of margin has been developed in
the context of shallow networks where it can be directly
linked to generalization, the notion of flatness, or high
local entropy, applies also to deep networks for which
there is no straightforward way to define the margin for
the hidden layer units. High local entropy minima are
stable with respect to perturbations of the input and of
the internal representations.

The model. For simplicity, we discuss here the results
of our study by considering a single-layer [22] network
with N binary weights w œ {≠1, 1}N , which is per-
haps the simplest to define non-convex neural network
endowed with a non-trivial geometric structure of zero-
error solutions. In the SM we detail the analytical results
for models with one hidden layer, with binary weights
and generic activation functions, which lead to a quali-
tatively similar geometric scenario. In the SM we also
report numerical results for deep networks.

Given a (binary) pattern › œ {≠1, 1}N as input to
the network, the corresponding output is computed as
‡out = sign (w · ›). We consider a training set composed
of µ = 1, . . . , P = –N i.i.d. unbiased random binary
patterns ›µ = {≠1, 1}N and labels ‡µ = {≠1, 1} [23, 24].
The learning problem consists in finding the weights that
realize all the input-output mappings of the training set.
In this paper we are interested not only in those con-
figurations that are solutions, but also those that have
a large confidence level. We quantify this by imposing
that for every pattern in the training set, the weights
should have stability �µ © ‡µ

Ô
N

w · ›µ, larger than a
given margin Ÿ, which therefore represents the distance
from the threshold of the output unit (i.e. the classifica-
tion boundary) in the direction of the correct label. The
flat measure over these configurations is proportional to
X›,‡(w; Ÿ) =

rP
µ=1 �

1
‡µ

Ô
N

qN
i=1 wi›

µ
i ≠ Ÿ

2
where �(·)

is the Heaviside theta function; this quantity is equal to
1 if the weight w classifies correctly all the patterns with
a certain margin Ÿ, and 0 otherwise. The number of so-
lutions with margin Ÿ is given by

Z =
ÿ

{wi=±1}

X›,‡(w; Ÿ) (1)

Figure 1: A heuristic illustration of the rugged landscape of the fitness function of solutions
�kGXk1 in the perceptron model.

Figure 2: Cross sections {X : �kGXk1 � �} at increasing values of  representing the clusters
of solutions.

illustrated in Figure 1. Away from the peaks the landscape falls away quickly in most directions
but more slowly in a few directions (of course unlike our figure, the space of X in the perceptron
model is very high dimensional). If we fix ↵, varying  corresponds to taking di↵erent cross-sections
of the landscape as illustrated in Figure 2. For any , most clusters will be isolated points given by
peaks of height exactly �. But the taller peaks have larger cross-sections and for small enough 
these connect together and can form very wide but thin webs as seen in the left cross-section. For
larger  the mountain cross-sections do no overlap but the largest mountains still give clusters of
linear size.

3

Binary perceptron: e�cient algorithms can find solutions in
a rare well-connected cluster

Emmanuel Abbe ∗ Shuangping Li † Allan Sly ‡

Abstract

It was recently shown that almost all solutions in the symmetric binary perceptron are
isolated, even at low constraint densities, suggesting that finding typical solutions is hard. In
contrast, some algorithms have been shown empirically to succeed in finding solutions at low
density. This phenomenon has been justified numerically by the existence of subdominant and
dense connected regions of solutions, which are accessible by simple learning algorithms. In
this paper, we establish formally such a phenomenon for both the symmetric and asymmetric
binary perceptrons. We show that at low constraint density (equivalently for overparametrized
perceptrons), there exists indeed a subdominant connected cluster of solutions with almost
maximal diameter, and that an e�cient multiscale majority algorithm can find solutions in such
a cluster with high probability, settling in particular an open problem posed by Perkins-Xu in
STOC’21. In addition, even close to the critical threshold, we show that there exist clusters of
linear diameter for the symmetric perceptron, as well as for the asymmetric perceptron under
additional assumptions.

1 Introduction

The binary perceptron is a simple neural network model. It was studied in the 60s by Cover1

[Cov65] and in the 80s in the statistical physics literature with detailed characterizations put
forward by Gardner and Derrida [GD88] and Krauth and Mézard [KM89]. More recently, the
structural properties of its solution space have been related to the behavior of algorithms for
learning neural networks in [Bal+16a; Bal+16b; BZ06; Bal+15] and several probabilistic results
have been established in [KR98; Tal99; Sto13; DS19; APZ19; PX21; ALS21] (see further discussions
below).

The asymmetric binary perceptron model (ABP) is defined as follows. Let G be an m by n
matrix with i.i.d. entries taking value in {+1,�1} with equal probability. Fix a real number , and
consider the following constraints:

Sj(G) :=

(
X 2 {�1,+1}n :

1p
n

nX

i=1

Gj,iXi � 

)
, j = 1, · · · ,m.

∗Institute of Mathematics, EPFL, Lausanne, CH-1015, Switzerland. Email: emmanuel.abbe@epfl.ch.
†PACM, Princeton University, Princeton, NJ, 08544, USA. Email: sl31@princeton.edu.
‡Department of Mathematics, Princeton University, Princeton, NJ, 08544, USA. Email: allansly@princeton.edu.
1Mainly for the spherical case.
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The success of deep learning has revealed the application potential of neural networks across the
sciences and opened up fundamental theoretical problems. In particular, the fact that learning
algorithms based on simple variants of gradient methods are able to find near-optimal minima
of highly nonconvex loss functions is an unexpected feature of neural networks. Moreover, such
algorithms are able to fit the data even in the presence of noise, and yet they have excellent predictive
capabilities. Several empirical results have shown a reproducible correlation between the so-called
flatness of the minima achieved by the algorithms and the generalization performance. At the same
time, statistical physics results have shown that in nonconvex networks a multitude of narrow minima
may coexist with a much smaller number of wide flat minima, which generalize well. Here we show
that wide flat minima arise as complex extensive structures, from the coalescence of minima around
"high-margin" (i.e., locally robust) configurations. Despite being exponentially rare compared to
zero-margin ones, high-margin minima tend to concentrate in particular regions. These minima
are in turn surrounded by other solutions of smaller and smaller margin, leading to dense regions
of solutions over long distances. Our analysis also provides an alternative analytical method for
estimating when flat minima appear and when algorithms begin to find solutions, as the number of
model parameters varies.

Machine learning has undergone a tremendous ac-
celeration thanks to the performance of so-called deep
networks [1]. Very complex architectures are able to
achieve unexpected performance in very di�erent do-
mains, from language processing [2] to protein structure
prediction [3, 4], just to name a few recent impressive re-
sults. A key aspect that di�erent neural network models
have in common is the non-convex nature of the learning
problem. The learning process must be able to converge
in a very high-dimensional space and in the presence of a
huge number of local minima of the loss function which
measures the error rate on the data set. Surprisingly,
this goal can be achieved by algorithms designed for con-
vex problems with just few adjustments, such as choosing
highly parameterized architectures, using dynamic regu-
larization techniques, and choosing appropriate loss func-
tions [5]. In practice, neural networks with hundreds of
millions of variables can be successfully optimized by al-
gorithms based on the gradient descent method [6].

The study of the geometric structure of the minima of
the loss function is essential for understanding the dy-
namic phenomena of learning and explaining generaliza-
tion capabilities. Several empirical results have shown
a reproducible correlation between the so-called flatness
of the minima achieved by algorithms and generalization
performance [7–9]. In a sense that needs to be made rig-
orous, the loss functions of neural networks seem to be
characterized by the existence of large flat minima that
are both accessible and well generalizable [10–12]. More-
over, similar minima are found in the case of randomized
labels [13] and di�erent data sets, suggesting that they
are a robust property of the networks.

This scenario is upheld by some recent studies based
on statistical physics methods [14–18], which show that
in tractable models of non-convex neural networks a mul-

titude of minima with poor generalization capabilities co-
exists with a smaller number of wide flat minima, a.k.a.
high local entropy minima, that generalize close to opti-
mality [14]. These studies rely on large-deviation meth-
ods that give access to the typical number of minima
surrounded by a very large number of other minima at a
fixed distance. The analytical results are corroborated by
numerical studies that confirm the accessibility of wide
flat minima by simple algorithms that do not try to sam-
ple from the dominating set of minima [19].

Here we provide analytical results on the geometric
structure of these wide flat minima. We take as analyt-
ically tractable non-convex model a prototypical neural
network with N binary weights trained on P = –N ran-
dom patterns, investigated in the thermodynamic limit
of large N and large P , with – = P/N = O(1) . The
network performs a binary classification task, and its pre-
diction is given by the sign of the output unit. This model
has been extensively studied with mean field statistical
physics methods [20], based on the self-averaging prop-
erty that in the thermodynamic limit the macroscopic
behavior of any sample is fully described by the sample
average; many of the results were later corroborated by
rigorous techniques [21]. The solutions of the learning
task (zero-error configurations) can be characterized by
their margin, denoted by Ÿ. The margin of a solution
is a hard measure of robustness to local perturbations
of the weights: it is the minimum di�erence, across all
the training patterns, between the output pre-activation
and the threshold. A Ÿ-margin solution is guaranteed
to be surrounded in configuration space by other solu-
tions within a radius proportional to Ÿ

Ô
N . In the model

under study, the number of solutions at a given margin
Ÿ, when they exist, is typically exponential in N , i.e.
exp (N„ (–, Ÿ)). Since „ (–, Ÿ) is monotonically decreas-
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- Statistical Mechanics  analysis similar to the underparametrized case: geometrical structure of 
minimizers, large deviation study of dense regions.
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II. THE TYPICAL GEOMETRY VS
OVERPARAMETRIZATION

In the following we consider the primitive loss function that
counts the number of misclassified patterns in the training set
whose stability is greater than a given margin of ^ � 0. For
each pattern, the stability �` is defined as the product of the
pre-activation of the output unit _` (w) and the binary label of
pattern H

` = ±1:

�` (w) ⌘ H
`
_
` (w) (2)

where

_
` (w) ⌘ 1p

#

#’
8=1

F8 f

 
1p
⇡

⇡’
:=1

�:8b
`
:

!
(3)

The loss function per pattern is defined as

✓#⇢ (��` (w); ^) = ⇥ (��` (w) + ^) (4)

where ⇥(·) is the Heaviside step function: ⇥ (G) = 1 if G > 0
and zero otherwise. For ^ = 0 this loss reduces to the one that
counts the number of training errors; with a slight abuse of
language we call it “number-of-errors loss” even if the margin
is non-zero. For the analytical study, we will be interested in
the large-size limit, where our calculations can be performed
by asymptotic methods: # , ⇡, % ! 1 while keeping finite
the ratios

U ⌘ %

#

, U) ⌘ %

⇡

, U⇡ ⌘ #

⇡

, (5)

where clearly U) = U
U⇡

. In order to compute the typical
properties of the solution space, the key quantity of interest is
the averaged free entropy of the model, i.e.

q = lim
# ,%,⇡!1

1
#

hln /ib ,� (6)

where we denoted with h•ib ,� the average over both the pat-
terns (including the desired outputs and thus the teacher) and
the features. Here / denotes the partition function of the model
which reads

/ (V) =
’
w

4
�VÕ%

`=1 ✓#⇢ (��` (w);^) (7)

For generic V, / (V) is the generating function in the variable
4
�V of the number of errors. In the analytical computations

however we have only considered the large V limit, where the
partition function reduces to the number of zero-error config-
urations (solutions):

/ =
’
w

%÷
`=1

⇥ (�` (w) � ^) ⌘
’
w

Xb ,� (w; ^) (8)

where Xb ,� is the indicator function that a pattern is being
correctly and robustly classified.

We also define the maximum margin ^max (U) for a fixed
value of U as the value of ^ for which q = 0 in the V ! 1
limit. The “interpolation threshold” U2 is instead defined as
the value of U for which zero-margin solutions disappear, i.e.
with high probability solutions cease to exist for U > U2 .

The averages of the logarithm in eq. (6), give access to
the most probable number of solutions for a randomly cho-
sen training set, and can be computed by asymptotic methods
developed in the theory of disordered systems, either the so
called replica method or the cavity method [19].

Phase diagram. Before diving into details, we anticipate
our most relevant result. The phase diagram of the model is
reported in Fig. 1. The plane (U) , U) is divided into three
distinct regions:

(1) an UNSAT region when the value of the density of con-
straints exceeds the interpolation threshold: U > U2 (U) ). As
we have anticipated, in this region there exists no configu-
ration of weights that is able to fit all the training set data.
This threshold is independent of the learning algorithm, but
it depends only on the properties of training data and of the
architecture. On the other hand for U < U2 (U) ) we have a
SAT region, so in principle the complexity of the model is able
to reproduce the data.

(2) for ULE (U) ) < U < U2 (U) ), despite there exist configu-
rations of weights that fit all the training set, they are not easily
accessible. We explain this by noticing that those solutions are
either completely isolated or are located inside a dense region
having a small characteristic size.

(3) for U  ULE (U) ) a wide and flat region of solutions
extending to very large scales appears. Those configurations
are also easily accessible by algorithms. We call the threshold
ULE (U) ) the Local Entropy transition. ULE can therefore be
interpreted as an upper bound to the algorithmic threshold of
algorithms.

As a confirmation to that we show in the inset of Fig. 1
the train error of the three representative algorithms, namely
Simulated Annealing (SA) [20], Belief-Propagation (BP) and
Stochastic BP-inspired (SBPI) [21]. None of them is able to
find solutions beyond the local entropy transition.

Typical solutions. Using the replica method in its replica
symmetric (RS) version (see SI), the averaged free entropy
turns out to depend on the “order parameters” @, ?, ?3 , A
and their conjugate Lagrange multipliers @̂, ?̂, ?̂3 , Â. Geo-
metrically @ represent the typical overlap between a pair of
solutions; ? is the typical overlap between a pair of solutions
projected in the teacher space (which has dimension ⇡), the
projection being performed simply by using the feature matrix
�:8; ?3 is the typical squared norm of a projected solution
and finally A denotes the typical overlap between a projected
solution and the teacher.

Eventually, q can be found by optimizing over eight order
parameters

q = argmax
@,@̂,?, ?̂,?3 , ?̂3 ,A ,Â

q'( (@, @̂, ?, ?̂, ?3 , ?̂3 , A, Â) (9)

where q'( is the RS expression for q (see SI). Knowing the
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Continuous networks have differences

Let’s consider the simplest non convex continuous network: the negative 
margin spherical perceptron.
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Figure 1. Phase diagram of the negative spherical perceptron. The light blue line represents the SAT/UNSAT transition computed in the
Replica-Symmetric approximation as presented originally in Gardner-Derrida’s work [32]. This line is correct only in the region ^ � 0,
where the model is convex. A better approximation to the SAT/UNSAT transition is the orange line, which is computed here using the 1RSB
approximation. The other lines were computed in [32] and [33]. The green line represents the De Almeida-Thouless instability of the RS
ansatz: when one crosses UdAT for ^ > ^1RSB one goes from an RS to a fRSB phase; when ^RFOT < ^ < ^1RSB one instead goes from RS to a
1RSB stable phase. For a value of ^ < ^RFOT one encounters several transitions when U is increased: the dynamical or clustering transition
Udyn (blue line), the Kauzmann transition (green line) and the Gardner transition (in red). For U < Udyn the system is RS. For Udyn < U < UK
the system is in a dynamical 1RSB phase, where @1 > @0 and the Parisi block parameter < = 1. For UK < U < UG the Gibbs measure is
dominated by a 1RSB solution having < < 1. Above the Gardner transition U > UG the system is fRSB. Note that the dynamical transition
presented in [33] is slightly below the one presented here [34].

the margin ^ (that we will denote from now on as ^max (U) 3),
i.e. to the maximization of the distance from the point obta-
cles. Because of isomorphism with the problem of packing of
spheres, the negative perceptron problem has been studied us-
ing the replica method in [33], where the whole phase diagram
of typical solutions has been derived. In particular the authors
showed that for low enough margin the model exhibits the clas-
sical Random First Order Transition (RFOT) phenomenology:
increasing U for a fixed ^ one first finds a clustering transition,
then a Kautzmann transition and finally a Gardner transition.
For clarity, we have plotted those lines in Fig. 1; we refer to
the caption of the figure and the paper [33] for their precise
definitions. In the same paper, the critical exponents were
calculated on the jamming line and they appeared to be equal
to the ones found in the jamming of hard spheres in infinite
dimensions [37].

3 ^max (U) is simply the inverse function of the SAT/UNSAT transition
U2 (^ ) mentioned before.

In another work [35], Montanari and coworkers studied
the performance of several algorithms by characterizing their
algorithmic threshold and compared it with rigorous upper
and lower bounds to the critical capacity U2. In particular
they showed that there exists a gap between the interpola-
tion threshold of Linear Programming (LP) algorithm and the
lower bound to U2. They also showed numerically that other
algorithms, such as Gradient Descent (GD) and Stochastic GD
(SGD) on the cross-entropy loss function, behave much better
since they have a much higher algorithmic threshold with re-
spect to the one of LP. This raised the question of the existence
of a fundamental computational barrier (such as is common
in binary CSPs), whereby no algorithm may able to reach the
SAT/UNSAT U2 transition.

In a previous work [38], the authors presented an algo-
rithm based on the Incremental Approximate Message Passing
(IAMP), developed in [39, 40] for the Sherrington-Kirkpatrick
(SK) and the mixed ?�spin models, which is provably guaran-
teed to succeed arbitrarily close to the satisfiability threshold

non convex

UNSAT

non convex

SAT

convex

SAT

Simplified model for Jamming:
Franz, Parisi, Urbani, Zamponi,  …, 

and many others
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LE transition: Appearance of max entropy minima

•Not directly related to computational hardness as the model is fRSB. 

•Still related to geometry and generalization.
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Figure 5. SAT/UNSAT and local entropy transitions as a function of ^ for the binary (left) and spherical (right) cases. The points represent the
highest value of U that we were able to reach at # = 1000 with several algorithms: fBP, SBPI [27] and Binary NET (BNET) [48] in the binary
case; fBP and SGD for the continuous case. In the spherical case we plot the critical capacity both in the RS and 1RSB approximations. Notice
also that in this case the local entropy transition coincides with the SAT/UNSAT transition for ^ � 0, since the solution space is connected and
convex.

extends to very large scales [12, 29]. For U = ULE, there ap-
pears at small distances another point where the derivative mqFP

m3

vanishes. For U > ULE the local entropy is non-monotonic and
it has a local maximum at a distance 3¢ < 3typ (U): this sug-
gests that the most robust solutions are no longer located in
regions that extend to arbitrary large distances, but that have a
typical size 3¢ instead. This Local Entropy transition [12, 29]
occurring at ULE (^) can therefore be interpreted as the point
at which the cluster of atypical robust solutions fractures in
many pieces.

In [29] the local entropy transition has been computed for
the binary perceptron model for ^ = 0 and it has been shown
that it gives similar results to the more precise method of find-
ing the reference that maximizes the local entropy at every
distance [12]. In the same works, moreover, it has been shown
that this change in the geometry of atypical solutions strongly
affects the behaviour of algorithms: no known algorithm is
able to find solutions for U > ULE. We plot in Fig. 5 the
local entropy transition as a function of ^ for the binary (left
panel) and for the spherical case (right panel). In the same
plots we show the algorithmic threshold of several algorithms.
In the same plots we show the SAT/UNSAT transition, which
was computed by using the zero entropy criterium in the binary
case [18] and by using the RS and 1RSB approximations in the
spherical case. In the left panel of Fig. 5 we can see that in the
binary case no algorithm is able to cross the local entropy tran-
sition; in addition fBP which is an algorithm designed to target
maximally entropic regions appears to stop working exactly at
the local entropy transition. In the spherical case, this is not
the case: even if the atypical states fracture in many pieces,
algorithms are still able to overcome the threshold and find
solutions. Indeed the landscape of solutions is very different
in the two models: in the spherical case even typical solutions
are surrounded by an exponential number of solutions up to
capacity. The algorithmic thresholds plotted in the right panel

of Fig. 5 seem to suggest that algorithms are able to reach the
SAT/UNSAT transition of the model, especially knowing that
taking into account higher order RSB corrections can consid-
erably lower the estimate of U2. Binary and spherical models
are thus significantly different from the optimization point of
view.

Notice that the computation of ULE could still be very im-
precise in the spherical case because of the presence of large
RSB effects. However, when ^ is near zero, we expect the
RSB corrections to play a minor role and our computation to
be reliable; indeed the RS estimate of the maximum margin
configuration is expected to approximate quite well the true
value. On the other hand, when the margin is very negative,
the RS estimate of ^max is very imprecise (cf. Fig. 1); therefore
we expect our estimate of ULE to be imprecise as well. In the
appendix we describe a method to estimate the local entropy
transition that does not rely on the ability to sample a replica
in deep RSB phase; the method is therefore expected to give
much more precise estimates when ^ is large in modulus.

VI. NUMERICAL EXPERIMENTS

A. Numerical justification of the local entropy transition

While we expect to observe a clear difference in algorith-
mic behaviour between the discrete and continuous versions
of the model at the local entropy transition, we still expect to
observe in both cases a structural geometrical change. Be-
yond the local entropy transition the discrete model displays
a disconnected 1-RSB structure of solutions also at the out-
of-equilibrium level. On the contrary, the continuous version
displays a full-RSB structure which is expected to be accessi-
ble (though not particularly flat). For the discrete case several
works have already clarified the phenomenon both analytically
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Figure 6. Average maximum error fraction along the geodesic
path connecting two solutions (red points) and on the 2⇡ man-
ifold (“plane”) spanned by three solutions on the #-dimensional
hypersphere surface (blue points). A high error barrier between
solutions appears before the algorithmic threshold U2 , and its on-
set is compatible with the local entropy transition (in this case
ULE (^ = �0.5) ' 4.2). The two inset plots show the error on
the plane spanned by three solutions (represented by red dots at the
vertices of the triangle): for U < ULE, the error along the linear paths
(edges of the triangles) is tiny, and it is even smaller at the barycenter
of the plane; for U > ULE a high error peak appears in the barycen-
ter. Configurations were obtained by optimizing the hinge loss with
margin ^ = �0.5 using SGD. Points are averages over 20 realizations
of the patterns and 5 different runs for each dataset. The value of #
is 2000.

and numerically, see [26, 27, 29, 30]. Here we focus on the
continuous case.

We measure numerically the error of a weight vector w$

obtained as a convex combination of H solutions w0 with 0 =
1 , . . . , H and normalized on the sphere in # dimension of
radius

p
# , namely

w$ ⌘
p
#

Õ
H

0=1 W0w
0

kÕH

0=1 W0w
0k

,

H’
0=1

W0 = 1 , 80 : W0 � 0

(21)
The study of the training error around geodesic paths connect-
ing the same or different classes of solutions is actually an
interesting problem in its own right [49]. Here we provide
some preliminary numerical results on the simple cases H = 2
or 3 in which the solutions w0 are obtained with SGD with
the hinge loss ✓ (G) = max (0,�G) (the margin is included in
G, see eq. (16)). In particular, the case H = 2 amounts at com-
puting the barrier along a “linear” (geodesic) path connecting
two given solutions. This topic has been widely studied in
deep learning literature [8–10] as it is believed to be a good
proxy to probe the error landscape around solutions. Based
on the phenomenology exhibited by deep networks, we expect
two robust solutions to be connected by an almost zero error
path [10]. This is in fact what we observe in the overparame-
terized regime (low U), see Fig. 6. However, as the constraint
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Figure 7. Generalization error in the teacher student setting as a
function of the margin. The teacher assigns labels with zero margin,
while the students solve the problem at fixed negative margin ^. The
generalization error is then computed using zero margin (see text).
Results are averaged over 10 independent teacher realizations and 10
random restarts for each dataset.

density is increased, a barrier in the linear path connecting so-
lutions appears, in a region close to the RS estimate of the local
entropy transition. Moreover, if we study the error landscape
on the “plane” (2⇡ manifold) spanned by H = 3 solutions,
we see that, for U > ULE, a high error region appears in the
barycenter, signaling that right above the local entropy transi-
tion SGD starts to find solutions that are likely to be located in
different basins.

B. Connections with generalization

In order to probe numerically the computational advantages
of wide flat minima and to create a natural link to future studies
on multilayered models, we have analyzed the generalization
properties in a teacher-student setting. Specifically we gener-
ate data with a random teacher perceptron (^ = 0) and train a
student perceptron with negative ^. Once learning has com-
pleted, we test the generalization performance of the student
with zero margin. Remarkably, we find that – provided we
converge into wide flat minima – even learning with very neg-
ative values of ^ (a very under-constrained learning problem,
with very little signal coming for the training set) leads to good
generalization performance, see Fig. 7 for the continuous case.
Learning with fBP leads to minimizers which are well inside
the flat region and as such are effectively robust, even though
the robustness condition coming from the learning constraint
is very weak (the negative ^). Other algorithms display differ-
ent degree of robustness depending on the details, such as the
effective temperature W of the cross-entropy loss minimized by
SGD, or the cooling schedule for Simulated Annealing. Simi-
lar behaviours are found in the binary case, which we refer to
the appendix.

capacity generalization : learning with k<0, test with k=0

α = 0.5
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path [10]. This is in fact what we observe in the overparame-
terized regime (low U), see Fig. 6. However, as the constraint

Figure 7. Generalization error in the teacher student setting as a
function of the margin. The teacher assigns labels with zero margin,
while the students solve the problem at fixed negative margin ^. The
generalization error is then computed using zero margin (see text).
Results are averaged over 10 independent teacher realizations and 10
random restarts for each dataset.

density is increased, a barrier in the linear path connecting so-
lutions appears, in a region close to the RS estimate of the local
entropy transition. Moreover, if we study the error landscape
on the “plane” (2⇡ manifold) spanned by H = 3 solutions,
we see that, for U > ULE, a high error region appears in the
barycenter, signaling that right above the local entropy transi-
tion SGD starts to find solutions that are likely to be located in
different basins.

B. Connections with generalization

In order to probe numerically the computational advantages
of wide flat minima and to create a natural link to future studies
on multilayered models, we have analyzed the generalization
properties in a teacher-student setting. Specifically we gener-
ate data with a random teacher perceptron (^ = 0) and train a
student perceptron with negative ^. Once learning has com-
pleted, we test the generalization performance of the student
with zero margin. Remarkably, we find that – provided we
converge into wide flat minima – even learning with very neg-
ative values of ^ (a very under-constrained learning problem,
with very little signal coming for the training set) leads to good
generalization performance, see Fig. 7 for the continuous case.
Learning with fBP leads to minimizers which are well inside
the flat region and as such are effectively robust, even though
the robustness condition coming from the learning constraint
is very weak (the negative ^). Other algorithms display differ-
ent degree of robustness depending on the details, such as the
effective temperature W of the cross-entropy loss minimized by
SGD, or the cooling schedule for Simulated Annealing. Simi-
lar behaviours are found in the binary case, which we refer to
the appendix.

Results from statistical physics

Non-convex continuum models: linear mode
connectivity

Simplest non-convex, spherical model: negative perceptron.
Expected train error of the linear interpolation of y replicas

wg ⌘ Ây
a=1 gawa

kÂy
a=1 gawak

with Â
a

ga = 1

y = 2 y = 3

Enrico M. Malatesta Phase transitions in the neural network solution landscape 17 / 50

Expected train error of the linear interpolation of y replicas 
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Atypical solutions are surrounded by an exponentially higher number of solutions wrt typical.

Results from statistical physics

Typical VS atypical solutions in the negative spherical
perceptron

Atypical solutions are surrounded by an exponentially higher number of
solutions wrt typical ones.
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UBUB

k max / LE

Correct regime for 
overparametrized NN models

𝛼 = 2, k=-0.5

Use BP to compute entropy 
around solutions

In neural network we expect a 
generalisation cross over at 𝛼LE

(detailed balance algorithm)
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Figure 5. SAT/UNSAT and local entropy transitions as a function of ^ for the binary (left) and spherical (right) cases. The points represent the
highest value of U that we were able to reach at # = 1000 with several algorithms: fBP, SBPI [27] and Binary NET (BNET) [48] in the binary
case; fBP and SGD for the continuous case. In the spherical case we plot the critical capacity both in the RS and 1RSB approximations. Notice
also that in this case the local entropy transition coincides with the SAT/UNSAT transition for ^ � 0, since the solution space is connected and
convex.

extends to very large scales [12, 29]. For U = ULE, there ap-
pears at small distances another point where the derivative mqFP

m3

vanishes. For U > ULE the local entropy is non-monotonic and
it has a local maximum at a distance 3¢ < 3typ (U): this sug-
gests that the most robust solutions are no longer located in
regions that extend to arbitrary large distances, but that have a
typical size 3¢ instead. This Local Entropy transition [12, 29]
occurring at ULE (^) can therefore be interpreted as the point
at which the cluster of atypical robust solutions fractures in
many pieces.

In [29] the local entropy transition has been computed for
the binary perceptron model for ^ = 0 and it has been shown
that it gives similar results to the more precise method of find-
ing the reference that maximizes the local entropy at every
distance [12]. In the same works, moreover, it has been shown
that this change in the geometry of atypical solutions strongly
affects the behaviour of algorithms: no known algorithm is
able to find solutions for U > ULE. We plot in Fig. 5 the
local entropy transition as a function of ^ for the binary (left
panel) and for the spherical case (right panel). In the same
plots we show the algorithmic threshold of several algorithms.
In the same plots we show the SAT/UNSAT transition, which
was computed by using the zero entropy criterium in the binary
case [18] and by using the RS and 1RSB approximations in the
spherical case. In the left panel of Fig. 5 we can see that in the
binary case no algorithm is able to cross the local entropy tran-
sition; in addition fBP which is an algorithm designed to target
maximally entropic regions appears to stop working exactly at
the local entropy transition. In the spherical case, this is not
the case: even if the atypical states fracture in many pieces,
algorithms are still able to overcome the threshold and find
solutions. Indeed the landscape of solutions is very different
in the two models: in the spherical case even typical solutions
are surrounded by an exponential number of solutions up to
capacity. The algorithmic thresholds plotted in the right panel

of Fig. 5 seem to suggest that algorithms are able to reach the
SAT/UNSAT transition of the model, especially knowing that
taking into account higher order RSB corrections can consid-
erably lower the estimate of U2. Binary and spherical models
are thus significantly different from the optimization point of
view.

Notice that the computation of ULE could still be very im-
precise in the spherical case because of the presence of large
RSB effects. However, when ^ is near zero, we expect the
RSB corrections to play a minor role and our computation to
be reliable; indeed the RS estimate of the maximum margin
configuration is expected to approximate quite well the true
value. On the other hand, when the margin is very negative,
the RS estimate of ^max is very imprecise (cf. Fig. 1); therefore
we expect our estimate of ULE to be imprecise as well. In the
appendix we describe a method to estimate the local entropy
transition that does not rely on the ability to sample a replica
in deep RSB phase; the method is therefore expected to give
much more precise estimates when ^ is large in modulus.

VI. NUMERICAL EXPERIMENTS

A. Numerical justification of the local entropy transition

While we expect to observe a clear difference in algorith-
mic behaviour between the discrete and continuous versions
of the model at the local entropy transition, we still expect to
observe in both cases a structural geometrical change. Be-
yond the local entropy transition the discrete model displays
a disconnected 1-RSB structure of solutions also at the out-
of-equilibrium level. On the contrary, the continuous version
displays a full-RSB structure which is expected to be accessi-
ble (though not particularly flat). For the discrete case several
works have already clarified the phenomenon both analytically
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Large networks generalise optimally at negative stabilities in liquid flat regions

• In continuous models, overparameterization and negative k both increase 
(exponentially) the volume of minimisers (aka solutions)


• We need to find the minimisers which have good generalisations


• Barycentre of liquid regions (locally Bayesian)


•Specific large margin solutions are hard to find at zero training error
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Large networks generalise optimally at negative stabilities  if in high entropy solutions 

Baldassi, Lauditi, Malatesta, Perugini, Saglietti, 
Zecchina, in preparation (2023)

Teacher: input-noisy  perceptron

Overparametrized continuous models:
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• SGD with negative k in the hidden layers


• Smaller architectures with good generalization


• Continual & few-shot learning

On going wok:



Baldassi, Mezard,  Zecchina, in preparation (2023)
Baldassi, Lauditi, Malatesta, Mezard, Perugini, Saglietti, Zecchina, in preparation (2023)



Liquid  fixed points  in recurrent asymmetric neural network

Baldassi, Mezard,  Zecchina, in preparation (2023)
Baldassi, Lauditi, Malatesta, Mezard, Perugini, Saglietti, Zecchina, in preparation (2023)



Some basic  results in asymmetric NN
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BPI dynamics can be seen as a more sophisticated neuronal dynamics.
Experimentally it is able to �nd solutions of the �xed point equations for sizes in the range N ⇠ 8000 in

the regime JD > .3 (numbers to be con�rmed).

5 Properties of the solutions found byBPI versus naive dynam-
ics

We have compared solutions found by naive dynamics at JD = .8, and BPI dynamics at JD = .8 and at
JD = .4. In particular we have tested their stability against the naive dynamics, using the following protocole:

• When we have a solution s
⇤
i of the �xed-point equations, we perturb it to si where si is obtained from

s
⇤
i by randomly �ipping n ⌧ N spins.

• Then we run the naive dynamics (??) starting from si. We observe two situations. Either the dynamics
runs away until it will eventually �nd a very distant �xed point (with of the order of half the spins that
are �ipped from si), we then say that the point s⇤ is unstable.. Or it �nds a solution close to s⇤i , typically
at a distance of n0 spins �ipped with n

0
< n. In this second case we say that the system is ’�uid-stable’.

Some preliminary experiments show that, rougly speaking:

• Solutions found by naive dynamics at JD = .8 are unstable

• Solutions found by BPI at JD = .4 and at JD = .8 are �uid-stable. Typical values of n for which this is
true are around n  20 for N = 8000 (to be checked)

• Solutions found by BPI at JD = .4 are �uid-stable when one iterates the dynamics with JD = .8.

These numerical results point to the fact that naive dynamics �nds (only for rather large JD) isolated
solutions that are unstable, while BPI �nds solutions living in the largest atypical clusters.

6 Connexions to previous works
6.1 Chaotic networks

The paper by Stern Sompolinsky and Abbott studies the naive dynamics of continuous units that evolve
according to

dxi

dt
= �xi + s tanh(xi) + g

X

j( 6=i)

Jij tanh(xj) (4)

In terms of magnetizationsmi = tanh(xi) the �xed points equations are

mi = tanh

2

4smi + g

X

j( 6=i)

Jijmj

3

5 (5)

In the limit g ! 1, s ! 1 with �xed JD = s/g we get back our equations. So our study gives what happens
to their model in this strongly non-linear limit where the tanh function becomes a sign. They have what looks
like a heuristic way o compute the number of stable solutions which one should study. Anyhow, they �nd that
the entropy of stable solutions becomes positive for s > sc(g), with sc(g) that goes from about 1.13 at g = 3
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M. Stern, H. Sompolinsky and L. Abbott, PRE  2014

Interactions between the neurons within a cluster 
are represented in these models by self-coupling  s

Chaos in Random Neural Networks
H. Sompolinsky, A. Crisanti & H. J. Sommers, PRL 1988

Dynamics of Random Neural Networks with Bistable Units 
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s(t) · s0(t) s(0) = s0(0) + 1 spin perturbation

In the limit g→∞, s→∞   with fixed JD = s/g we 
get back the binary model.



Can an asymmetric random attractor neural network display 
exponentially many stable attractors (internal representations)?
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Si = ±1

Asymmetric recurrent network of neurons
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In the recurrent NN we have more constraints. To find similar phase space  we need 
to relax them.  

One possibility (among others): add a diagonal feedback term 
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Jii = JD > 0

We expect liquid fixed points to exist



JD ≥ 0 local feedback
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Random binary couplings

Model:  fixed point conditions of the update dynamics

Factors: count violated fixed point constraints

Perceptron networks
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1 De�nition
Consider a network of N perceptrons. Each one has an output si 2 {±1}. Given a matrix of synaptic weights
Jij , the energy function is

EJ(s) =
NX

i=1

2

41� siSign

0

@JDsi +
X

j( 6=i)

Jijsj

1

A

3

5 (1)

Here,we take the synaptic weights Jij with i 6= j as iid normal with mean zero and variance 1/N . Note that
Jij and Jji are independent.

The parameter JD = Jii is a control parameter. At large JD one should easily �nd con�gurations of
activities si which satisfy all constraints, therefore the energy should go to zero.

We study this problem at �nite inverse temperature �. The partition function, which depends on J , is
given by

ZJ =
X

s

e
��EJ (s) = e

��N
X

s

e
�
P

i Sign(JD+si
P

j( 6=i) Jijsj) (2)

We are particularly interested in the phase diagram as function of JD,�: in what regions do we get zero
energy, what is the entropy, what is the landscape of zero energy con�gurations?

1
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The above picture indicates the procedure of encoding and decoding. Here, errors mean

up to t symbols of y are changed, and “change” here means switching to another symbol.
The decoding is recovering the original x from z.

3 Hamming distance

Definition 3.1 (Hamming distance). Hamming distance is the number of positions at which
the corresponding symbols are di↵erent.

�(y, z) = |{i : yi 6= zi}|

In the graph above, the box stands for all elements in ⌃n. Each vertex is a codeword and
each ball around is the possible z the receiver gets.

t stands for the maximum number of errors. For codeword y here, everything is the
Hamming ball has Hamming distance to y up to t. If there doesn’t exist two Hamming balls
that overlap each other, we can recover every message. In the graph, the orange ball overlaps
the purple one. Then sometimes we cannot recover x that is associated with y correctly.

Here, d indicates the minimum distance between two vertices.

Definition 3.2. Minimum distance is the least distance between two distinct codewords:

d = min
y 6=y02C

{�(y, y0)}

2

Exponential number of correlated 
attractive configurations (w.r.t. the 
decoding dynamics)

related work by A. Karbasi, A. H. Salavati, A. Shokrollahi, and L. R. Varshney, … 

They belong to some subspace, e.g. 
linear subspace in the case of linear 
codes (LDPC)

Analogies with error correcting codes
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Can asymmetric NN perform like sub-optimal ECC?   

Can any input mapped to an internal representation 
(codeword) ?

Can they correct an extensive number of errors?

Yes

Yes

Yes
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Choice to make when building 

neural networks
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• Type of output: Rate-based vs Spike-

based 

• LIF, FN, HH model … 

• Compartmentation

• Rate equation

• Models of Synaptic Connection

• Scaler weight (Excitatory 

vs Inhibitory) / Temporal 

kernel 

• Plasticity / learning rule

• Models of Network Structure

• All-to-all Fully connected

• Random matrix 

• Sparse 

• Spatially regular structure (local, CNN)

• Learned structure
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Shannon bound and positioning of  simple random ANNs

−1−1

BSC, spin flips

Shannon’s bound

numerical result 
(could be done analytically)



Choice to make when building 

neural networks

• Models of Neurons (Units)

• Type of output: Rate-based vs Spike-

based 

• LIF, FN, HH model … 

• Compartmentation

• Rate equation

• Models of Synaptic Connection

• Scaler weight (Excitatory 

vs Inhibitory) / Temporal 

kernel 

• Plasticity / learning rule

• Models of Network Structure

• All-to-all Fully connected

• Random matrix 

• Sparse 

• Spatially regular structure (local, CNN)

• Learned structure

ξ
η• Given an external pattern  (field) 

• Can the network converges to a  
stable internal representation  ?

ξ

η

In NN we just need addressable and stable internal representations

→
converge

{ξμ} → {ημ}



Number of configurations which satisfy  the fixed point condition, β →∞

Perceptron networks

Abstract
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6 Stability of the q = 0, r = 0 solution 7

1 De�nition
Consider a network of N perceptrons. Each one has an output si 2 {±1}. Given a matrix of synaptic weights
Jij , the energy function is

EJ(s) =
NX

i=1

2

41� siSign

0

@JDsi +
X

j( 6=i)

Jijsj

1

A

3

5 (1)

Here,we take the synaptic weights Jij with i 6= j as iid normal with mean zero and variance 1/N . Note that
Jij and Jji are independent.

The parameter JD = Jii is a control parameter. At large JD one should easily �nd con�gurations of
activities si which satisfy all constraints, therefore the energy should go to zero.

We study this problem at �nite inverse temperature �. The partition function, which depends on J , is
given by

ZJ =
X

s

e
��EJ (s) = e

��N
X

s

e
�
P

i Sign(JD+si
P

j( 6=i) Jijsj) (2)

We are particularly interested in the phase diagram as function of JD,�: in what regions do we get zero
energy, what is the entropy, what is the landscape of zero energy con�gurations?

1

First moment gives the exact typical number of fixed points: 

where

For the analytic study, we introduce the variables hi = si
P

j( 6=i) Jijsj , and their conjugate ĥi. The
partition function can be written as

ZJ = e
��N

X

s

Y

j

"Z 1

�1
dhj

Z i1

�i1

dĥj

2⇡i

#
e
�

P
j ĥjhj+�

P
j Sign(JD+hj) e

P
j ĥjsj(

P
k( 6=j) Jjksk) (3)

Note that the expectation value of ĥj can be expressed in terms of physical quantities; using an integration
by parts of the factor e�ĥjhj one obtains

hĥji = 2� h�

0

@JD + si

X

j( 6=i)

Jijsj

1

Ai (4)

2 Annealed average
We easily compute the average of (3) with respect to the random J (note that the result depends only on the
�rst two moments of the Jij , provided they are iid variables).

Zann = EJZJ = e
��N

X

s

Y

j

"Z 1

�1
dhj

Z i1

�i1

dĥj

2⇡i

#
e
�

P
j ĥjhj+�

P
j Sign(JD+hj) e

(1/2)
P

j ĥ
2
j (5)

where we do not include the substraction of the j = k term that gives a correcction of order 1/N to the
e�ective energy.

The integral over ĥj is factorized, we use for each j

Z i1

�i1

dĥj

2⇡i
e
ĥ2
j/2�ĥjhj =

1p
2⇡

e
�h2

j/2 (6)

and we get:

Zann = 2Ne
��N

Z
dhp
2⇡

e
�h2/2+�Sign(JD+h)

�N
(7)

De�ning

H(x) =

Z 1

x

dhp
2⇡

e
�h2/2 =

1

2
Erfc

✓
xp
2

◆
(8)

we get (using T = 1/�):

Fann = � 1

�N
logZann = 1� 1

�

h
log 2 + log

⇣
e
�
H(�JD) + e

��
H(JD)

⌘i

= �T log 2� T log
⇣
1�H(JD) + e

�2/T
H(JD)

⌘
(9)

The energy is

Eann =
@

@�
(�Fann) = 2

H(JD)e�2/T

1�H(JD) +H(JD)e�2/T
(10)

2

<latexit sha1_base64="i9ABjEnQwVZ4nb5jsuNGIRgpIgI="></latexit>

� 1

�N
log

For the analytic study, we introduce the variables hi = si
P

j( 6=i) Jijsj , and their conjugate ĥi. The
partition function can be written as

ZJ = e
��N

X

s

Y

j

"Z 1

�1
dhj

Z i1

�i1

dĥj
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Figure 1: The annealed entropy. Left: as function of JD, for T = 0, .5, .75, 1 (from bottom to top). Center:
as function of T , for JD = 0, 1, 2 (from bottom to top). Right as function of T , for JD = �1,�2.

and the entropy is

Sann = �@Fann

@T
= log 2 + log

h
1�H(JD) +H(JD)e

�2/T
i
+

2e�2/T

T

H(JD)

1�H(JD) +H(JD)e�2/T
(11)

In the limit T ! 0, the energy is always zero, and the entropy is

Sann(T = 0) = log 2 + log [1�H(JD)] (12)

This entropy, plotted in Fig.1 becomes negative when JD = 0. As the annealed entropy is larger than the
quenched one, this means that the true entropy at zero temperature vanishes JD > Jcrit, with Jcrit � 0.

3 Second moment
The �rst moment shows that there are gnerically no solutions when JD < 0. We use the second moment
method to give an upper bound to Jcrit. The second moment method at T = 0 is based on:

P (Z > 0) � (EZ)2

(EZ2)
(13)

Let us de�ne

�1 = lim
N!1

1

N
log (EZ) (14)

�2 = lim
N!1

1

N
log

�
EZ2

�
(15)

When Phi2 = 2�1, the probability that Z > 0 is �nite (strictly speaking we show that it is not exponentially
small), therefore ther exists solutions. We already know that

�1 = log(2) + log(1�H(JD)) (16)

We now compute �2. We shall compute it at any temperature

EJZ
2
J = EJZJ =

X

s,s0

Y

j

"Z 1

�1
dhjdh

0
j

Z i1

�i1

dĥjdĥ
0
j

(2⇡i)2

#
e
�

P
j(ĥjhj+ĥ0

jh
0
j)e

(1/2)
P

j [(ĥj)2+(ĥ0
j)

2]

e

P
j ĥj ĥ0

jsjs
0
j .(1/N)

P
k sks0k e

�
P

j [Sign(JD+hj)+Sign(JD+h0
j)�2] (17)
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RS, 1-RSB and Local Entropy results

• The RS and 1-RSB solution give back the Annealed (first moment results) for the 
dominating fixed points (q0 =0, things are relatively simple)

• We can use the 1-RSB formalism to analyse existence of  liquid fixed points
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One step ansatz:
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similarly for the conjugate parameters. After some standard manipulations we get the free

energy:
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The saddle point equations with respect to {u, q1, q0, r1r0} lead to

û = 1, q̂1 = r1, q̂0 = r0, r̂1 = q1, r̂0 = q0

Assuming that, as in the RS case, we have

q0 = r0 = 0

the expression for the 1-rsb free entropy simplifies to
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uû

and

F =
1

m

Z
Dz0 Dt0 log

⇢Z
DzDt

h
e
z0

p
q̂0+z

p
q̂1�q̂0A+ e

�z0
p
q̂0�z

p
q̂1�q̂0B

im�

with

A =
�
e
�
H�� + e

��
H++

�

B =
�
e
�
H�+ + e

��
H+�

�

and

Hss0 ⌘ H

 
sJ + s

0 �
t0
p
r̂0 + t

p
r̂1 � r̂0

�
p
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and the entropy is

Sann = �@Fann
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= log 2 + log

h
1�H(JD) +H(JD)e�2/T

i
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2e�2/T

T

H(JD)
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(11)

In the limit T ! 0, the energy is always zero, and the entropy is

Sann(T = 0) = log 2 + log [1�H(JD)] (12)

This entropy, plotted in Fig.?? becomes negative when JD = 0. As the annealed entropy is

larger than the quenched one, this means that the true entropy at zero temperature vanishes

for some positive value of JD.

3 Quenched computation, general replica formalism
Replicating (3) and averaging over the Jij gives (up to irrelevant constants):
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and we implement these constraints with Lagrange multipliers Q̂
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, using (up to
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This gives:
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factor graph:
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given two magnetizations h, k , define

<latexit sha1_base64="pICBPg6Hwch0i/wgywWxuwBavo0="></latexit>

commutative and associative !

<latexit sha1_base64="LqPGQedbsPWFSmHWu2e28jM4qbU="></latexit>

inverse operation !



Simplified fBP equations
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i = j

1) Approximate with non-cavity fields for each variable, hi. 

2) We update them iteratively; at each iteration we pick a perceptron j and have a special 

update for hj (which has the role of the output) vs the others. 
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Other dynamical schemes that are effective and simple:

•Gradient Descent on the log-likelihood (1)

•Replicated simple  dynamics (2)

•Entropic greedy dynamics ~ entropy-SGD, with m=1 and T=0, (3)

•…

(1) Role of Synaptic Stochasticity in Training Low-Precision Neural Networks, Baldassi, Gerace, Kappen, Lucibello, 
Saglietti, Tartaglione, Zecchina, Phys. Rev. Lett. 120, 268103 (2018)

(2) Shaping the learning landscape in neural networks around wide flat minima, Baldassi, Pittorino, ZecchinaPNAS, 117 
(2020)

(3) entropy-SGD:biasing gradient descent into wide valleys, Chaudhari, Choromanska, Soatto, LeCun, Baldassi, Borgs, 
Chayes, Sagun, Zecchina 2017 ICLR, 2019 JSTAT
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1) Finds liquid-stable fixed points
2) These are stable (also for the naive dynamics)
3) One can add external field to find fixed points which are close in Hamming 

distance the external input.
4) Extensive errors are corrected (given a fixed point, add an external field in its 

direction with a fraction of fields flipped and minimum J)
5) Fixed points further stabilized by Habbian learning  and 
6) Internal representations are non trivially correlated, e.g. they possess a higher 

capacity  if learned as attractors,  instead of 

η − η ξ − η

αc ≃ 6 αc = 2

Preliminary numerical results on the dynamics:



Conclusion

• Regularization framework for  non convex NNs

• Use ANN convergent dynamics as learning modules


