
On the learnability of hierarchical data

Matthieu Wyart

Collaborators G. Biroli, F. Cagnetta, S. d’Ascoli, A. Favero, M. Geiger, C. Hongler,
A. Jacot, J. Paccolat, L. Petrini , S. Spigler, L.Sagun, A.Scolcchi, U. Tomasini, K. Tyloo

Petrini, Cagnetta, Tomasini, Favero, MW arxiv 23’

Classifying data in large dimension

106 106

• Pre-requisite for Artificial Intelligence (and brains):
build algorithm that can make sense, classify, data in large dimension

• Example: computer vision. Is it a cat or a dog?

• Learn from examples (supervised learning)

• Problem: no algorithms should work,
curse of dimensionality

• Data must be highly structured!?

✕
✕

✕
✕

✕

✕
P points in d dimensions

Deep learning

>m

<-m

• Powerful! go playing, self-driving car, Chat GPT...
• Principles to understand why it works are lacking
E.g: How many data are needed to learn a given task???

1/learning from example
2/ can predict!

Benefits of learning a data representation?

>1

<-1

• Neurons respond to features that are more and more abstract
• Hierarchy similar to our brain
When is it possible, which advantage? Intuition: lower dimensionality
of the problem
- invariance to `semantic’ Choice
- How many data needed? Simple models

Overparameterization, training regimes:
A phase diagram for deep learning

N: Number of parameters (increasing width)

Inverse margin

Geiger et al., 21’

• Data sets: e.g. MNIST
binary classification

• Fully connected net

A phase transition separates under-parametrized and
over-parametrized regimes Geiger et al., 2018

Cannot fit
the data

Can fit the data,
reach bottom

O’hern, Silbert, liu, nagel 03’
MW, Nagel, Witten 05’
Franz, Parisi 16’

• Sharp phase transition from rough, glassy to flat landscape
• Crank up N, not stuck in bad minima
• Overfitting?

parameters

Overfitting? Instead, a ‘double descent’
Spigler et al, 18’,Advani and Saxe 17’, Belkin et al., 18’

• Test error e: probability to make a mistake
• No over-fitting as !!!
• Two interesting scaling regime: jamming and
(scaling arguments in Geiger et al, 19’)

Two limiting algorithms as
Lazy regime:
No features learnt!
tiny changes of weights
Sufficient to fit data

Feature regime: data representation
learnt Chizat, Bach 18’

Mei, Montanari, Nguyen 18’
Rotskoff, Vanden-Eijnden 18’

Jacot, Gabriel, Hongler 18‘
Chizat, Bach 19’

For modern architectures and images,
Feature is better
What are CNNs good at, in both regimes?

Curse of dimensionality
Which properties of the data make them learnable? Some (among
others) ideas for images:

1. Locality: The task depends on the
presence of local features

2. The task is combinatorial/hierarchical
Poggio et al. 16’, 20’, Bietti 21’, Malach et al. 18’, Mezard

3. The task is ‘sparse’

Very limited quantitative understanding...
Presumably also relevant for text

CNNs in lazy regime adapt to the locality scale
Favero, Cagnetta, MW NEURIPS 21’
Cagnetta, Favero, MW, ICLR 23’

Lazy Fully-connected net

• Regression
task is local:

• Architecture:
Convolutional net
(CNN)
• Local
• hierarchical

cursed Not cursed, nearly optimal

• Locality can be very helpful
• Hierarchical structure allows for adaptivity to scale s
• Negative result: still cursed if task involves long distance dependencies

• Generative models of hierarchical data.
E. Mossel 16’, E. Malach and Shai Shalev-Shwarz 18’,20’

Analysed with Sequential algorithms (include clustering step)
-> Correlations between output and local portions of the input are key

● Deep networks represent these functions efficiently Poggio et al., ‘17

Hierarchically Compositional data

Example:
[and more iterations]

Results:

Here: study CNN with gradient descent
How # data needed depends on combinatorial nature of the task?

Hierarchical Generative Models
• Generates randomly P data and label (x,y), according to some
frozen rules

• Task y=f*(x) presents a hierachical structure

• study how CNNs learn the task (supervised training)

Hierarchical Generative Models

dog

head paws

eyes nose

edges

● Inputs are generated via a
hierarchy of L compositions

● One high-level feature
corresponds to s sub-features

● Individual sub-features
can be shared. finite
vocabulary of size v

● A high-level feature can
be decomposed into m
strings of s subfeatures

• nc classes

Hierarchical Generative Models
• choose randomly a class among nc ones
(fixes y)

class

Hierarchical Generative Models

High-level
features

• choose randomly a class among nc ones

• Consider the m possible ways to represent
this class by strings of s features. Choose one
randomly

class

m=3,s=2,v=3

gL

Frozen rules

Hierarchical Generative Models

High-level
features

sub-
features

• Repeat the process iteratively L times

• choose randomly a class among nc ones

• Consider the m possible ways to represent
this class by strings of s features. Choose one
randomly

class

m=3,s=2,v=3

gL

gL-1

Number and encoding of inputs

label

High-level
features

Input (low-level features)

• Dimension of input data d=sL

• Input: one-hot encoding
of features

• Number of data generated

y

x

Random Hierarchy Model (RHM): frozen rules
are random

(random)

• At each level of the hierarchy: Each v feature is decomposed
on m strings of length s, uniformly chosen out of the vs possible ones.

• Generates correlations between an isolated sub-feature and the
High-level feature

Petrini, Cagnetta, Tomasini, Favero, MW arxiv 23’

Key properties of the Random Hierarchy Model

label

High-level
features

Input (low-level features)

● Label Invariant for exchange
of synonyms

● random rules induces
computable correlations
between each pixel, or groups
of pixels, and label

• Semantic synonyms

data needed to learn such combinatorial tasks?
(sample complexity P*)

exponential d

P*: Polynomial or exponential in d?

Shallow Fully-connected nets are cursed,
as well as lazy deep CNNs

Training set size

Te
st

 a
cc

ur
ac

y

• the same is observed for lazy deep CNNs

• maximal case m=vs-1

• sample complexity is exponential in d=sL

Sample complexity of deep CNNs

Training set size

Te
st

 a
cc

ur
ac

y

Polynomial in d=sL !! Beats the curse

• Deep CNNs with matching architectures (L hidden layers, filter
Size s)

nc mL

How to learn the RHM?

• Intuitive approach: learn the groups of synonyms of

low-level patches

• Use the fact that they have the same correlation

with the output

• Reduction of dimension from sL to sL-1

● Iterate L times

label

High-level
features

Input (low-level features)

Is it the case for deep CNNs?

y

Input 1

𝐿 = 3, 𝑆 = 2

Input 2

𝜎

𝜎 𝜎 𝜎 𝜎

𝜎 𝜎

𝜎

CNN
with 3 hidden layers

output

input

invariance to semantically
equivalent representations

Invariant representation to synonyms emerges at P*

2nd layer
3rd layer

• Strong correlation between
invariance and performance!

• Sensitivity to synonyms decreases
at P*

Simple argument for P*

signal

noise

• Compute correlations between the sub-features
at a given location and a class

• Distribution of correlations has some
Variance. It is the `signal’: identical for synonyms

• For a finite training set, the estimation of correlation is noisy

• Signal = noice when (precisely = P*)

Simple argument for P*

𝜎 𝜎 𝜎 𝜎

𝜎 𝜎

𝜎

nc classes

Hidden neurons

input

• GD sensitive to these correlations

• one step of GD -> representation with low sensitivity to
synonyms if signal > noise. Invariance thus appears for

Conclusions
1. In the lazy regime, CNN beats the curse for local functions, not for

hierarchical ones

2. Introduce the Random Hierarchical Model (RHM):
Hierarchical task (supervised learning), Hierarchical data

distribution (SSL)

3. CNNs in feature regime can beat the curse when data hierarchical

4. Gives estimates of sample complexity assuming the hierarchical
structure of data . Gives reasonable (crude) estimate,
e.g. CIFAR L=3, m=5-20, 10 classes

5. Predict that good performance is reached when stability to
synonyms is achieved. Test in real data?

