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Let µ⋆ ∈ P(Rd) be a probability distribution on Rd and imagine you would like to sample from
this distribution. If µ⋆ is in Gibbs form and the energy functional is known, i.e., if µ⋆(dx) =
e−U(x)dx, and we have access to U , then a popular choice for sampling from µ⋆ consists in Monte
Carlo methods. For example, one could use the overdamped Langevin diffusion

dXt = −∇U(Xt)dt+
√

2dBt ,

whose equilibrium measures coincides with µ⋆ ∝ exp(−U). Therefore in order to sample from µ⋆

is enough considering the random variable XT (for T ≫ 1 large enough).
However, in most applications, an analytical expression for U in not available and the above

Monte Carlo approach is not feasible. On the contrary, in most applications samples from µ⋆ can
be obtained. These samples might be obtained at a high cost, however this is a cost that we won’t
pay anymore once our generative model is built.

1 Score-based diffusion models
The models we will analyze in this lecture notes are the Score-Based Diffusion Models (SBDM)
which provide with an algorithmic framework for the following principle

“Creating noise from data is easy; creating data from noise is generative modeling.”1

The general idea is that in order to “create noise from data” one can use an ergodic forward Markov
process started from the data distribution, which converges to its invariant distribution (which is
typically a Gaussian law with independent components). This invariant distribution plays the role
of the “noise” which we can easily created from the data by considering the forward evolution of this
ergodic Markov process. Then, creating “data from noise” is done by considering the time-reversal
of the forward process, called the backward process. More precisely, one can sample from the noisy
invariant distribution (from which sampling can be easily done) and then consider the backward
dynamics started in these noisy samples. Since we have considered the time-reversal process, at
time t = 0 the backward process ideally provides random variables distributed according to our
starting µ⋆ data distribution.

However, considering the time-reversal Markov process is a non trivial task since the generator of
the time reversal depends on the data distribution. To give an example, when the forward process,
sometimes called the noising process, is a diffusion process, then the generator of the backward

1This quote is taken from the abstract of [Song et al., 2021].
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generator depends on the score function of the forward process, i.e., it depends on the law of the
forward process (and hence from µ⋆ itself). At the heart of the success of SBDM is the fact that
the score has a numerically tractable expression as a conditional expectation, as we will see later.

1.1 Description of the algorithm
In this section we provide a more precise mathematical description of the generative model. For
exposition’s clarity, we use upper arrow in order to explicit whether we are considering the forward
process −→X or the backward process ←−X and similarly for the corresponding laws on the path space
Ω = C([0, T );Rd).

Forward process The forward Markov process we consider is an Ornstein-Uhlenbeck process
started in the data distribution, that is{

d−→X t = −−→X t dt+
√

2dBt−→
X 0 ∼ µ⋆.

(1)

Let us denote by −→P its law on Ω and by (−→p t)t≥0 its marginal flow, −→p t = L(−→X t). It is well known
that −→p t converges2 to the standard Gaussian distribution γ(dx) = (2π)−d/2 exp(−|x|2/2))dx as
t ↑ ∞ (which means that −→p T ≈ γ for T ≫ 1 large enough).

The backward process For a fixed (large) time horizon T ≫ 1, we may now consider the
backward process ←−X t defined as ←−

X t = −→XT −t, t ∈ [0, T ]

and denote by←−P the law of the backward process on Ω = C([0, T );Rd) and by (←−p t)t≥0 its marginal
flow, i.e., ←−p t = L(←−X t). Clearly ←−p t = −→p T −t, so that indeed the backward process at time t = T
can be used for sampling from the data distribution, since ←−p T = −→p 0 = µ⋆.

Naturally, the definition of time reversal depends on the choice of T , but we omit this in the
notation.

A classical result in the literature about time-reversal for diffusion processes (see for instance
[Cattiaux et al., 2023]) states that under suitable regularity assumptions on µ⋆, the law of the time
reversal is a weak solution to the stochastic differential equation{

d←−X t = +←−X tdt+ 2∇ log−→p T −t(
←−
X t)dt+

√
2dBt←−

XT ∼ µ⋆.

Note that we could have written ←−p t instead of −→p T −t in the above, as these two laws coincide. In
Machine-Learning and statistics literature, the time-dependent vector field

(t, x) 7→ ∇ log−→p t(x)

is often referred to as the score function associated to the diffusion process (1), since it corresponds
to the gradient of the log-likelihood function. For later convenience, let us also introduce the relative

2This convergence is exponentially fast in W2-Wasserstein distance, see [Bakry et al., 2013, Theorem 9.7.2].
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score as the function
(t, y) 7→ ∇ log d

−→p t

dγ
(y) .

Considering the relative score in the above backward dynamics has the advantage of considering
the same sign for drift term −←−X as in the forward dynamics. Indeed a direct computation shows
that we can then rewrite the dynamics of the time reversal as{

d←−X t = −←−X tdt+ 2∇ log d−→p T −t

dγ (←−X t)dt+
√

2dBt
←−
XT ∼ µ⋆.

(2)

1.2 Score as a conditional expectation
At the core of the success of SBDM stems the observation that the score function can be interpreted
as a conditional expectation. In order to prove that, firstly not that the transition probability of
the Ornstein-Uhlenbeck process (1) is explicitly known and equals

−→p t(x, y) = (2πσ2
t )−d/2 exp

(
− |y − µtx|2

2σ2
t

)
, where µt = e−t, and σ2

t = (1− e−2t) .

Therefore, from the identity
−→p t(y) =

∫
pt(x, y)µ⋆(dx)

we obtain by differentiating under the integral sign that

∇y
−→p t(y) = −

∫
σ−2

t (y − µtx)−→p t(x, y)µ⋆(dx) .

By defining, via Bayes Theorem, the conditional distribution (of −→X 0 given −→X t) as

−→p 0|t(dx, y) = µ⋆(dx)−→p t(x, y)
−→p t(y)

we then obtain the score representation

∇y log−→p t(y) = −
∫
σ−2

t (y − µtx)−→p 0|t(dx, y) ,

which equivalently reads as

2∇ log−→p t(y) = sinh(t)−1 E[−→X 0 − et−→X t|
−→
X t = y] (3)

Relying on the representation of conditional expectation as L2-projection (see [Klenke, 2014, Corol-
lary 8.17]) we obtain that the score can be seen as the optimizer in

min
s:Rd→Rd

E[|s(−→X t)− sinh(t)−1 (−→X 0 − et−→X t)|2] .

This identification with the conditional expectation is at the core of the success of score-based
generative modeling since it allows in to approximate the score function with a neural network.
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Indeed we might restrict the minimization to a (rich enough) parametric family {sθ : θ ∈ Θ}
and replace the above objective function with its empirical version, which can be computed by
considering the forward evolution of our starting data samples. This leads to considering the
minimization

min
θ∈Θ

1
M

M∑
i=1
|sθ(−→X i

t)− sinh(t)−1 (−→X i
0 − et−→X i

t)|2,

where (−→X i
0,
−→
X i

t)i≤M are i.i.d. samples of (−→X 0,
−→
X t). One can use stochastic gradient descent methods

to solve (4).

Finally, in view of the choice that we made of using the relative score in the backward dy-
namics (2), let us also give the parametric minimization problem associated to the relative score
2∇ log−→p t/γ. This can be easily obtained by noticing that (3) implies

2∇ log
−→p t

dγ (y) = sinh(t)−1 E[−→X 0 − e−t−→X t|
−→
X t = y] .

Relying again on the representation of conditional expectation as L2-projection, we obtain that the
relative score can be seen as the optimizer in

min
s:Rd→Rd

E[|s(−→X t)− sinh(t)−1 (−→X 0 − e−t−→X t)|2] ,

problem that can be empirically trained as

min
θ∈Θ

1
M

M∑
i=1
|sθ(−→X i

t)− sinh(t)−1 (−→X i
0 − e−t−→X i

t)|2, (4)

for a rich enough parametric family {sθ : θ ∈ Θ}.

1.3 Implementation and limits of SBDM
For a given time horizon T > 0, a partition 0 = t0 < t1 < ... < tN = T and a choice of approximation
sθ⋆

T −tk
in (4) at time t = T − tk with k = 1, . . . , N for the relative score, we can define a score-based

diffusion model X⋆ recursively as follows

X⋆
0 ∼ γ, dX⋆

t = [−X⋆
t + sθ⋆

T −tk
(X⋆

tk
)]dt+

√
2dBt, t ∈ [tk, tk+1] (5)

This algorithm can be considered as an Euler scheme for the backward process (2), where

• we have replaced the score with its parametric approximation approximation X⋆;

• instead of considering −X⋆
tk

in the drift, we have kept −X⋆
t since (5) can be explicitly solved;

• the initial distribution is set to be the Gaussian law γ.

The main question is to bound, in some distance, the distance between the law of X⋆
T (which

approximates ←−XT ∼ µ⋆) and the data distribution µ⋆. In order to do so, one should take into
account three sources of error
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1) The initialization error: we start our score-based diffusion model X⋆
0 ∼ γ, whereas for the

backward process we have ←−p 0 = −→p T ̸= γ. Clearly the greater our time horizon T ≫ 1
is and the smaller is the mismatch between −→p T and γ. Then one should analyze how this
approximation error propagates along our diffusion model (5).

2) The score-approximation error: in (5) we replace the true score relative function ∇ log d−→p t

dγ

with a parametric approximation sθ⋆

T −t.

3) The time-discretization error, which is the most challenging source of error to handle since it
involves also the approximate score function.

Below we provide the pseudo-code of SBDM algorithm.
Algorithm 1: Score Based Diffusion Model

Input: M samples Xi ∼ µ⋆ from our data distribution, time horizon T ≫ 1 large enough,
partition 0 = t0 < t1 < · · · < tN = T , parametrized vector field family {sθ : θ ∈ Θ}

1 for i = 1, . . . ,M do
/* Forward OU evolution */

2 Initialize −→X i
0 = Xi

3 Sample the forward OU process (−→X i
tk

)k=1,...,N using (1)
4 end
5 Learn θ⋆ optimizer in (4)

/* Sample backward evolution, using the parametrized score (sθ⋆

T −tk
)k=0,...,N */

6 Initialize X⋆
0 = X1

0 ; // or any X⋆
0 ∼ µ

7 Sample backward process (X⋆
tk

)k=1,...,N via (5)
Output: X⋆

T

Let us recall that when sampling from the forward and backward SDEs (1)and (5) one can either
solve them exactly, or just use Euler-Maruyama scheme.

1.4 Convergence analysis of SBDM
In this section we are interested in understanding the performance of SBDM algorithm, i.e., in
providing quantitative error estimates between the distribution L(X⋆

T ) and our data distribution
µ⋆. The result presented in this section are based on [Conforti et al., 2023a]. We will measure
the distance between this two probability measure via relative entropy H (also known as KL-
divergence) which is defined for any two probability measure for any two probability measures p, q
as the quantity

H (p|q) :=

Ep

[
log dp

dq

]
if p≪ q,

+∞ otherwise.
(6)

For exposition’s sake, here we are going to consider constant step-sizes tk+1 − tk = h := T/N .
We will assume that we are able to learn the parametric relative score (sθ⋆

T −tk
)k=0,...,N such that

A1. There exists ε2 > 0 such that

1
N

N−1∑
k=0

E[|sθ⋆

T −tk
(−→XT −tk

)− 2∇ log d−→p T −tk

dγ (−→XT −tk
)|2] ≤ ε2 .
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Assumptions like this, where one assumes that we are able to learn the (relative) score up to an
L2 mistake of order ε2 are common when analyzing score-based generative model [Chen et al., 2023].

Next, we are going to assume some regularity for our data distribution µ⋆

A2. We assume that µ⋆has finite Fisher information Iγ(µ⋆) < +∞ (w.r.t. γ), i.e., that

Iγ(µ⋆) :=
∥∥∥∥∇ log dµ⋆

dγ

∥∥∥∥2

L2(µ)
< +∞ .

Under the following assumptions we will prove that

Theorem 1 (Theorem 1 in [Conforti et al., 2023a]). Assume A1 and A2. Then SBDM (with
constant step-size h = T/N) satisfies the following bound

H (µ⋆|L(X⋆
T )) ≲ e−2T H (µ⋆|γ) + ε2 T + h Iγ(µ⋆) ,

where ≲ indicates that the inequality holds up to a positive numerical constant (independent from
our parameters and from µ⋆).

We will sketch the proof of this result at the end of the current section, after some preliminary
results.

The relative score process The proof strategy relies on the study of the behjaviour of the
(relative) score process, which is defined as

Yt := 2∇ log d−→p T −t

dγ (←−X t) ,

where we recall (←−X t)t∈[0,T ] is the backward process solving (2). In the next result we show that
this relative score process satisfies a SDE, that can be interpreted as the adjoint equation in the
stochastic maximum principle.

Lemma 1.1. For any fixed δ > 0, on the time interval [0, T − δ] the relative score process satisfies{
dYt = Yt dt+

√
2Zt · dBt

with Zt = 2∇2 log d−→p T −t

dγ (←−X t) ,

and by definition we have YT = 2∇ log dµ⋆

dγ (←−XT ).

Proof. Firstly, set ft := d−→p T −t/dγ and notice that then it satisfies the Kolmogorov equation{
∂tft(x) + ∆ft(x)− ⟨x, ∇ft(x)⟩ = 0
fT = dµ⋆

dγ .

Then if we consider ψt := log ft it clearly solves the Hamilton-Jacobi-Bellman equation{
∂tψt(x) + ∆ψt(x) + |∇ψt|2(x)− ⟨x, ∇ψt(x)⟩ = 0
ψT = log dµ⋆

dγ .
(7)
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Since Yt = 2∇ψt(
←−
X t), from Ito’s formula3 we deduce that

dYt = 2∂t∇ψt(
←−
X t)dt+ 2∇2ψt · d

←−
X t + 2 ∆∇ψt(

←−
X t) dt

= 2 [∂t∇ψt(
←−
X t) +∇2ψt(

←−
X t)(−

←−
X t − 2∇ψt(

←−
X t)) + ∆∇ψt(

←−
X t)] dt+ 2

√
2∇2ψt(

←−
X t) · dBt

= 2∇[∂tψt + ∆ψt + |∇ψt|2](←−X t) dt− 2∇2ψt(
←−
X t)
←−
X t dt+

√
2Zt · dBt

(7)= 2
(
∇⟨
←−
X t, ∇ψt(

←−
X t)⟩ − ∇2ψt(

←−
X t)
←−
X t

)
dt+

√
2Zt · dBt = 2∇ψt(

←−
X t) dt+

√
2Zt · dBt ,

which concludes our proof.

Corollary 1.2. If µ⋆ has finite eight-moments, for any 0 ≤ s ≤ t ≤ T it holds

E[|Yt|2]− E[|Ys|2] =
∫ t

s

2E
[
|Yu|2 + ∥Zu∥2

FR

]
du ,

where ∥Zt∥FR is the Frobenius norm of the matrix Zt. As a consequence we obtain that

E[|Ys|2] ≤ e−2(t−s) E[|Yt|2] .

Proof. By Ito’s formula and from the previous lemma we immediately deduce that

d|Yt|2 = 2|Yt|2 dt+ 2
√

2Yt · Zt · dBt + 2∥Zt∥2
FR dt .

The finite eight-moments assumption guarantees that (Yt · Zt · dBt)t∈[0,T ) is a martingale4 and
therefore the validity of our first claim. From the non-negativity of the latter term, by taking
expectation we then deduce that

d
dtE[|Yt|2] ≥ 2E[|Yt|2] ,

which combined with (a backward in time) Gronwall’s lemma yields to the second claim.

Proof of main result The proof of our entropy bound will be based on a Girsanov Theorem
where the drift at time t may depend on the whole trajectory up to time t. Particularly we are
going to prove that

Lemma 1.3. Take two probability measures µ1, µ2 ∈ Rd and for i = 1, 2 let Xi be the solution of{
dXi

t = bi
t(Xi

[0,t]) dt+
√

2dBt

Xi
0 ∼ µi ,

where Xi
[0,t] stands for the time-evolution of the process up to time t. Then if we set Pi :=

L(Xi
[0,T ]) ∈ P(Ω) it holds

H (P2|P1) = H (µ2|µ1) + E
∫ T

0
|b2

t − b1
t |2(X2

[0,t]) dt .
3We restrict ourselves in the time interval [0, T −δ] for any arbitrary small δ > 0 in order to guarantee enough reg-

ularity for ψt and therefore for applying Ito’s formula here. We refer the reader to [Conforti et al., 2023a, Proposition
1].

4We refer the interested reader to [Conforti et al., 2023a, Lemma 1] for this technical detail.
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Proof. Recall that ω· denotes the canonical process on Ω. From Girsanov Theorem we have

dP2

dP1 (ω) = dµ2

dµ1 (ω0) exp
[
2

∫ T

0
(b2

t − b1
t )(ω[0,t]) dωt −

∫ t

0
(|b2

t |2 − |b1
t |2)(ω[0,t]) dt

]
.

Therefore, the relative entropy reads as

H (P2|P1) = H (µ2|µ1) + EP2

[
2

∫ T

0
(b2

t − b1
t )(ω[0,t]) dωt −

∫ t

0
(|b2

t |2 − |b1
t |2)(ω[0,t]) dt

]
= H (µ2|µ1) + E

[
2

∫ T

0
(b2

t − b1
t )(X2

[0,t]) dX2
t −

∫ t

0
(|b2

t |2 − |b1
t |2)(X2

[0,t]) dt
]

= H (µ2|µ1) + E
[
2

∫ T

0
(b2

t − b1
t )(X2

[0,t]) b2
t (X2

[0,t])− |b2
t |2(X2

[0,t]) + |b1
t |2)(X2

[0,t]) dt
]

= H (µ2|µ1) + E
[
2

∫ T

0
|b2

t − b1
t |2(X2

[0,t]) dt
]

Sketch of the proof of Theorem 1. We will prove this theorem under the extra assumption the µ⋆

has finite eight-moments.5
Let us start by noticing that, since µ⋆ = L(←−XT ) we have

H (µ⋆|L(X⋆
T )) = H (L(←−XT |L(X⋆

T )) ≤H (L(←−X ·)|L(X⋆
· )) ,

where the probabilities appearing in the last term are probability measures on the path space Ω and
the last inequality is known as Data processing inequality for relative entropy [Nutz, 2021, Lemma
1.6] (in this specific case can be deduced from Lemma 1.3 applied to the time reversal of these
measures). From Lemma 1.3 we then deduce that

H (µ⋆|L(X⋆
T )) ≤H (L(←−X 0)|L(X⋆

0 )) + 2
N−1∑
k=0

E
∫ tk+1

tk

∣∣∣∣2∇ log d−→p T −t

dγ (←−X t)− sθ⋆

T −tk
(←−X tk

)
∣∣∣∣2

dt

= H (L(−→XT )|γ) + 2
N−1∑
k=0

E
∫ tk+1

tk

∣∣∣Yt − sθ⋆

T −tk
(←−X tk

)
∣∣∣2

dt

≲H (L(−→XT )|γ) + 2
N−1∑
k=0

E
∫ tk+1

tk

|Yt − Ytk
|2 dt+ h

N−1∑
k=0

E[|Ytk
− sθ⋆

T −tk
(←−X tk

)|2]

≤ e−2 T H (µ⋆|γ) + 2
N−1∑
k=0

E
∫ tk+1

tk

|Yt − Ytk
|2 dt+ ε2 T ,

where the last step follows from A1 and from the fact that the forward Ornstein-Uhlenbeck process
invariant measure is the Gaussian γ which satisfies a log-Sobolev inequality [Bakry et al., 2013,
Proposition 5.5.1] and therefore an exponential entropy decay [Bakry et al., 2013, Theorem 5.2.1].

5We refer the reader to the proof of Lemma 2 in [Conforti et al., 2023a] for an approximating argument that
removes this assumption.
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In order to conclude we should bound the term in the middle. Notice that if we integrate from
tk to t ∈ [tk, tk+1], from Lemma 1.1 we may deduce that

E|Yt − Ytk
|2 ≤ 2E

[∣∣∣∣∫ t

tk

Ysds
∣∣∣∣2]

+ 4E
[∣∣∣∣∫ t

tk

Zs · dBs

∣∣∣∣2]
.

From Jensen’s inequality and Ito isometry we then have

E|Yt − Ytk
|2 ≤ 2(t− tk)E

∫ t

tk

|Ys|2ds+ 4E
∫ t

tk

∥Zs∥2
FRds ≲

∫ tk+1

tk

2E
[
|Ys|2 + ∥Zs∥2

FR

]
ds

=E[|Ytk+1 |2]− E[|Ytk
|2] ,

where the last step follows from Corollary 1.2. In conclusion we have shown that

H (µ⋆|L(X⋆
T )) ≲ e−2 T H (µ⋆|γ) + 2h

N−1∑
k=0

(E[|Ytk+1 |2]− E[|Ytk
|2]) + ε2 T

= e−2 T H (µ⋆|γ) + 2h (E[|YT |2]− E[|Y0|2]) + ε2 T

≤ e−2 T H (µ⋆|γ) + 2hE[|YT |2] + ε2 T

which concludes our proof since

E[|YT |2] = E
[∣∣∣∣∇ log d−→p 0

dγ (←−XT )
∣∣∣∣2]

= E
[∣∣∣∣∇ log dµ⋆

dγ (−→X 0)
∣∣∣∣2]

= Iγ(µ⋆) .

2 Diffusion Flow Matching
SBDM interpolate between an easy-to-sample from distribution (the Gaussian distribution) and
the data distribution in infinite time horizon. This means that in practice in order to have good
quality samples from SBDM we need to choose a very large time horizon T ≫ 1, so that −→p T ≈ γ.
However considering a wide time horizon is computationally costly. In order to avoid this extra
error source and in order to make the algorithm computationally lighter we would like to sample

• a pair of arbitrary data distributions

• in finite time (let us say T = 1).

In other words, we want to design an efficient algorithm that builds a “bridge” between any two
distributions. Very recently, a new family of algorithms called stochastic interpolants has been re-
cently proposed [Albergo and Vanden-Eijnden, 2023, Shi et al., 2023b, Peluchetti, 2023] to address
this problem. In this notes, we focus on a specific instance of this class, namely Diffusion Flow
Matching (DFM), which however contains all the main ideas of the theory.

2.1 Building bridges between probability measures
In this section we are interested in building bridges between probability distributions on Rd.
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Brownian bridges Let us start by recalling here how Brownian motions can be used in order to
build bridges between two points x, y ∈ Rd (or equivalently between the Dirac probability measures
δx and δy). Let us denote by R the Wiener measure, i.e., the law on Ω = C([0, 1];Rd) of the
reversible Brownian motion on [0, 1] (that is a Brownian motion whose law at any time t ∈ [0, 1]
coincides with its equilibrium measure,i.e., the Lebesgue measure)6. For any x, y ∈ Rd the Brownian
bridge Rxy from x to y, is defined as the conditional probability measure that for any Borel set
A ⊆ Ω reads as

Rxy[A] = R[A|ω0 = x, ω1 = y] ,
where (ωt)t∈[0,1] denotes the canonical process on Ω. The Brownian bridge can be represented also
through a stochastic differential equation. Namely, Rxy is the law that solves the SDE7{

dXxy
t = (y−Xxy)

1−t dt+
√

2 dBt

Xxy
0 = x .

(8)

A simple way to build bridges From Brownian bridges between points we can now build
bridges between distributions by just considering mixtures of Brownian bridges.

Given any two distributions µ, ν ∈ P(Rd) define the set of couplings of µ and ν as the set of
probability measures on the product space Rd ×Rd whose marginals are µ and ν respectively, that
is the set

Π(µ, ν) = {π ∈ P(Rd × Rd) : π(A× Rd) = µ(A) , π(Rd ×A) = ν(A) ∀A ∈ B(Rd)}.

Then a natural way of building bridges between µ and ν consists in considering a coupling π, sample
a travel plan, i.e., an initial and final point and then just connect them via a Brownian bridge. In
formulas, we consider

(XI
0, X

I
1) ∼ π, XI

t = X
XI

0,XI
1

t ∀t ∈ [0, 1] ,
where for any x, y ∈ Rd the process (Xxy

t )t∈[0,1] is the Brownian bridge from x to y solving (8). We
call the stochastic process (XI

t )t∈[0,1] the stochastic interpolant between µ and ν. Equivalently, if
we define PI as the law of the interpolant (XI

t )t∈[0,1], we have that for any measurable A ⊆ Ω

PI[A] = P[XI
· ∈ A] =

∫
Rd×Rd

Rxy[A]π(dxdy) ,

which indeed is equivalent to saying that PI is a π-mixture of Brownian bridges.
It is straightforward to verify that the marginal flow of PI, which we denote (pI

t)t∈[0,1], is such
that pI

0 = µ, pI
1 = ν. Therefore, for any coupling π ∈ Π(µ, ν) between µ and ν we have defined a

stochastic interpolant process and its corresponding flow, which connects µ to ν.

Reciprocal classes A fundamental observation is that the stochastic interpolant (XI
t)t∈[0,1] is

not a Markov process in general. However, by construction, it shares the same bridges of the Wiener
measure R. More precisely,

(PI)xy = Rxy ∀x, y ∈ Rd,

6This choice guarantees the reversibility and stationarity of the process
7Let us draw a connection with the previous section and remark here that this bridge SDE can be thought as the

backward dynamics associated to a Brownian motion. Indeed the drift term in the above SDE coincides with the
score 2 ∇ log −→p 1−t(y) associated to a forward Brownian diffusion started in −→

X0 = y.
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where (PI)xy is the xy-bridge of PI, that is to say, the law of PI conditionally on {ω0 = x, ω1 = y}.
Otherwise said, PI belongs to the reciprocal class of the Wiener measure R, defined as

R = {P : P[A] =
∫
Rd×Rd

Rxy[A] P0,1(dxdy) ∀A ∈ B(Ω)}

where in the above we denoted by A a general measurable subset of Ω and P01 is the joint law at
times 0, 1 of P, i.e., P0,1 = (ω0, ω1)#P. Therefore, despite not being a Markov process (XI

t)t∈[0,1],
its law is in the reciprocal class of the Brownian motion, i.e., PI ∈ R.

2.2 Markovian projections and DFM algorithm
So far we have shown how to build bridges between two marginal distributions µ, ν ∈ P(Rd) in a
simple way (i.e., as a mixture of Brownian bridges). However in order to implement the sampling
in an algorithm it would be convenient that PI solves an SDE so that we could sample from PI via
Euler-Maruyama scheme. Unfortunately, as we already mentioned PI generally doesn’t solve any
SDE since it is not Markov. The core idea behind Diffusion Flow Matching (DFM) algorithm is
then trying to compensate this lack of Markovianity by computing the Markovian projection of PI.
Otherwise said, we are interested in finding a measure P which is Markov and that “mimics” the
marginal flow of the stochastic interpolant PI, i.e., such that (ωt)#P = pI

t for any fixed t ∈ [0, 1].
Equivalently, our aim is learning a drift field

bt : [0, 1]× Rd −→ Rd (t, x) 7→ bt(x)

such that the solution Xµ,b of the SDE{
dXµ,b

t = bt(Xµ,b
t )dt+

√
2 dBt

Xµ,b
0 ∼ µ

(9)

satisfies
L(Xµ,b

t ) = pI
t ∀t ∈ [0, 1] . (10)

Notice that, since pI
0 = µ and pI

1 = ν, we are guaranteed that Xµ,b
0 ∼ µ and Xµ,b

1 ∼ ν, or equivalently
that L(Xµ,b

0 , Xµ,b
1 ) ∈ Π(µ, ν) is a coupling between our two marginals. The process (Xµ,b

t )t∈[0,1] is
often referred to as the Markovian projection of (pI

t)t∈[0,1], or also Gyöngy projection of (pI
t)t∈[0,1],

in view of the contribution of [Gyöngy, 1986].
It turns out that such drift always exist and admits a tractable expression in terms of a condi-

tional expectation

Theorem 2. The drift field

bt(x) = (1− t)−1E[XI
1 −XI

t |XI
t = x] (11)

mimics the marginal flow of PI, i.e. (10) holds.

Proof. Define pt(x, y) as the heat kernel8

pt(x, y) = (4πt)−d/2 exp(−|y − x|2/4t).
8Pay attention that since we have

√
2 in front of the Brownian motion in the SDE (9), here we have the factor 4

in the heat kernel. This ensure that pt solves the heat equation ∂tpt = ∆pt (with the Laplacian ∆ and not ∆/2).
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Moreover, let us introduce π̃(dxdy) = p−1
1 (x, y)π(dxdy), where we recall π ∈ Π(µ, ν) being here the

coupling fixed when building the stochastic interpolant PI (so in particular π = (ω0, ω1)#PI). Then,
from the definition of PI as π-mixture of Brownian bridges and since Rxy and from the Markov
property it follows that for any A ⊂ Rd it holds

pI
t[A] = P[XI

t ∈ A] =
∫
Rd×Rd

P[Xx0x1
t ∈ A]π(dx0 dx1) =

∫
Rd×Rd

Rx0x1 [ωt ∈ A] π(dx0 dx1)

=
∫
Rd×Rd

Rx0 [ωt ∈ A|ω1 = x1]π(dx0 dx1)

=
∫
Rd×Rd

Rx0 [ωt ∈ A,ω1 = x1]
p1(x0, x1) π(dx0 dx1)

=
∫
Rd×Rd

Rx0 [ωt ∈ A] Rx0 [ω1 = x1|ωt ∈ A]
p1(x0, x1) π(dx0 dx1)

=
∫

A

∫
Rd×Rd

pt(x0, x) p1−t(x, x1)
p1(x0, x1) π(dx0 dx1) dx

where Rx0 denotes the law of a Brownian motion started in x0. Therefore we have shown that

pI
t(x) =

∫
pt(x0, x) p1−t(x, x1)

p1(x0, x1) π(dx0,dx1) =
∫
pt(x0, x)p1−t(x, x1) π̃(dx0,dx1) . (12)

Combining the above identity with the heat equation ∂tpt(x, y) = ∆ypt(x, y) = ∆xpt(x, y) we find

∂tp
I
t(x) =

∫
[∆xpt(x0, x)p1−t(x, x1)− pt(x0, x)∆xp1−t(x, x1)]π̃(dx0,dx1)

=
∫

[(∆xpt(x0, x)p1−t(x, x1) +∇xpt(x0, x) · ∇xp1−t(x, x1))π̃(dx0,dx1)

−
∫

(pt(x0, x)∆xp1−t(x, x1) +∇xpt(x0, x) · ∇xp1−t(x, x1))]π̃(dx0,dx1)

= ∇x ·
∫ [
∇xpt(x0, x)p1−t(x, x1)− pt(x0, x)∇xp1−t(x, x1)

]
π̃(dx0,dx1)

= ∇x ·
∫ (
∇x log pt(x0, x)−∇x log p1−t(x, x1)

)
pt(x0, x)p1−t(x, x1) π̃(dx0,dx1)

Therefore, pI
t satisfies the continuity equation

∂tp
I
t+∇x · (vtp

I
t) = 0 ,

vt(x) :=(pI
t)−1(x)

∫ (
∇x log p1−t(x, x1)−∇x log pt(x0, x)

)
pt(x0, x)p1−t(x, x1) π̃(dx0,dx1) .

(13)

It then follows, that upon defining

bt(x) := vt(x) +∇x log pI
t(x), (14)

we find that pI
t satisfies the Fokker-Planck-equation

∂tp
I
t +∇x · (btp

I
t)−∆pI

t = 0
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Therefore the drift bt as defined in (14) is a mimicking drift. It remains to show that definition (14)
coincides with (11). To see this, observe that we get directly from (12) that

∇x log pI
t(x) = (pI

t)−1(x)
∫ (
∇x log pt(x0, x) +∇x log p1−t(x, x1)

)
pt(x0, x)p1−t(x, x1)π̃(dx0,dx1)

Plugging this result into (14), using (13) , recalling (12) and noticing that

∇x log p1−t(x, x1) = x1 − x
2(1− t) ,

yield to
bt(x) = (pI

t)−1(x)
∫

2∇x log p1−t(x, x1) pt(x0, x)p1−t(x, x1)π̃(dx0,dx1)

= 2E[∇x log p1−t(Xt, X1)|Xt = x] = (1− t)−1 E[XI
1 −XI

t |XI
t = x] .

Since the mimicking drift bt is a conditional expectation, we can again rely on the represen-
tation of conditional expectation as L2-projection (see [Klenke, 2014, Corollary 8.17]) and see the
mimicking drift as the optimizer in

min
s:Rd→Rd

E[|s(XI
t)− (1− t)−1 (XI

1 −XI
t)|2] .

Therefore from an algorithmic point of view, we can again solve this problem via neural networks,
i.e., given a rich enough class of parameterized vector fields {sθ : θ ∈ Θ} we can approximate the
mimicking drift via solving

min
θ∈Θ

1
M

M∑
i=1
|sθ((XI

t)i)− (1− t)−1((XI
1)i − (XI

t)i)|2, (15)

where (XI
t , X

I
1)i are i.i.d. samples from (XI

t , X
I
1). If θ⋆ denotes the optimal parameter for the above

problem, then sθ⋆ will be our approximated mimicking drift.

Diffusion Flow Matching algorithm What we have seen so far, is that DFM gives us a way of
sampling in finite time a target distribution ν from an initial distribution µ, given a fixed coupling
π ∈ Π(µ, ν). Indeed, given a a partition 0 = t0 < t1 < · · · < tN = 1, once the parametric mimicking
drift (sθ⋆

tk
)k≤N−1 is learned via (15), we can sample from the approximated mimicking SDE{

dX⋆
t = sθ⋆

tk
(X⋆

tk
)dt+

√
2dBt for t ∈ [tk, tk+1]

X⋆
0 ∼ µ

(16)

Then a natural question to address is to upper bound the distance between the law of X⋆
1 and ν,

since we have L(Xµ,b
1 ) = ν and X⋆

1 is an approximated version of the random variable Xµ,b
1 .

Below we provide the pseudo-code for DFM algorithm, where we employ Euler-Maruyama
scheme for solving both the Brownian bridge SDE (8) and the parametrized Markovian projec-
tion SDE (16).
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Algorithm 2: Diffusion Flow Matching
Input: M samples (X0, X1)i ∼ π ∈ Π(µ, ν) from a tractable distribution, partition

0 = t0 < t1 < · · · < tN = 1, parametrized vector field family {sθ : θ ∈ Θ}
1 for i = 1, . . . ,M do

/* Sample stochastic interpolant */
2 Initialize (XI

0)i = Xi
0

3 Sample (XI
tk

)i
k=1,...,N using the Brownian bridge (8) from x = Xi

0 to y = Xi
1

4 end
5 Learn θ⋆ optimizer in (15)

/* Sample Markovian projection, using parametrized mimicking drift sθ⋆

tk
*/

6 Initialize X⋆
0 = X1

0 ; // or any X⋆
0 ∼ µ

7 Sample (X⋆
tk

)k=1,...,N via (16)
Output: X⋆

1

2.3 Connection with entropic optimal transport
In a nutshell, DFM takes as input a coupling π0 ∈ Π(µ, ν), then first builds the corresponding
stochastic interpolant (XI

t)t∈[0,1], and finally computes a mimicking drift. The corresponding gen-
erative model is then given by the process X⋆

· . This process is an approximation of the process
Xµ,b, defined by {

dXµ,b
t = bt(Xµ,b

t )dt+ dBt,

Xµ,b
0 ∼ µ

Diffusion Schrödinger Bridge Matching In general, there is no reason to expect that the
joint law L(Xµ,b

0 , Xµ,b
1 ) of initial and terminal time of the Markovian projection coincides with the

initial coupling, though its marginal distributions do, i.e., π1 := L(Xµ,b
0 , Xµ,b

1 ) ∈ Π(µ, ν). Thus,
neglecting the approximation errors produced by replacing Xµ,b

· with X⋆
· , we may view DFM as

an algorithm that takes as input a given coupling π0 ∈ Π(µ, ν) and produces a new coupling
π1 ∈ Π(µ, ν). It is very tempting to implement this procedure as a recursive algorithm, called
Diffusion Schrödinger Bridge Matching (DSBM) [Shi et al., 2023a], which computes a sequence of
couplings (πn)n≥1 ∈ Π(µ, ν) according to the following scheme:

Algorithm 3: Diffusion Schrödinger Bridge Matching [Shi et al., 2023b]
Input: π0 ∈ Π(µ, ν) tractable distribution (i.e., I can sample from it), N number of

iterations
1 for i = 0, . . . , N − 1 do
2 Define the next stochastic interpolant by XI,n

· = X
Xn

0 ,Xn
1

· , with (Xn
0 , X

n
1 ) ∼ πn

3 Compute the mimicking drift bn+1
t (x) = (1− t)−1E[XI,n

1 −XI,n
t |X

I,n
t = x]

4 Define the new coupling as πn+1 := L(Xµ,bn+1

0 , Xµ,bn+1

1 )
5 end

Output: πN

Let us remark here, that from a practical point of view the mimicking drift will be learned as
done in DFM Algorithm 2 and that at each step instead of defining πn+1 we will actually produce
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samples that are distributed according to it, which can be used in the following step as starting
sample’s set.

Let us forget for now on the practical implementation of DSBM and focus on the sequence of
couplings (πn)n≥1 that generates. A natural question is then: does this sequence converge? What
is its limit?

Answering this question draws a bridge between DSBM and Entropic Optimal Transport theory.

Entropic Optimal Transport and the Schrödinger problem Define the probability measure

Rµ
0,T (dxdy) = µ(dx) exp(−|y − x|2/4T )dy ,

that is the joint law at time 0 and 2T of a Brownian motion started in B0 ∼ µ.
Then the Schrödinger problem (SP) with time horizon T > 0 (or regularization T ) is defined as

inf
π∈Π(µ,ν)

H (π|Rµ
0,T ) ,

where H is the relative entropy functional, which we recall is defined at (6). This problem dates
back to the two seminal papers [Schrödinger, 1931, Schrödinger, 1932] where Schrödinger was in-
terested in finding the best approximation of the joint law of a Brownian motion at times 0, T
in relative entropy sense among all couplings of two given fixed marginals µ, ν. Remarkably, this
problem is equivalent to a regularized version of the classical quadratic Monge-Kantorovich optimal
transport problem, known as Entropic Optimal Transport problem (EOT), which reads as

inf
π∈Π(µ,ν)

∫
|x− y|2dπ + 4TH (π|µ⊗ ν) .

From the above expression is immediate to guess that indeed in the asymptotic regime T ↓ 0
SP/EOT converges to the Monge-Kantorovich Optimal transport problem.

A more remarkable thing is that SP admits a unique solution (the relative entropy is a strictly
convex functional and we consider the convex subset Π(µ, ν)), which we will denote as π⋆ and this
solution is incredibly regular. In this notes, the most relevant property of π⋆ is the Markovianity.
To be more precise, set T = 1 and let us we denote by P⋆ the π⋆-mixture of Brownian bridges, i.e.,
the stochastic interpolant built from π⋆

P⋆ = L(XX0,X1
· ) with (X0, X1) ∼ π⋆ .

Then P⋆ is Markov and (XX0,X1
t )t∈[0,1] is a Markov process [Léonard, 2014]. This particularly

implies that π⋆ is a fixed point for the iteration of DSBM since the stochastic interpolant is already
a Markov process and therefore its Markovian projection will equal the interpolant itself.

One may then expect that, if the sequence of couplings produced by DSBM (πn)n≥1 converges,
then we have

lim
n→+∞

πn = π⋆ ,

since π⋆ is a fixed point. This is indeed the case, since for any fixed couple of marginals µ, ν there
is a unique Markovian probability measure P on the path space such that (ω0, ω1)#P ∈ Π(µ, ν)
and which is in the reciprocal class of the Wiener measure (i.e., the conditional laws Pxy = Rxy

are Brownian bridges):
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Theorem 3 (Proposition 5 in [Shi et al., 2023b]). If P ∈ P(Ω) be a Markov probability measure,
belongs to the reciprocal class of the Wiener measure (i.e., P ∈ R) and if (ω0, ω1)#P ∈ Π(µ, ν) with
(ω0, ω1)#P ≪ R0,1

9, then P = P⋆ is the law of the Schrödinger bridge and (ω0, ω1)#P = π⋆ is the
solution to SP.

This result follows from [Léonard, 2014, Theorem 2.12b] combined with [Léonard et al., 2014,
Theorem 2.14].

Sinkhorn’s algorithm We have seen that DSBM provides us with an algorithm that computes
π⋆ ∈ Π(µ, ν), that is the solution of SP/EOT. Despite DSBM being quite recent, SP/EOT popular-
ity dates back at least to [Cuturi, 2013] where it was shown that the solution of SP can computed
in an efficient and fast way using an iterative algorithm known as Sinkhorn’s algorithm (which is
even older [Sinkhorn, 1964, Sinkhorn and Knopp, 1967]). The idea behind this iterative algorithm
is fitting one marginal constraint at a time in the best possible way (i.e., via entropic projections).
To be more precise, if we introduce the subsets

Π(µ, ⋆) := {π ∈ P(Rd × Rd) s.t. π(A× Rd) = µ(A) for any A ∈ B(Rd)} ,
Π(⋆, ν) := {π ∈ P(Rd × Rd) s.t. π(Rd ×A) = ν(A) for any A ∈ B(Rd)} ,

then the algorithm reads as follows

Algorithm 4: Sinkhron’s algorithm
Input: π0,0 = ν(dy)⊗ R0,T (dx, y) ∈ Π(⋆, ν), N number of iterations

1 for i = 0, . . . , N − 1 do
2 Define πn+1,n := arg minΠ(µ,⋆)H (·|πn,n)
3 Define πn+1,n+1 := arg minΠ(⋆,ν)H (·|πn+1,n)
4 end

Output: πN,N−1 ∈ Π(µ, ⋆) or πN,N ∈ Π(⋆, ν)

The idea behind the algorithm is that, if the sequence (πn+1,n, πn+1,n+1) converges to a fixed
point of the iteration π⋆, then this fixed point belongs to Π(µ, ⋆) ∩ Π(⋆, ν) = Π(µ, ν) and there-
fore it is a coupling between my two marginals. Moreover, at each step of the algorithm we
just impose one marginal constraint which makes easier the computation of the iterates (in dis-
crete settings it translates in a simple matrix/vector manipulation [Peyré and Cuturi, 2019]). The
exponential convergence of Sinkhorn’s algorithm has been extensively studied both in discrete
[Sinkhorn, 1964, Sinkhorn and Knopp, 1967, Peyré and Cuturi, 2019] and in compact/bounded set-
tings [Chen et al., 2016, Deligiannidis et al., 2024, Berman, 2020]. Quite recently its exponential
convergence has been established as well in unbounded settings [Conforti et al., 2023b, Eckstein, 2023].

Differences between DSBM and Sinkhorn Both algorithms alternate between some kind of
entropic projections. DSBM alternates

• projections onto the reciprocal class R. This corresponds to the construction of the stochastic
interpolant,

9This last hypothesis is met along DSBM thanks to [Shi et al., 2023b, Lemma 6] as long as π0 ≪ R0,1.
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• projections onto the set of Markovian processes. This corresponds to the computation of the
mimicking drift.

Sinkhorn’s algorithm alternates between

• projections on the set of probability measures fitting only the first marginal Π(µ, ⋆),

• projections on the set of probability measures fitting only the second marginal Π(⋆, ν).
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[Shi et al., 2023a] Shi, Y., Bortoli, V. D., Campbell, A., and Doucet, A. (2023a). Diffusion
schrödinger bridge matching. In Thirty-seventh Conference on Neural Information Processing
Systems.

[Shi et al., 2023b] Shi, Y., De Bortoli, V., Campbell, A., and Doucet, A. (2023b). Diffusion
Schrödinger bridge matching. arXiv preprint arXiv:2303.16852.

[Sinkhorn, 1964] Sinkhorn, R. (1964). A Relationship Between Arbitrary Positive Matrices and
Doubly Stochastic Matrices. The Annals of Mathematical Statistics, 35(2):876–879.

[Sinkhorn and Knopp, 1967] Sinkhorn, R. and Knopp, P. (1967). Concerning nonnegative matrices
and doubly stochastic matrices. Pacific Journal of Mathematics, 21(2):343–348.

[Song et al., 2021] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole,
B. (2021). Score-based generative modeling through stochastic differential equations. In Inter-
national Conference on Learning Representations.

18

http://www.math.columbia.edu/~mnutz/docs/EOT_lecture_notes.pdf
http://www.math.columbia.edu/~mnutz/docs/EOT_lecture_notes.pdf

	Score-based diffusion models
	Description of the algorithm
	Score as a conditional expectation
	Implementation and limits of SBDM
	Convergence analysis of SBDM

	Diffusion Flow Matching
	Building bridges between probability measures
	Markovian projections and DFM algorithm
	Connection with entropic optimal transport


