Esercizi 5

1)Quali delle seguenti funzioni sono applicazioni lineari?

 $f_1: \mathbb{R}[x] \to \mathbb{R}$ definita ponendo $f_1(P(x)) := 2P(5) + P'(2)$

$$f_2: \mathbb{R}[x] \to \mathbb{R}^2$$
 definita ponendo $f_2(P(x)) := \begin{pmatrix} 2P(5) + P'(2) \\ P''(3) + p(0) \end{pmatrix}$
 $f_3: \mathbb{R}[x] \to \mathbb{R}^2$ definita ponendo $f_3(P(x)) := \begin{pmatrix} 2P(5) + P'(2) \\ P''(3) + p(0) + 3 \end{pmatrix}$

$$f_3: \mathbb{R}[x] \to \mathbb{R}^2$$
 definita ponendo $f_3(P(x)) := \begin{pmatrix} 2P(5) + P'(2) \\ P''(3) + p(0) + 3 \end{pmatrix}$

$$f_4: \mathbb{R}[x] \to \mathbb{R}[x]$$
 definita ponendo $f_4(P(x)) := P(x)(3x^2 + 1)$.

$$f_5: \mathbb{R}[x] \to \mathbb{R}[x]$$
 definita ponendo $f_5(P(x)) := (P(x) + 1)(3x^2 + 1)$.

$$f_6: \mathbb{R}[x] \to \mathbb{R}[x]$$
 definita ponendo $f_6(P(x)) := (P(x))^2$.

$$f_7: \mathbb{F}_2[x] \to \mathbb{F}_2[x]$$
 definita ponendo $f_7(P(x)) := (P(x))^2$.

$$f_8: \mathbb{R}[x] \to \mathbb{R}$$
 definita ponendo $f_8(P(x)) := P(1)P'(0)$.

$$g_1: M_{2,2}(\mathbb{K}) \to M_{2,2}(\mathbb{K})$$
 definita ponendo $g_1(A) := A \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

$$g_2: M_{2,2}(\mathbb{K}) \to M_{2,2}(\mathbb{K})$$
 definita ponendo $g_2(A) := 2A + 3A^t + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

$$g_3: M_{2,2}(\mathbb{K}) \to M_{2,2}(\mathbb{K})$$
 definita ponendo $g_3(A) := 3A + 2A^t \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

$$g_4: M_{2,2}(\mathbb{K}) \to M_{2,2}(\mathbb{K})$$
 definita ponendo $g_4(A) := AA^t$.

2) Dimostrare che le seguenti funzioni sono applicazioni lineari:

 $h_1: \mathbb{K}[x] \to \mathbb{K}[x]$ definita da $h_1(P(x)) := P(a)$ dove a è un fissato elemento di \mathbb{K} .

 $h_2: \mathbb{K}[x] \to \mathbb{K}[x]$ definita da $h_2(P(x)) := \frac{d^k}{dx^k} P(x)$ (la derivata k-esima del polinomio).

 $h_3: \mathbb{K}[x] \to \mathbb{K}[x]$ definita da $h_3(P(x)) := P(x)Q(x)$ dove Q è un fissato polinomio di $\mathbb{K}[x]$.

 $h_4: M_{m,n}(\mathbb{K}) \to M_{m,l}(\mathbb{K})$ definita ponendo $h_4(A) := AB$ dove B è una fissata matrice di $M_{m,l}(\mathbb{K})$.

 $h_5: M_{m,n}(\mathbb{K}) \to M_{n,m}(\mathbb{K})$ definita ponendo $h_5(A) := A^t$.

3) Usare l'esercizio 2) per rigiustificare le risposte affermative dell'esercizio 1).

4) Quante sono le applicazioni lineari $F:\mathbb{R}^3 \to \mathbb{R}^2$ tali che

$$F\begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 2\\2 \end{pmatrix}, F\begin{pmatrix} 2\\1\\2 \end{pmatrix} = \begin{pmatrix} 1\\2 \end{pmatrix} e F\begin{pmatrix} 7\\8\\13 \end{pmatrix} = \begin{pmatrix} 8\\9 \end{pmatrix}?$$

Quante sono le le applicazioni lineari $F: \mathbb{R}^3 \to \mathbb{R}^2$ tali che

$$F\begin{pmatrix}1\\2\\3\end{pmatrix} = \begin{pmatrix}2\\2\end{pmatrix}, F\begin{pmatrix}2\\1\\2\end{pmatrix} = \begin{pmatrix}1\\2\end{pmatrix} e F\begin{pmatrix}7\\8\\13\end{pmatrix} = \begin{pmatrix}8\\10\end{pmatrix}?$$

5) Sia
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 2 & 3 & 0 \\ 2 & 2 & 2 \\ 1 & 0 & 3 \end{pmatrix}$$
. Trovare dimensioni e basi del nucleo e dell'immagine

dell'applicazione lineare $L_A: \mathbb{K}^3 \to \mathbb{K}^5$ associata ad A.

6) Sia $F: M_{2,2}(\mathbb{R}) \to M_{2,2}(\mathbb{R})$ la funzione definita da

$$F(A) = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} A - A \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}.$$

- a) Mostrare che F è lineare.
- 7) Sia $\{v_1, v_2, v_3\}$ una base di un spazio vettoriale V. Dimostrare che $\{v_1 + v_2 + v_3, v_1 + 2v_2, v_2 + 2v_3\}$ è una base per V.
- 8) Sia V uno spazio vettoriale su \mathbb{K} e sia $X \subseteq V$ un sottoinsieme non vuoto di V e sia $p \in X$ fissato. Dimostrare che X è un sottospazio affine di V se e solo se $X p := \{x p : x \in X\}$ è un sottospazio vettoriale di V.
- 9) Sia $f:V\to W$ un'applicazione lineare tra spazi vettoriali su $\mathbb{K},$ sia $w\in W$ e sia

$$f^{-1}(w) := \{ v \in V : f(v) = w \}.$$

Mostrare che $f^{-1}(w) \subset V$ è vuoto o è un sottospazio affine di V (dotato della sua naturale struttura di spazio affine).

10) Sia $f:V\to W$ un'applicazione lineare tra spazi vettoriali su $\mathbb K$, sia $S\subseteq W$ un sottospazio affine e sia

$$f^{-1}(S) := \{ v \in V : f(v) \in S \}.$$

Mostrare che $f^{-1}(S) \subseteq V$ è vuoto o è un sottospazio affine di V.