Esercizi 4 1) Sia $V \subset \mathbb{R}[x]_{\leq 3}$ il sottospazio vettoriale generato dai cinque polinomi

$$x^{3} + x^{2} + x + 2$$
, $x^{3} + 2x^{2} + 3x + 1$, $2x^{3} + 3x^{2} + 4x + 3$, $2x + 1$, $2x^{3} + 3x^{2} + 2x + 2$.

Estrarre una base dai generatori di V assegnati e completarla ad una base di $\mathbb{R}[x]_{\leq 3}$.

2) Sia

$$V = <\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 4 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix} > \subseteq M_{2,2}(\mathbb{R}).$$

Estrarre una base dai generatori di V assegnati e completarla ad una base di $M_{2,2}(\mathbb{R})$.

3) Quali sono i valori che si possono ottenere come dimensioni¹ delle intersezioni tra due sottospazi affini di dimensione 4 di \mathbb{R}^6 .

4) Sia
$$S_1$$
 il sottospazio affine di \mathbb{R}^4 passante per $p_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ e avente

giacitura $V_1 := < \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} >$, sia S_2 il sottospazio affine passante per

$$p_2 = \begin{pmatrix} 3 \\ 6 \\ 5 \\ 8 \end{pmatrix} \text{ e avente giacitura } V_2 := < \begin{pmatrix} 1 \\ 4 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \\ 3 \end{pmatrix} >. \text{ Trovare equazioni}$$
cartesiana per i settespagi affini S a S a per l'intersoziona $S \cap S$

cartesiane per i sottospazi affini S_1 e S_2 e per l'intersezione $S_1 \cap S_2$.

5) Sia Sia
$$S_1$$
 il sottospazio affine di \mathbb{R}^4 passante per $p_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ e avente

giacitura $V_1 := < \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix} >$, sia S_2 il sottospazio affine passante per $p_2 =$

 $^{^{1}}$ La dimensione di uno spazio affine è per definizione la dimensione della sua giacitura.

$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \text{ e avente giacitura } V_2 := < \begin{pmatrix} 1\\3\\2\\0 \end{pmatrix} >. \text{ Trovare dimensione, equazioni}$$

parametriche e cartesiane per il sottospazio affine generato da S_1 e S_2 .

6) Nello spazio vettoriale \mathbb{R}^4 si considerino i sottospazi vettoriali

$$V = < \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ -2 \\ 2 \end{pmatrix} > \text{ e } W = < \begin{pmatrix} 1 \\ -4 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} > \text{. Si determinino}$$

una base di V + W e una di $V \cap W$.

- 7) Dato un naturale n > 1, siano S_1 e S_2 sottospazi affini distinti di \mathbb{K}^n di dimensione n-1. Dimostrare che o $S_1 \cap S_2 = \emptyset$ oppure $S_1 \cap S_2$ è uno spazio affine di dimensione n-2.
- 8) Sia $A \in M_{m,n}(\mathbb{K})$ una matrice a coefficienti in \mathbb{K} com m righe e n colonnne e sia $B \in M_{m,n}(\mathbb{K})$ ottenuta da A con operazioni elemntari per riga.
- a) Dimostrare che il sottospazio vettoriale di \mathbb{K}^m generato dalle righe di A è uguale al sottospazio vettoriale di \mathbb{K}^m generato dalle righe di B.
- b) Dimostare che la dimensione del sottospazio vettoriale generato dalle righe di una matrice è uguale alla dimensione del sottospazio vettoriale generato dalle colonne della stessa matrice. Suggerimento: usare esercizio 11) della terza settimana.
- 9) Sia $A \in M_{m,n}(\mathbb{K})$ e sia $A' \in M_{m,n}(\mathbb{K})$ ottenuta da A con una delle tre operazioni elementari per riga. Dimostrare che esiste $B \in M_{m,m}(\mathbb{K})$ tale che BA = A'. Suggerimento: detto $e_i \in M_{1,m}(\mathbb{K})$ il vettore riga le cui entrate sono tutte nulle eccetto la i-esima che vale 1, osservare che $e_iA = A_i$ (A_i è la i-esima riga di A).