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UNIVERSITÀ DEGLI STUDI DI ROMA “TOR VERGATA”

ABSTRACT. We generalize the Akemann - Ostrand theorem for PSL2(Z),
to the case of the partial transformations action of PGL2(Z[ 1p ])×PGL2(Z[ 1p ])

op,

by left and and right multiplication on PSL2(Z), in the presence of a twist-
ing cocycle.

0. INTRODUCTION

In this paper we consider a generalization of the Akemann - Ostrand

theorem ([1]) for Γ = PSL2(Z), to the case of the partial transformations

action of

PGL2(Z[
1

p
])× PGL2(Z[

1

p
])op,

by left and and right multiplication on PSL2(Z).

Recall that Akemann - Ostrand property (to which we will refer in the

sequel as to the AO property) for the free group FN , N ≥ 2 asserts ([1]) the

fact that the C∗ - algebra, generated in B(l2(FN)), simultaneously by the C∗

- algebras C∗λ(FN), C∗ρ(FN) that are generated by the left and respectively,

the right convolution operators with elements in FN , is isomorphic, modulo
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the ideal K(l2(FN)) of compact operators, to the minimal C∗ - tensor product

C∗red(FN) ⊗
min

C∗red(F op
N ) ∼= C∗red(FN×F op

N ) of the reduced groupC∗ - algebras

associated to FN . Here, by definition the reduced group C∗ - algebra C∗red(Γ)

of a discrete group Γ is C∗λ(Γ).

The Akemann - Ostrand property has been widely extended. G. Skan-

dalis proved ([35]) that the same result remains true for lattices in semisimple

Lie groups of rank 1. Using amenable actions techniques ([3]), Gunter and

Higson ([13]) and then Ozawa ([27]) have further extended this result, to large

classes of hyperbolic groups.

The key in Ozawa’s approach in proving the AO property for a discrete

group Γ is the amenability (see e.g [3] ) of the action of Γ × Γop on the

boundary ∂(βΓ) of the Stone Cech compactification of Γ, viewed as a discrete

set. This stronger property for a group Γ is called ([27],[9]) property S.

Consider the canonical representation, which we denote by πKoop, of the

crossed product C∗ - algebra C∗((Γ× Γop) n C(∂(βΓ))) into B(l2(Γ)). Let

πQ : B(l2(Γ))→ Q(l2(Γ)) = B(l2(Γ))/K(l2(Γ))

be the projection onto the Calkin algebra ([10]). The S property ([26]) implies

that the representation

πQ ◦ πKoop : C∗((Γ× Γop) n C(∂(βΓ)))→ Q(l2(Γ)),

factorizes to a representation of the reduced C∗ - algebra

C∗red((Γ× Γop) n C(∂(βΓ))).

In this paper we extend the Akemann - Ostrand property in the following

sense. Let Γ be the modular group PSL2(Z). LetG = PGL2(Z[1
p
]), p a prime

≥ 2.

We denote byGp, Gr, K the groups PSL(2,Qp), PSL(2,R), PSL(2,Zp)
and by G̃p, G̃r, K̃ their SL2 versions. Note that second series of groups are
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a central series by Z2 of the previous one. Let χ be the non-trivial character

of Z2, Let s be the diagonal matrix with entries -1, which is an element of

each of those groups and let pχ be the projection 1−s
2

which belongs to the

C∗-algebra (or multiplier algebra) of each of the previous groups. Let ε be the

(non canonical) 2 cocycle with values in Z2, corresponding to the projective

representation π13 in the analytic series of Gp (see e.g. [17]).

In this paper we are interested in the twisted C∗ product algebra

A = C∗((G×Gop) nε,ε C(K)).

In fact the above crossed product is a grupoid crossed product as the

action of G × Gop on K is a partial action (see the Preliminaries section).

The algebra A has a canonical representation into B(l2(Γ)). To avoid the

complication of a choice of the two cocycle ε we use the technique in [23]

and identify l2(Γ) with pχl2(Γ̃), and consider

Ã = C∗((G̃× G̃op) n C(K̃)).

Then Ã is canonically represented into B(l2(Γ̃)) and then

(1) A = pχÃpχ ⊆ B(pχl
2(Γ̃)) ∼= B(l2(Γ)).

Let πQ be the projection onto the Calkin algebraQ((l2(Γ)) = B(l2(Γ))/K(l2(Γ))

The main theorem of the second section is

Theorem 1. Let ΠQ be the representation of the algebraA intoQ((l2(Γ)))

obtained by composing the representation of A in formula 1 with πQ. Then

ΠQ factorizes to the reduced crossed product algebra

Ared = C∗red((G×Gop) nε,ε C(K)).

To prove the theorem we will first prove (while considering the partial

action of G×Gop on K) that
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Theorem 2. The crossed product algebra

B = C∗((G×Gop) nε,ε C0(Gr ×K ×Gr
op))

coincides with the reduced crossed product algebra

Bred = C∗red((G×Gop) nε,ε C0(Gr ×K ×Gr
op)).

Moreover the same holds true if Gr ×K ×Gr
op is replaced by P 1(R)×K ×

P 1(R).

Theorem 2 will be used to prove Theorem 1 by showing that inside

`∞(Γ)/c0Γ there is a G×Gop-equivariant ”amenable quotient” of Gr×Gp×
Gr

op.

1. PRELIMINARIES ON THE PARTIAL ACTION OF G

It is well known ([12]), that Γ is almost normal in G. The almost normal

property for the subgroup Γ of G signifies that for all g ∈ G the subgroup

(2) Γg = gΓg−1 ∩ Γ ⊆ Γ,

has finite index [Γ : Γg].

The group G acts naturally, by conjugation, by partial isomorphisms, on

Γ. Indeed for g ∈ G, the conjugation by g on G, will restrict to a partial

isomorphism

(3) ∆(g) : Γg−1 → Γg.

It is well known that in the case of the example of the modular group,

that we are considering in this paper, we have that [Γ : Γg] = [Γ : Γg−1 ], for all

g ∈ G. We consider the family of maximal normal subgroups Γ0
g contained in

Γg.

Let K be the compact space obtained as the inverse limit of the finite

coset spaces Γ/Γ0
g as g → ∞. Then K is the totally disconnected subgroup
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PSL(2,Zp), with Haar measure µK defined by the requirement that the com-

pact set corresponding to the closure of a coset sΓg, s ∈ Γ in the profinite

topology, has Haar measure equal to
1

[Γ : Γg]
, g ∈ G.

The condition that [Γ : Γg] = [Γ : Γg−1 ], implies that the partial trans-

formation ∆(g), introduced in formula 3 induced by conjugation with g ∈ G,

preserves the Haar measure µK on K.

There is a natural action ofG×Gop onK. An element (g1, g2) ∈ G×Gop

acts by partial transformations on K, by mapping, k ∈ K into g1kg
−1
2 , if the

later element also belongs to K. Thus, the domain of (g1, g2), as a partial

transformation on K, is

D(g1,g2) = {k ∈ K | g1Kg
−1
2 ∈ K} = K ∩ g−1

1 Kg2 = K ∩ g−1
1 Kg1(g−1

1 g2).

We use the notation Kg = K ∩ gKg−1. In our construction this is the

closure, in the profinite completion, of Γg.

2. PROOF OF THEOREM 2

To prove theorem 2 we will consider first crossed product actions with

the left and right actions of the groups Gp, Gr. Consider the algebra

(4) C̃ = [pχ ⊗ (pχ)op][C∗((G̃p × G̃op
p ) n C0(G̃p))].

Here (pχ)op is the projection corresponding to the generator s of Z2

viewed as an element in Gp
op, and pχ ⊗ (pχ)op is a central projection.

If choose a Borel lifting of Gp to G̃p this would induce a two cocycle ε̃

on Gp and the algebra C̃ is isomorphic to the skewed crossed product algebra

C =red C
∗((Gp ×Gp

op) nε̃,ε̃ C0(Gp)).

We prove first the following lemma
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Lemma 3. The crossed product C∗- algebra C̃ introduced in formula 4

coincides with the reduced crossed product algebra

C̃red = [pχ ⊗ (pχ)op][C∗red((G̃p × G̃op
p ) n C0(G̃p))].

Proof. To simplify the explanation we will use the notation of the ε terminol-

ogy. Thus we have

(5) C̃ = C∗((Gp ×Gp
op) nε̃,ε̃ C0(Gp)).

Let C∗(Gp, ε̃) be the skewed group C∗-algebra of the group Gp with respect

the cocycle ε̃. This is isomorphic to pχ(̧G̃p). We use the approach from the

paper [4], Example 7.6. Because in the supplementary series of irreducible

unitary representations of G̃p, the element s is always mappd into the identity

(see chapter 2.3.7 [5] and also [32]) it follows that

C∗(Gp, ε̃) = C∗red(Gp, ε̃).

The crossed product algebra C̃ may be written as the iterated crossed

product

(6) C∗(Gp
op nε̃ [C∗(Gp nε̃ C0(Gp))]).

By the amenability of the action of Gp on Gp it follows that the inner crossed

product algebra C∗(Gp nε̃ C0(Gp) coincides with the reduced crossed prod-

uct algebra C∗red(Gp nε̃ C0(Gp) and this in turn coincides with the algebra

K(L2(Gp, νp)), where νp is the Haar measure on Gp. Because of the observa-

tion at the start of the proof and because of the Theorem 7.5 in [4] it follows

that also the outer maximal C∗crossed product in formula 6 coincides with

the reduced C∗crossed product. Since both iterated C∗-crossed products in

formula 6 coincide with the reduced C∗-crossed products it follows that the

algebra C̃ in formula 5 coincides with the reduced crossed product algebra

C∗red((Gp ×Gp
op) nε̃,ε̃ C0(Gp)).
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�

The next lemma combines the left right action of Gp and Gr.

Lemma 4. Let G = (Gr ×Gr
op)× (Gp ×Gp

op) act on

(7) X = Gr × (Gr)
op ×Gp.

Here Gp × Gp
op acts by left and right action on Gp, and Gr and respec-

tively (Gr)
op act on C0(Gr) and respectively C0((Gr)

op). Then the twisted

C∗-crossed product

C∗(G n(ε,ε̃),(ε,ε̃) C0(X ))

coincides with the reduced crossed product

C∗red(G n(ε,ε̃),(ε,ε̃) C0(X )).

Proof. The crossed product algebra C∗(G n(ε,ε̃),(ε,ε̃) C0(X )) splits as

(8) C∗(Gr nε C0(Gr))⊗ C∗(Gr
o nε C0(Gr

o))⊗ C∗(Gp nẽ C0(Gp)).

By the amenability of the action of Gr on Gr, the first two algebras

are nuclear and all the tensor products are minimal tensor products. The third

factor in the tensor product, by the previous lemma coincides with the reduced

tensor product.

�

Corollary 5. Let P be the quotientGr/AN ∼= P 1(R), endowed with the

standard action ofGr. Let Y = P⊗Gp⊗P . Let G act on Y as in the previous

statement.

Then the twisted C∗-crossed product

C∗(G n(ε,ε̃),(ε,ε̃) C0(Y))

coincides with the reduced crossed product

C∗red(G n(ε,ε̃),(ε,ε̃) C0(Y)).
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Proof. The proof of the previous statement was using only the amenability of

the action of Gr on Gr. Hence the same proof works if replace Gr by P .

�

With this we can conclude the proof of Theorem 2.

Proof. (Theorem 2)

We use the fact the group G is a lattice in Gpr = Gr × Gp. Consider

the positive definite function associated to the characteristic function of A ×
K × B, where A,B are compact subsets of Gr in the twisted Koopmann

representation ofC∗((Gpr×Gpr
op)n(ε,ε̃),(ε,ε̃)C0(X )) intoB(L2(X , µ)), where

µ is the product Haar measure. The positive definite kernel associated to this

vector in the sense of [3] is defined, for g1, g2 ∈ Gpr, x, y ∈ Gr, k ∈ K, by

the formula

FA,K,B((g1, g2), (x, k, y)) = χg1A∩A(x)χg1Kg2∩K(k)χBg2∩B(y).

Note that when checking positive definiteness one has to consider the cocycle

in the corresponding sums expressing positivity. Because of Corollary 5 this

function is a limit, uniformly on compacts of positive definite functions, of

compact support in Gpr × Gpr
op × X . Because G is a lattice in Gpr, the

restriction of F toG×Gop×X will also be a limit of positive definite functions

(with respect to ε) of compact support in G×Gop×X . But then any positive

definite function onC∗((G×Gop)nε,εC0(Gr×K×Gr
op)), which has compact

support in the variables corresponding to X , by multiplying with the above

approximations will become a limit of positive definite functions of compact

support. The general case is obtained by taking limits while increasing the

supports in the variables corresponding to X .

�
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Similarly because of Corollary 5 we obtain (and also prove the last state-

ment in the proof of Theorem2):

Corollary 6. The twisted C∗crossed product algebra

C∗((G×Gop) nε,ε C0(P ×Gp × P op))

coincides with the C∗reduced crossed product algebra

C∗red((G×Gop) nε,ε C0(P ×Gp × P op)).

Proof. The only thing that changes from the previous proof is the fact that

this time P carries a natural quasi-invariant measure. Taking the Maharam

extension ([21]) reduces the proof to the case of invariant measure. �

3. A G×Gop EQUIVARIANT BOUNDARY INSIDE `∞(Γ)/c0(Γ)

Let ∂Γ be the (Gromov) boundary of Γ (which is independent on the

choice of generators, see e.g. [15]). Let S, T be the standard system of gener-

ators of Γ ∼= Z2∗Z3 and let ν be the homogenous measure on ∂Γ associated to

this system of generators. Let πd be the Γ equivariant projection from ∂Γ onto

P 1(R) constructed in [33], [34] (the Spielberg disconnection). In this section

we describe a canonical G action on ∂Γ that is G-equivariant. We construct

an embedding of C0(∂Γ× ∂Γop) inside `∞(Γ)/c0(Γ), and prove that the cor-

responding embedding is G × Gop equivariant with respect to the canonical

action of G×Gop on `∞(Γ)/c0(Γ)

We divide this in several steps.

Lemma 7. There exists a canonical extension of the action of Γ on ∂Γ

to an action of G on ∂Γ. This action has the property that it is G-equivariant

with respect to πd.
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Proof. Every g in G defines a partial action on by conjugation with domain

Γg−1 = g−1Γg ∩ Γ and codomain Γg = gΓg−1 ∩ Γ. Since both subgroups

Γg−1 and Γg have finite index in Γ, their Gromov boundaries coincide with

∂Γ ([14]) Moreover as the boundary is independent of the chosen system of

generators (see e.g. [15]) and hence the proof in [8] extends to this situation

to prove that the conjugation action by g gives a continuous automorphism of

∂Γ that clearly extends the action of Γ.

Recall that in [33], page 781 (see also [34]) the projection πd is con-

structed as follows. One fixes a point z ∈ H and if ζ = w1w2... is the infinite

word expression in terms of the generators then

(9) πd(ζ) = lim
n→∞

w1w2...wn(z),

The above definition is independent of z ([34]). By [24] the conjugacy action

of G on wors in Γ is that of a Turing machine, which by the arguments in

cooper eventually preserves the init in the iterated transformation of the init

words in ζ . By combining this with the formula 9 and because that formula

doesn’t depend on the choice of z it follows that πd is G-equivariant.

�

Remark 8. A possible way to describe the action of g ∈ G on ∂Γ is

to consider along ζ ∈ ∂Γ a tube T of fixed width (greater than the lenght of

coset representatives for Γg−1 . Then T ∩ Γg−1 is infinite, and gTg−1 will be

contained in an infinite tube, of eventually larger width, that unequivocally

defines the action of g on ζ .

Lemma 9. The canonical embedding ofC0(∂Γ) inside `∞(Γ)/c0(Γ) has

the property that the commutative C∗ algebra A generated by C0(∂Γ) and
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C(K) inside `∞(Γ)/c0(Γ) is isomorphic to C0(∂Γ × K). Here C(K) is re-

alized as the algebra generated by characteristic functions of cosets of sub-

groups of the form Γg, g ∈ G.

Moreover the partial action of G by conjugation on `∞(Γ)/c0(Γ) leaves

A -invariant and on the factor C0(∂Γ) induces the above action, while on

C(K) it induces the partial action.

Proof. One considers the commutative C∗- algebra B in `∞(Γ)/c0(Γ) gener-

ated by characteristic functions of sets of the form:

(10) Aw = {w1 ∈ Γ | w1 starts with w}, w ∈ Γ.

Then A is the commutative C∗-algebra generated by B and C(K) in

`∞(Γ)/c0(Γ). To prove that the algebra A is a faithfull realization of the

commutative C∗algebra C(∂Γ×K) , we need to exhibit a state (measure) on

`∞(Γ)/c0(Γ) whose pushback to A is a product state. To do this let ω be a

free ultrafilter onN . For n ∈ N Let Bn be the ball of radius n in Γ and let µω

be the Loeb ([20], [19]) counting measure associated to the sets (Bn)n∈N and

the ultrafilter ω There is an obvious pull back from the Loeb space associated

to the counting measure to the Stone-Cech compactification βΓ and thus a

further pushback of the Loeb measure to ∂Γ × K. It is tautological that the

marginal of the pushback measure on ∂Γ is the homogenous measure (with

respect to the generators use the construct the balls Bn, n ∈ N).

The results in [6] prove that for a coset C ⊆ K of a group of the form

Kg, g ∈ G, we have that

lim
n→∞

card (Bn ∩ C)

card (Bn)
=

1

[Γ : Γg]
.

Hence the marginal of the pushback of the Loeb measure onK is the invariant

Haar measure. Thus the algebra A is the algebra C(∂Γ×K).
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For g ∈ G, the continuity of the homeomorphism g on ∂Γ shows that g

will map (modulo c0(Γ) sets of the form Aw ∩ Γg into a reunion of such sets,

and hence the conjugation action by g on `∞(Γ)/c0(Γ) invariates the algebra

A. By the previous Remark, the action has the form described in the statement

on the two factors.

�

In analogy with formula 10, for w ∈ Γ, let

(11) Aw = {w1 ∈ Γ | w1 ends with w}, .

Theorem 10. Let G × Gop act on ∂Γ × K × ∂Γop by letting G act on

∂Γ as in Lemma 7, and trivially on ∂Γop. Similarly let Gop act on ∂Γop as in

Lemma 7, and trivially on ∂Γ. We let G × Gop act by partial isomorphisms

on K. Let C be the commutative C∗subalgebra of `∞(Γ)/c0(Γ) generated by

characteristic functions of the form Aw1 , Aw2 , w1, w2 ∈ Γ and characteristic

functions of cosets in Γ of subgroups of the form Γg, g ∈ G.

There C is isomorphic to C(∂Γ × K × ∂Γop) and the partial action

of G × Gop on `∞(Γ)/c0(Γ) invariates C and induces the action described

above.

Proof. The fact that the algebra C is isomorphic to C(∂Γ × K × ∂Γop) is

proved by the same argument based on Loeb measures as in the proof of the

previous lemma.

Because Γop acts trivially on the algebra generated by the characteristic

functions as in formula 10 and Γ acts trivially on characteristic functions as

in formula 11 it follows that the action of G × Gop on `∞(Γ)/c0(Γ) splits as

it asserted in the statement. �
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Using the natural action of G on ∂Γ that we constructed above we de-

duce from Corollary 6 the following

Theorem 11. The crossed product algebra

D = C∗((G×Gop) nε,ε C0(∂Γ×K × ∂Γop))

coincides with the reduced crossed product algebra

Dred = C∗red((G×Gop) nε,ε C0(∂Γ×K × ∂Γop)).

Proof. We use the fact that the projection πd : ∂Γ→ P 1(R) ([33]) is bijective

except of the rational points where it is 2 to 1. We use Takesaki’s disintegra-

tion ([36], Chapter X, Theorem 3.8) for the crossed product algebra. Hence in

any representation on a Hilbert space H of the algebra D, there exist a mea-

sure µD on ∂Γ×K × ∂Γop such that the Hilbert space H becomes a field of

Hilbert spaces over L∞(D, µD). If µD gives mass 0 to the rational points then

the result is exactly the content of Theorem 2. Otherwise we use the result in

theorem 2 for a double copy of the algebra in 2, applied to the case when the

measure is supported on the rational points. Every measure is the sum of two

singular measures verifying these conditions, and the crossed product splits

as a direct sum.

�

We can now conclude the proof of Theorem 1

Proof. Theorem 1

Indeed because of Theorem 10 we can extend the representation ΠQ of

the algebra A to a representation Π̃Q of the algebra D = C∗((G × Gop) nε,ε

C0(∂Γ × K × ∂Γop)) into Q(l2(Γ)). Because of Theorem 11 this factorizes

to the reduced crossed product and hence also the restriction of Π̃Q to A fac-

torizes to the reduced crossed product algebra Ared.
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�

4. APPLICATION TO HECKE OPERATORS

Recall from [2] that the algebra H0 of linearly generated by the double

cosets [ΓσΓ], for σ ∈ G is represented into B(l2(Γ\G)), and correspondingly

the reduced C∗- Hecke algebraHred is the C∗-algebra generated by the image

ofH0.

In [30] (see also [29]) we proved that if π13 is the 13-th projective unitary

representation in the analytic series of representations of Gr and ζ is a cyclic

trace vector (see [17], [18]) then the following sum converges

t([ΓσΓ]) =
∑
θ∈ΓσΓ

< π(13)(θ)ζ, ζ > θ

and defines an element in C∗red(G, ε). Moreover it is proven in [30] (see also

[29]) that

Theorem 12. (1)The application mapping [ΓσΓ] into t([ΓσΓ]), σ ∈
G extends by linearity to a trace preserving isomorphism from Hred into

C∗red(G, ε).

(2)The map defined by linear extension by the formula

Ψ([ΓσΓ]) = E
L(G,ε)
L(Γ,ε) (t([ΓσΓ]) · t([ΓσΓ])), σ ∈ G

is a ∗-homeomorphism froH0 into L(Γ, ε).

(3)If we extend Ψ([ΓσΓ]) to l2(Γ) which is identified to the L2-space

associated to the II1 factor L(Γ, ε), then Ψ([ΓσΓ]) viewed as an element
˜Ψ([ΓσΓ]) in B(l2(Γ)) is unitarily equivalent to the classical Hecke operator

([12]) associated to [ΓσΓ] acting on Maass forms on the upper halfplane.

(4) The linear application mapping [ΓσΓ] into

S([ΓσΓ]) = χK(t([ΓσΓ])⊗ t([ΓσΓ]))χK
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takes values into the C∗-algebraA = C∗((G×Gop)nε,εC(K)), and it extends

to a trace preserving isomorphism fromHred into A.

As a corollary of the above theorem from [30] (see also [29]) and be-

cause of Theorem 1 we obtain

Corollary 13. The linear application obtained by linear extension by

mapping [ΓσΓ] into the projection πQ( ˜Ψ([ΓσΓ])) into the Calkin algebra

Q(l2(Γ)), extends to a C∗-isomorphism fromHred with values into Q(l2(Γ))

Proof. Because of Theorem 1 this will certainly hold true if we prove that in

the Calkin algebra we have the equality:

ΠQ(S([ΓσΓ])) = πQ( ˜Ψ([ΓσΓ])), σ ∈ G.

Recall that πQ is the projection from B(l2(Γ)) into the Calkin algebra,

while ΠQ is the representation of the algebra A obtained by composing the

representation of A into B(l2(Γ)) with the projection into the Calkin algebra.

But in the definition of ˜Ψ([ΓσΓ]) in point (3) of Theorem 12, extending

Ψ([ΓσΓ]) as a completely positive map on the von Neumann II1 factor to

an operator acting on l2(Γ) amounts to transform the conditional expectation

E
L(G,ε)
L(Γ,ε) in point (2) of the above theorem into left and right multiplication by

the characteristic function of Γ. This proves that the image of S([ΓσΓ]) ∈ A
in the representation of the algebra A into B(l2(Γ)) coincides with ˜Ψ([ΓσΓ])

for σ ∈ G. Hence projecting onto the Calkin algebra their images coincide

�

As a corollary we obtain straightforward from the previous corollary that

Corollary 14. For σ ∈ G, the norm, in the Calkin algebra, of the Hecke

operator ˜Ψ([ΓσΓ]) is equal to to the norm of the Hecke operator associated
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to [ΓσΓ] in the reduced Hecke algebraHred (i.e. the norm of [ΓσΓ] viewed as

an operator acting on l2(Γ\G)).

Let Tpn be the Hecke operator, acting on Maass forms, associated to

σpn =

(
pn 0
0 1

)
, n a positive integer. As proved in part (3) in Theorem 12,

this is unitarily equivalent to ˜Ψ([ΓσpnΓ]). Hence we obtain

Theorem 15. The spectrum of the Hecke operator Tp, acting on Maass

forms, in the Calkin algebra (the essential spectrum) is contained in the

interval [−2
√
p, 2
√
p]. Consequently, any given open interval containing

[−2
√
p, 2
√
p], contains at most a finite number of eigenvalues of Tp that lie

outside the interval [−2
√
p, 2
√
p].

Proof. By part (3) of Theorem 12 the essential spectrum of Tp coincides with

the essential spectrum of ˜Ψ([ΓσpΓ]). By Corollary 14, the spectrum, in the

Calkin algebra of ˜Ψ([ΓσpΓ]) coincides with the spectrum of the double coset

[ΓσpΓ] viewed as an operator acting on acting on l2(Γ\G). But this is equal to

the norm of the radial element χ1 (sum of words of lenght 1) in the free group

F(p+1)/2. This is because the Hred is identified ([16]) with the radial algebra

([28]) in the free group. By [7] the spectrum of χ1, viewed as, an element of

C∗red(F(p+1)/2) is the interval [−2
√
p, 2
√
p] �
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