2018-2019 Nome:

Professor: Florin Rădulescu

Esonero Analisi Reale 13.11.2018

Non é consentito l'uso di libri o fotocopie, ad eccezione del materiale scritto a mano con le formule. Non é consentito l'uso di strumenti di comunicazione.

Durante l'esame NON é consentito lasciare l'aula o fare domande.

Un esercizio, senza la giustificazione dei passaggi eseguiti, NON sarà presso in considerazione.

Le risposte non motivate, senza calcoli o incomprensibili non saranno prese in considerazione.

Consegnare solo questi fogli.

1. (10 pt) Sia $E \subseteq \mathbb{R}^n$ un insieme misurabile. Sia $(f_n)_{n \in \mathbb{N}}$ una successione di funzioni integrabile che converge in $L^1(E)$ verso una funzione integrabile $f \in L^1(E)$, i.e.

$$\lim_{n \to \infty} \int_E |f_n - f| = 0.$$

Si dimostri che esiste una sottosuccessione della successione $(f_n)_{n\in\mathbb{N}}$, che converge puntualmente, quasi ovunque sull'insieme E, verso la funzione f.

2. (10 pt) Sia $E\subseteq R^n$ un insieme misurabile e limitato. Sia $f:E\to R$ una funzione misurabile ed essenzialmente limitata, i.e.:

$$||f||_{\infty, \mathrm{ess}} = \inf\{M|\ |f(x)| \leq M \text{ quasi ovunque per tutti } x\} < \infty.$$

Si verifichi che

$$\lim_{p \to \infty} (\int_E |f|^p)^{\frac{1}{p}} = ||f||_{\infty, \text{ess}}.$$

- 3. (10 pt) A. Si dimostri che esiste un sottoinsieme di \mathbb{R}^2 che non é misurabile (qui si puó usare il fatto che esiste un sottoinsieme non misurabile di \mathbb{R}).
- **B.** Si trovi un sottoinsieme E di R^2 che é misurabile e tale che esiste $x \in R$ con la proprietá che l'insieme

$$E_x = \{(x, y) | (x, y) \in E, y \in R\}$$

non é misurabile.

 ${\bf C.}$ É possibile trovare un insieme E come nel punto ${\bf B}$ tale che E sia un insieme boreliano?