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Exercise 1 Let & be the solution (geometric Brownian motion) to the SDE
d§ = b&; dt + o0& dB;

with the initial conditiongg = 1.
a) Determine a real numbersuch that&/); is a martingale.
b) Letr the exit time oft out of the interval % 2[. Compute the probability @, = 2).

Exercise 2 Let B be 1-dimensional Brownian motion agdhe Ornstein-Uhlenbeck process,
solution of the SDE
dst = bé}_t dt +o dBt
§o=x

whereb, o € R. Letyn, = £2.
Prove that is the solution of a SDE to be determined.

Exercise 3 Let, in dimension 2L be the operator

1 92 0

1 L=-—
@ 28x2+x8y

andé the diffusion havingL as its generator.

a) Compute the law of; with the starting conditiop = x. Does it have a density with
respect to the Lebesgue measur@®é®? IsL elliptic ?

b) Answer the same questions as in a) for the operator

(2) =12 Tyl
27 209x2 Y ay
Exercise 4 Let £ be the Ornstein-Uhlenbeck process solution to the stochastic differential
equation

d&§f = —X&f dt +e0dB;, §;=x

wherexr € R, o > 0.
a) Prove that, for every> 0



b) Prove that the laws of the procesggs(which, remember, are probabilities on the
spacet = C ([0, T'], R)), converge in distribution to the Dirac mass concentrated on the path
xo(t) = € x that is the solution of the ordinary equation

3 & =—A&, Ep=x

In other words the diffusio§® can be seen as a small random perturbation of the ODE (3).



Solutions
Exercise 1. a) Two possibilities: by Ito’s formula, for every real numlaer
1 2
de® = at® Ldg + o= D& 20%el dt = (ab + % a(a —1))&* dt + o0& dB; .
If the coefficient ofdt in the stochastic differential above vanishes, t&rwill be a local
martingale and actually a martingale (why ?). The condition is therefesed (obviously) or
2
b+ L (@-1)=0
2
i.e.
(4) a=1-="
Second possibility: we know thgthas the explicit form

2
g = eb=7)+ob

and therefore ,
Sta _ ea(b— %)—I—aaBt

which turns out to be an exponential martingale if

2
2 (o
h— ) = —g2—
o ) o >
from which we obtain again (4).

Remark however that the use of Ito’s formula here requires an explanation, as the function

x — x% is not defined on the whole &.

b) By the stopping theorem we have, for every O,

ElgZ.,]=1.
Ast — &%, remains bounded in we can apply Lebesgue’s theorem and obtain
1=E[£] =2"P(; =2) +27%(1 - P&, = 2))

from which we find
1—-2¢
P(S‘K = 2) = 2

o _ D—a



Exercise 2. By Ito’s formula we have
dn, = 25 d& + o2dt = (02 + 2bE?) dt + 20, d B,

If we define

t
&
5) W:f(—lto—i-l,:o)dB.
! 0 ﬁ {n: #0} {n } t

then, by Corollaryl env. 14’, W is a real Brownian motion (the integrand is a process having
modulus equal to 1) and

VN dWr = /g (5—’n_ 1in, 20y + 1{,7,20}) dB; = & dB, .
t

Hencen solves the SDE

(6) dn, = (02 + 2by,) dt + 20 /1, AW,

of course with the initial conditiong = x2.

e Remark that the coefficients of (6) do not satisfy Condition (A’") (the diffusion coefficient is

not Lipschitz continuous at 0). In particular in this exercise we prove that (6) has a solution but
are unable to discuss uniqueness. a) The matrix of the second order coefficients is

(1 0
“=\o o
whose square rood;, is of course equal ta itself. The corresponding SDE is therefore

dst = b%-[ dt +O'dBt

=(o0) =7 0)

and we know that this equation has the explicit solution

where

t
& =g+ e”’f e o dB;
0
and has a Gaussian law with me&hgg and covariance matrix

t
I, :/ oo ds .
0



We see thab? = b3 = ... = 0. Hence

o0 1k, k
ebu:kg(:)bkblt :I—|—bu:(i‘ 2)
so that
o= (2 9)(3 (6 D[ 2)
and

P
Iy = (tz tzs) .
2 3
I'; being invertible (determinant equal {% the law of§; has a density.
b) The SDE now is of the same kind but with

v=(09) @=(c &)
P00 = (5 ) (5 0) (o ¢)=(5 0)
"=(5 o)

which is not invertible so that there is no density with respect to Lebesgue measure.

Therefore

and

Exercise 4. a) We know that the law off is Gaussian with mearr@’x and variance

%02

2\

(1 _ e—Z)Ll‘) )

By Chebyshev inequality

2

o =20
2)»52 (1 © ) s:)O 0

P(l&f —eMx| = 8) < &2

so thatt? converges to € x in probability and therefore in distribution.
b) Itis sufficient to prove that

P(sup|§f —eMx| > 8) — 0.

IST e—0



Actually this entails that the probability gf to be outside of a fixed neighborhood of the path
xo(t) = e as goes to 0. Recall the explicit expressiongr

t
£ =eMx 4 eoe™ /0 e dB; .

Therefore we are led to the following limit to be proved

Z(S) — 0.

e—0

t
P(e sup|oe ™ f e d By
0

t<T

which is immediate, the process inside the absolute values being continuous and therefore the
r.v.

t
sup ae_“f e d By
0

t<T

is finite. Remark that, using the exponential inequality of martingales we might even give a
speed of convergence.



